Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Bridging fair-aware artificial intelligence and co-creation for equitable mental healthcare

Abstract

Artificial intelligence (AI) holds immense potential to provide scalable, personalized and accessible solutions to mental healthcare. However, biases in AI systems might exacerbate current mental healthcare disparities, particularly for minoritized populations. In this Perspective, we introduce a model for bias reduction and inclusion through dynamic generative equity (adaptive AI), which has been designed to prioritize equity throughout the development and implementation of AI systems in mental health interventions. This model integrates fair-aware machine learning with co-creation techniques, combining quantitative methodologies to detect bias in AI algorithms with qualitative input from community collaborators to ensure cultural relevance and practical application. We describe the model’s procedures and iterative feedback loops, which ensure that AI-based interventions are culturally responsive and evolve dynamically with real-time feedback. We also discuss the model’s potential applications, current limitations and areas for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathways through which structural inequities contribute to biased AI-based mental health interventions.
Fig. 2: Integration of fair-aware and co-creation frameworks across the intervention development lifecycle.
Fig. 3: Dual-loop system of the model for bias reduction and inclusion through dynamic generative equity.

Similar content being viewed by others

References

  1. Bohr, A. & Memarzadeh, K. in Artificial Intelligence in Healthcare (eds Bohr, A. & Memarzadeh, K.) 25–60 (Academic, 2020).

  2. Dwyer, D. B., Falkai, P. & Koutsouleris, N. Machine learning approaches for clinical psychology and psychiatry. Annu. Rev. Clin. Psychol. 14, 91–118 (2018).

    Article  PubMed  Google Scholar 

  3. Lattie, E. G., Stiles-Shields, C. & Graham, A. K. An overview of and recommendations for more accessible digital mental health services. Nat. Rev. Psychol. 1, 87–100 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Torous, J. & Blease, C. Generative artificial intelligence in mental health care: potential benefits and current challenges. World Psychiatry 23, 1–2 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Graham, S. et al. Artificial intelligence for mental health and mental illnesses: an overview. Curr. Psychiatry Rep. 21, 116 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Habicht, J. et al. Closing the accessibility gap to mental health treatment with a personalized self-referral chatbot. Nat. Med. 30, 595–602 (2024).

    Article  PubMed  Google Scholar 

  7. Jacobson, N. C. & Bhattacharya, S. Digital biomarkers of anxiety disorder symptom changes: Personalized deep learning models using smartphone sensors accurately predict anxiety symptoms from ecological momentary assessments. Behav. Res. Ther. 149, 104013 (2022).

    Article  PubMed  Google Scholar 

  8. Johnson, A. E. et al. Utilizing artificial intelligence to enhance health equity among patients with heart failure. Heart Fail. Clin. 18, 259–273 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Olawade, D. B. et al. Enhancing mental health with artificial intelligence: current trends and future prospects. J. Med. Surg. Public Health 3, 100099 (2024).

    Article  Google Scholar 

  10. Anderson-Lewis, C., Darville, G., Mercado, R. E., Howell, S. & Di Maggio, S. mHealth technology use and implications in historically underserved and minority populations in the United States: systematic literature review. JMIR mHealth uHealth 6, e8383 (2018).

    Article  Google Scholar 

  11. McGuire, T. G. & Miranda, J. New evidence regarding racial and ethnic disparities in mental health: policy implications. Health Aff. 27, 393–403 (2008).

    Article  Google Scholar 

  12. Belenguer, L. AI bias: exploring discriminatory algorithmic decision-making models and the application of possible machine-centric solutions adapted from the pharmaceutical industry. AI Ethics 2, 771–787 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chouldechova, A. & Roth, A. A group of industry, academic, and government experts convene in Philadelphia to explore the roots of algorithmic bias. Commun. ACM 63, 82–89 (2020).

    Article  Google Scholar 

  14. Fulmer, R., Davis, T., Costello, C. & Joerin, A. The ethics of psychological artificial intelligence: Clinical considerations. Couns. Values 66, 131–144 (2021).

    Article  Google Scholar 

  15. Timmons, A. C. et al. A call to action on assessing and mitigating bias in artificial intelligence applications for mental health. Persp. Psychol. Sci. 18, 1062–1096 (2023).

    Article  Google Scholar 

  16. Chen, F., Wang, L., Hong, J., Jiang, J. & Zhou, L. Unmasking bias in artificial intelligence: a systematic review of bias detection and mitigation strategies in electronic health record-based models. J. Am. Med. Inform. Assoc. 31, 1172–1183 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Noor, P. Can we trust AI not to further embed racial bias and prejudice? BMJ 368, m363 (2020).

    Article  PubMed  Google Scholar 

  18. Adler, D. A. et al. Measuring algorithmic bias to analyze the reliability of AI tools that predict depression risk using smartphone sensed-behavioral data. npj Ment. Health Res. 3, 17 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mizock, L. & Harkins, D. Diagnostic bias and conduct disorder: improving culturally sensitive diagnosis. Child. Youth Serv. 32, 243–253 (2011).

    Article  Google Scholar 

  20. Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G. & Chin, M. H. Ensuring fairness in machine learning to advance health equity. Ann. Intern. Med. 169, 866–872 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cowgill, B. et al. Biased programmers? Or biased data? A field experiment in operationalizing AI ethics. In Proc. 21st ACM Conf. Economics and Computation 679–681 (ACM, 2020).

  22. Obermeyer, Z., Powers, B., Vogeli, C. & Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 366, 447–453 (2019).

    Article  PubMed  Google Scholar 

  23. Chen, R. J. et al. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat. Biomed. Eng. 7, 719–742 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K. & Galstyan, A. A survey on bias and fairness in machine learning. ACM Comput. Surv. 54, 115 (2021).

    Google Scholar 

  25. Pagano, T. P. et al. Bias and unfairness in machine learning models: a systematic review on datasets, tools, fairness metrics, and identification and mitigation methods. Big Data Cogn. Comput. 7, 15 (2023).

    Article  Google Scholar 

  26. Kamishima, T., Akaho, S., Asoh, H. & Sakuma, J. Model-based and actual independence for fairness-aware classification. Data Min. Knowl. Discov. 32, 258–286 (2018).

    Article  Google Scholar 

  27. Nilsen, P. et al. Accelerating the impact of artificial intelligence in mental healthcare through implementation science. Implement. Res. Pract. 3, 26334895221112033 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nazer, L. H. et al. Bias in artificial intelligence algorithms and recommendations for mitigation. PLoS Digit. Health 2, e0000278 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. O’Brien, J., Fossey, E. & Palmer, V. J. A scoping review of the use of co-design methods with culturally and linguistically diverse communities to improve or adapt mental health services. Health Soc. Care Comm. 29, 1–17 (2021).

    Article  Google Scholar 

  30. Brotherdale, R., Berry, K., Branitsky, A. & Bucci, S. Co-producing digital mental health interventions: a systematic review. Digit. Health https://doi.org/10.1177/20552076241239172 (2024).

  31. Halvorsrud, K. et al. Identifying evidence of effectiveness in the co-creation of research: a systematic review and meta-analysis of the international healthcare literature. J. Publ. Health 43, 197–208 (2021).

    Article  Google Scholar 

  32. Åkerblom, K. B. & Ness, O. Peer workers in co-production and co-creation in mental health and substance use services: a scoping review. Adm. Policy Ment. Health 50, 296–316 (2023).

    Article  PubMed  Google Scholar 

  33. Elwan, M. Co-creation and recovery in mental health services: a lived experience perspective. Ir. J. Psychol. Med. 7, 1–3 (2024).

    Article  Google Scholar 

  34. Kuipers, S. J., Cramm, J. M. & Nieboer, A. P. The importance of patient-centered care and co-creation of care for satisfaction with care and physical and social well-being of patients with multi-morbidity in the primary care setting. BMC Health Serv. Res. 19, 13 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Powell, N., Dalton, H., Lawrence-Bourne, J. & Perkins, D. Co-creating community wellbeing initiatives: what is the evidence and how do they work? Int. J. Ment. Health Syst. 18, 28 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Soklaridis, S. et al. A balancing act: navigating the nuances of co-production in mental health research. Res. Inv. Engag. 10, 30 (2024).

    Article  Google Scholar 

  37. Mulvale, G. et al. Co-creating a new charter for equitable and inclusive co-creation: insights from an international forum of academic and lived experience experts. BMJ Open 14, e078950 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sliep, Y., Tankink, M. & Bubenzer, F. Co-creation as a methodology to integrate mental health and psychosocial support and peacebuilding. Interv. J. Ment. Health Psychosoc. Support Conflict-Affected Areas 21, 89–95 (2023).

    Article  Google Scholar 

  39. Uricchio, W. & Cizek, K. Co-creating with AI. Minn. Rev. 2023, 118–131 (2023).

    Article  Google Scholar 

  40. McCaffrey, L. et al. Adult co-creators’ emotional and psychological experiences of the co-creation process: a Health CASCADE scoping review protocol. Syst. Rev. 13, 231 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Israilov, S. & Cho, H. J. How co-creation helped address hierarchy, overwhelmed patients, and conflicts of interest in health care quality and safety. AMA J. Ethics 19, 1139–1145 (2017).

    Article  PubMed  Google Scholar 

  42. Laurisz, N., Ćwiklicki, M., Żabiński, M., Canestrino, R. & Magliocca, P. Co-creation in health 4.0 as a new solution for a new era. Healthcare 11, 363 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tuhiwai Smith, L. Decolonizing Methodologies: Research And Indigenous Peoples (Bloomsbury, 2012).

  44. Fadus, M. C. et al. Unconscious bias and the diagnosis of disruptive behavior disorders and ADHD in African American and Hispanic youth. Acad. Psychiatry 44, 95–102 (2020).

    Article  PubMed  Google Scholar 

  45. Topol, E. J. Welcoming new guidelines for AI clinical research. Nat. Med. 26, 1318–1320 (2020).

    Article  PubMed  Google Scholar 

  46. Yang, J., Soltan, A. A. S., Eyre, D. W., Yang, Y. & Clifton, D. A. An adversarial training framework for mitigating algorithmic biases in clinical machine learning. npj Digit. Med. 6, 55 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Berk, R., Heidari, H., Jabbari, S., Kearns, M. & Roth, A. Fairness in criminal justice risk assessments: the state of the art. Sociol. Meth. Res. 50, 3–44 (2021).

    Article  Google Scholar 

  48. Alvarez, J. M. et al. Policy advice and best practices on bias and fairness in AI. Ethics Inf. Technol. 26, 31 (2024).

    Article  Google Scholar 

  49. Ferrara, E. Fairness and bias in artificial intelligence: a brief survey of sources, impacts, and mitigation strategies. Sci. 6, 3 (2024).

    Article  Google Scholar 

  50. Ferrara, C., Sellitto, G., Ferrucci, F., Palomba, F. & De Lucia, A. Fairness-aware machine learning engineering: how far are we? Emp. Softw. Eng. 29, 9 (2024).

    Article  Google Scholar 

  51. Vucinich, S. & Zhu, Q. The current state and challenges of fairness in federated learning. IEEE Access 11, 80903–80914 (2023).

    Article  Google Scholar 

  52. Liu, M., Meng, Q., Yu, G. & Zhang, Z.-H. Fairness as a robust utilitarianism. Prod. Op. Manag. 34, 563–574 (2025).

    Article  Google Scholar 

  53. Wenar, L. in The Stanford Encyclopedia of Philosophy (ed. Zalta, E. N.) (Metaphysics Research Lab, Stanford University, 2021).

  54. Bevan Jones, R. et al. Practitioner review: co-design of digital mental health technologies with children and young people. J. Child. Psychol. Psychiatry 61, 928–940 (2020).

    Article  PubMed  Google Scholar 

  55. Dugstad, J., Eide, T., Nilsen, E. R. & Eide, H. Towards successful digital transformation through co-creation: a longitudinal study of a four-year implementation of digital monitoring technology in residential care for persons with dementia. BMC Health Serv. Res. 19, 366 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Grindell, C., Coates, E., Croot, L. & O’Cathain, A. The use of co-production, co-design and co-creation to mobilise knowledge in the management of health conditions: a systematic review. BMC Health Serv. Res. 22, 877 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ito-Jaeger, S., Perez Vallejos, E., Logathasan, S., Curran, T. & Crawford, P. Young people’s trust in cocreated web-based resources to promote mental health literacy: focus group study. JMIR Ment. Health 10, e38346 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Porche, M. V., Folk, J. B., Tolou-Shams, M. & Fortuna, L. R. Researchers’ perspectives on digital mental health intervention co-design with marginalized community stakeholder youth and families. Front. Psychiatry 13, 867460 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schneider, M. L. et al. Individual and organizational outcomes of engaging peers in the cocreation of digital mental health interventions. Psychol. Serv. https://doi.org/10.1037/ser0000889 (2024).

  60. Thabrew, H., Fleming, T., Hetrick, S. & Merry, S. Co-design of eHealth interventions with children and young people. Front. Psychiatry 9, 481 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Batalden, M. et al. Coproduction of healthcare service. BMJ Qual. Saf. 25, 509–517 (2016).

    Article  PubMed  Google Scholar 

  62. Fusco, F., Marsilio, M. & Guglielmetti, C. Co-creation in healthcare: framing the outcomes and their determinants. J. Serv. Manag. 34, 1–26 (2023).

    Article  Google Scholar 

  63. Norton, M. J. Coproduction and mental health service provision: a protocol for a scoping review. BMJ Open 12, e058428 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Braun, V. & Clarke, V. Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77–101 (2006).

    Article  Google Scholar 

  65. Duara, R., Chowdhury, D., Dey, R., Goswami, S. & Madill, A. Using cocreated visually informed community mental health education in low- and middle-income countries: a case study of youth substance misuse in Assam, India. Health Expect. 25, 1930–1944 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bruen, C., Brugha, R., Kageni, A. & Wafula, F. A concept in flux: questioning accountability in the context of global health cooperation. Glob. Health 10, 73 (2014).

    Article  Google Scholar 

  67. Greenhalgh, T., Jackson, C., Shaw, S. & Janamian, T. Achieving research impact through co-creation in community-based health services: literature review and case study. Milbank Q. 94, 392–429 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Perna, A., O’Toole, T., Baraldi, E. & Gregori, G. L. The value co-creation journey: a longitudinal process unfolding in a network through collaboration. J. Bus. Ind. Mark. 37, 182–196 (2022).

    Article  Google Scholar 

  69. Zicari, R. V. et al. Co-design of a trustworthy AI system in healthcare: deep learning based skin lesion classifier. Front. Hum. Dyn. 3, 688152 (2021).

    Article  Google Scholar 

  70. Crotty, M. J. The Foundations of Social Research: Meaning and Perspective in the Research Process (Sage, 1998).

  71. Phillips, D. C. & Burbules, N. C. Postpositivism and Educational Research (Bloomsbury, 2000).

  72. Lincoln, Y. S. & Guba, E. G. Naturalistic Inquiry (Sage, 1985).

  73. Schwandt, T. A. in Handbook of Qualitative Research (eds Denzin, N. K. & Lincoln, Y. S.) 189–213 (Sage, 2000).

  74. Kincheloe, J. L. & Mclaren, P. in Key Works in Critical Pedagogy (eds Hayes, K., Steinberg, S. R. & Tobin, K.) 285–326 (SensePublishers, 2011).

  75. Veldmeijer, L. et al. Design for mental health: can design promote human-centred diagnostics? Des. Health 7, 5–23 (2023).

    Google Scholar 

  76. Heron, J. & Reason, P. A participatory inquiry paradigm. Qual. Inq. 3, 274–294 (1997).

    Article  Google Scholar 

  77. Denzin, N. K. & Lincoln, Y. S. (eds) The SAGE Handbook of Qualitative Research (Sage, 2017).

  78. Buda, T. S. et al. Foundations for fairness in digital health apps. Front. Digital Health 4, 943514 (2022).

    Article  Google Scholar 

  79. Morgan, P. & Cogan, N. A. Using artificial intelligence to address mental health inequalities: co-creating machine learning algorithms with key stakeholders and citizen engagement. J. Public. Ment. Health https://doi.org/10.1108/JPMH-07-2024-0095 (2024).

  80. Yang, J. et al. Mitigating machine learning bias between high income and low–middle income countries for enhanced model fairness and generalizability. Sci. Rep. 14, 13318 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Konttila, J., Korkiakoski, V., Kurikka, J., Pääkkönen, J. & Kyngäs, H. Co-creation: an approach to developing digitalized mental healthcare. Psych. Fenn. 52, 138–146 (2021).

    Google Scholar 

  82. Kohlgrüber, M., Maldonado-Mariscal, K. & Schröder, A. Mutual learning in innovation and co-creation processes: integrating technological and social innovation. Front. Educ. 6, 498661 (2021).

    Article  Google Scholar 

  83. Hardt, M., Price, E., Price, E. & Srebro, N. Equality of opportunity in supervised learning. In Advances in Neural Information Processing Systems (eds Lee, D. et al.) Vol. 29, 3323–3331 (Curran Associates, 2016).

  84. Brewer, L. C. et al. Fostering African-American improvement in total health (FAITH!): an application of the American Heart Association’s life’s simple 7TM among midwestern African-Americans. J. Racial Ethn. Health Disparities 4, 269–281 (2017).

    Article  PubMed  Google Scholar 

  85. Gupta, M., Gao, J., Aggarwal, C. C. & Han, J. Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26, 2250–2267 (2014).

    Article  Google Scholar 

  86. Widmer, G. & Kubat, M. Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23, 69–101 (1996).

    Article  Google Scholar 

  87. Guan, H., Bates, D. & Zhou, L. Keeping medical AI healthy: a review of detection and correction methods for system degradation. Preprint at https://doi.org/10.48550/arXiv.2506.17442 (2025).

  88. Gianfrancesco, M. A., Tamang, S., Yazdany, J. & Schmajuk, G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern. Med. 178, 1544–1547 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Alqahtani, F., Winn, A. & Orji, R. Co-designing a mobile app to improve mental health and well-being: focus group study. JMIR Form. Res. 5, e18172 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sarri, G., Forsythe, A., Elvidge, J. & Dawoud, D. Living health technology assessments: how close to living reality? BMJ Evidence-based Med. 28, 369–371 (2023).

    Article  Google Scholar 

  91. Ni, Y. & Jia, F. A scoping review of AI-driven digital interventions in mental health care: mapping applications across screening, support, monitoring, prevention, and clinical education. Healthcare 13, 1205 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nahum-Shani, I. et al. Just-in-time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann. Behav. Med. 52, 446–462 (2018).

    Article  PubMed  Google Scholar 

  93. Almirall, D., Nahum-Shani, I., Sherwood, N. E. & Murphy, S. A. Introduction to SMART designs for the development of adaptive interventions: with application to weight loss research. Transl. Behav. Med. 4, 260–274 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Carpenter, S. M., Menictas, M., Nahum-Shani, I., Wetter, D. W. & Murphy, S. A. Developments in mobile health just-in-time adaptive interventions for addiction science. Curr. Addict. Rep. 7, 280–290 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hardeman, W., Houghton, J., Lane, K., Jones, A. & Naughton, F. A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity. Int. J. Behav. Nutr. Phys. Act. 16, 31 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kidwell, K. M. & Almirall, D. Sequential, multiple assignment, randomized trial designs. JAMA 329, 336–337 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Juarascio, A. S. et al. Just-in-time adaptive interventions: a novel approach for enhancing skill utilization and acquisition in cognitive behavioral therapy for eating disorders. Int. J. Eat. Disord. 51, 826–830 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lorenzoni, G. et al. Use of sequential multiple assignment randomized trials (SMARTs) in oncology: systematic review of published studies. Br. J. Cancer 128, 1177–1188 (2023).

    Article  PubMed  Google Scholar 

  99. Nahum-Shani, I. et al. Just-in-time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann. Behav. Med. 52, 446–462 (2016).

    Article  Google Scholar 

  100. Perski, O. et al. Technology-mediated just-in-time adaptive interventions (JITAIs) to reduce harmful substance use: a systematic review. Addiction 117, 1220–1241 (2022).

    Article  PubMed  Google Scholar 

  101. Wang, L. & Miller, L. C. Just-in-the-moment adaptive interventions (JITAI): a meta-analytical review. Health Commun. 35, 1531–1544 (2020).

    Article  PubMed  Google Scholar 

  102. Glaz, A. L. et al. Machine learning and natural language processing in mental health: systematic review. J. Med. Internet Res. 23, e15708 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. van der Wal, O. et al. Undesirable biases in NLP: addressing challenges of measurement. J. Artif. Intell. Res. 79, 1–40 (2024).

    Article  Google Scholar 

  104. Demszky, D. et al. Using large language models in psychology. Nat. Rev. Psychol. 2, 688–701 (2023).

    Google Scholar 

  105. Huerta, E. A. et al. FAIR for AI: an interdisciplinary and international community building perspective. Sci. Data 10, 487 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rubeis, G. iHealth: the ethics of artificial intelligence and big data in mental healthcare. Internet Interv. 28, 100518 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bajorek, J. P. Voice recognition still has significant race and gender biases. Harvard Business Review https://hbr.org/2019/05/voice-recognition-still-has-significant-race-and-gender-biases (10 May 2019).

  108. Koenecke, A. et al. Racial disparities in automated speech recognition. Proc. Natl Acad. Sci. 117, 7684–7689 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Schueller, S. M., Hunter, J. F., Figueroa, C. & Aguilera, A. Use of digital mental health for marginalized and underserved populations. Curr. Treat. Options Psychiatry 6, 243–255 (2019).

    Article  Google Scholar 

  110. Grother, P., Ngan, M. & Hanaoka, K. Face Recognition Vendor Test (FVRT): Part 3, Demographic Effects (National Institute of Standards and Technology, 2019).

  111. Milintsevich, K., Sirts, K. & Dias, G. Your model is not predicting depression well and that is why: a case study of PRIMATE dataset. Preprint at https://doi.org/10.48550/arXiv.2403.00438 (2024).

  112. Aikens, R. C., Chen, J. H., Baiocchi, M. & Simard, J. F. Feedback loop failure modes in medical diagnosis: how biases can emerge and be reinforced. Med. Decis. Mak. 44, 481–496 (2024).

    Article  Google Scholar 

  113. Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).

    Article  Google Scholar 

  114. Kamiran, F. & Calders, T. Data preprocessing techniques for classification without discrimination. Knowl. Inf. Syst. 33, 1–33 (2012).

    Article  Google Scholar 

  115. Fajemisin, A. O., Maragno, D. & den Hertog, D. Optimization with constraint learning: a framework and survey. Eur. J. Oper. Res. 314, 1–14 (2024).

    Article  Google Scholar 

  116. Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J. & Weinberger, K. Q. On fairness and calibration. Adv. Neural Inf. Process. Syst. 31, 5684–5693 (2017).

    Google Scholar 

  117. Gao, R. & Shah, C. Toward creating a fairer ranking in search engine results. Inf. Process. Manag. 57, 102138 (2020).

    Article  Google Scholar 

  118. Raghavan, M. The Societal Impacts of Algorithmic Decision-Making (ACM, 2023).

  119. Kehrenberg, T., Chen, Z. & Quadrianto, N. Tuning fairness by balancing target labels. Front. Artif. Intell. 3, 33 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhu, D., Al Mahmud, A. & Liu, W. Design requirements for a digital storytelling application for people with mild cognitive impairment (MCI). Digit. Health 10, 20552076241282237 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Hsu, Y.-C., Verma, H., Mauri, A., Nourbakhsh, I. & Bozzon, A. Empowering local communities using artificial intelligence. Patterns 3, 100449 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Pomeroy–Stevens, A., Goldman, B. & Grattan, K. Participatory systems mapping for municipal prioritization and planning. J. Urban. Health 99, 738–748 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Chan, S. et al. Co-designing generative AI technologies with older adults to support daily tasks. An MIT Exploration of Generative AI https://doi.org/10.21428/e4baedd9.4f2a95fc (2024).

  124. Chang, W.-L. & Shao, Y.-C. Co-creating User Journey Map — a systematic approach to exploring users’ day-to-day experience in participatory design workshops. In Proc. Human–Computer Interaction (eds Kurosu, M. & Hashizume, A.) https://doi.org/10.1007/978-3-031-35596-7_1 (Springer Nature, 2023).

  125. Listiyandini, R. A. et al. Culturally adapting an internet-delivered mindfulness intervention for Indonesian university students experiencing psychological distress: mixed methods study. JMIR Form. Res. 7, e47126 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Xie, Y., Chen, M., Kao, D., Gao, G. & Chen, X. A. CheXplain: enabling physicians to explore and understand data-driven, AI-enabled medical imaging analysis. In Proc. 2020 CHI Conf. Human Factors in Computing Systems (eds Bernhaupt, R. et al.) https://doi.org/10.1145/3313831.3376807 (ACM, 2020).

  127. Cheng, H.-F. et al. Soliciting stakeholders’ fairness notions in child maltreatment predictive systems. In Proc. 2021 CHI Conf. Human Factors in Computing Systems (eds Kitamura, Y. et al.) 390 (ACM, 2021).

  128. Bergman, S. et al. STELA: a community-centred approach to norm elicitation for AI alignment. Sci. Rep. 14, 6616 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Benda, N. et al. Patient perspectives on AI for mental health care: cross-sectional survey study. JMIR Ment. Health 11, e58462 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Suh, J. et al. Toward tailoring just-in-time adaptive intervention systems for workplace stress reduction: exploratory analysis of intervention implementation. JMIR Ment. Health 11, e48974 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Orzikulova, A. et al. Time2Stop: adaptive and explainable human–AI loop for smartphone overuse intervention. In Proc. CHI Conf. Human Factors in Computing Systems (Mueller, F. F. et al.) 250 (ACM, 2024).

  132. Ospina-Pinillos, L. et al. Co-designing, developing, and testing a mental health platform for young people using a participatory design methodology in Colombia: mixed methods study. JMIR Hum. Factors 12, e66558 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Bødker, S., Ehn, P., Sjögren, D. & Sundblad, Y. Co-operative design — perspectives on 20 years with ‘the Scandinavian IT Design Model’. Proc. NordiCHI 2000, 22–24 (2000).

    Google Scholar 

  134. Ehn, P. Work-Oriented Design of Computer Artifacts (Arbetslivscentrum, 1988).

  135. Brown, T. Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation (Harper Business, 2019).

  136. Norman, D. A. The Design of Everyday Things (MIT Press, 2013).

  137. Bate, P. & Robert, G. Bringing User Experience to Healthcare Improvement: the Concepts, Methods and Practices of Experience-Based Design (CRC Press, 2023).

  138. Sanders, E. B.-N. & Stappers, P. J. Co-creation and the new landscapes of design. CoDesign 4, 5–18 (2008).

    Article  Google Scholar 

  139. Loeffler, E., Power, G., Bovaird, T. & Hine-Hughes, F. Co-production of Health and Wellbeing in Scotland (Governance International, 2013).

  140. Ostrom, E. Crossing the great divide: coproduction, synergy, and development. World Dev. 24, 1073–1087 (1996).

    Article  Google Scholar 

  141. Wallerstein, N. & Duran, B. Community-based participatory research contributions to intervention research: the intersection of science and practice to improve health equity. Am. J. Publ. Health 100, S40–S46 (2010).

    Article  Google Scholar 

  142. Colliga Apps Corp. A just-in-time adaptive intervention for child and family mental health. clinicaltrials.gov https://clinicaltrials.gov/study/NCT06443918 (2024).

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.C.T. conceptualized and led the writing of the article. J.B.D., S.N.W., K.E.C., G.A.J., A.S.C., D.N.R., M.W.A., J.S.C., I.P.K. and T.C. contributed to writing specific sections, editing and revising content. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Adela C. Timmons.

Ethics declarations

Competing interests

A.C.T. and M.W.A. own intellectual property and stock in Colliga Apps and could benefit financially from the commercialization of related research. J.S.C. earns textbook royalties from Macmillan Learning and an editorial stipend from the Association for Behavioral and Cognitive Therapies for projects unrelated to the present work.

Peer review

Peer review information

Nature Reviews Psychology thanks Gabriela A. Nagy, Nelson Shen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timmons, A.C., Duong, J.B., Walters, S.N. et al. Bridging fair-aware artificial intelligence and co-creation for equitable mental healthcare. Nat Rev Psychol (2025). https://doi.org/10.1038/s44159-025-00491-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44159-025-00491-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing