Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The why and how of adaptive immune responses in ischemic cardiovascular disease

Abstract

Atherosclerotic cardiovascular disease is a major cause of disability and death worldwide. Most therapeutic approaches target traditional risk factors but ignore the fundamental role of the immune system. This is a huge unmet need. Recent evidence indicates that reducing inflammation may limit cardiovascular events. However, the concomitant increase in the risk of life-threatening infections is a major drawback. In this context, targeting adaptive immunity could constitute a highly effective and safer approach. In this Review, we address the why and how of the immuno-cardiovascular unit, in health and in atherosclerotic disease. We review and discuss fundamental mechanisms that ensure immune tolerance to cardiovascular tissue, and examine how their disruption promotes disease progression. We identify promising strategies to manipulate the adaptive immune system for patient benefit, including novel biologics and RNA-based vaccination strategies. Finally, we advocate for establishing a molecular classification of atherosclerosis as an important milestone in our quest to radically change the understanding and treatment of atherosclerotic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The immuno-vascular unit in health and atherosclerotic disease.
Fig. 2: Adaptive immune responses in the healthy and ischemic heart.
Fig. 3: Therapeutic strategies to target adaptive immune responses.

Similar content being viewed by others

References

  1. Boren, J. et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 41, 2313–2330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roy, P., Orecchioni, M. & Ley, K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-021-00584-1 (2021).

    Article  PubMed  Google Scholar 

  3. Rieckmann, M. et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J. Clin. Invest. 129, 4922–4936 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kyaw, T. et al. Alarmin-activated B cells accelerate murine atherosclerosis after myocardial infarction via plasma cell-immunoglobulin-dependent mechanisms. Eur. Heart J. 42, 938–947 (2021). Mouse study demonstrating the role of GC B cells and antibodies in accelerated atherosclerosis post-MI, with potential implications for secondary prevention.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, T. X. & Mallat, Z. Targeting the immune system in atherosclerosis: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73, 1691–1706 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Hansson, G. K., Holm, J. & Jonasson, L. Detection of activated T lymphocytes in the human atherosclerotic plaque. Am. J. Pathol. 135, 169–175 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Palinski, W. et al. Low density lipoprotein undergoes oxidative modification in vivo. Proc. Natl Acad. Sci. USA 86, 1372–1376 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl Acad. Sci. USA 92, 3893–3897 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sage, A. P., Tsiantoulas, D., Binder, C. J. & Mallat, Z. The role of B cells in atherosclerosis. Nat. Rev. Cardiol. 16, 180–196 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Zernecke, A. et al. Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ. Res. 127, 402–426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wade, N. S. & Major, A. S. The problem of accelerated atherosclerosis in systemic lupus erythematosus: insights into a complex co-morbidity. Thromb. Haemost. 106, 849–857 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huan, T. et al. A systems biology framework identifies molecular underpinnings of coronary heart disease. Arterioscler. Thromb. Vasc. Biol. 33, 1427–1434 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mauersberger, C., Schunkert, H. & Sager, H. B. Inflammation-related risk loci in genome-wide association studies of coronary artery disease. Cells 10, 440 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bjorkbacka, H. et al. Weak associations between human leucocyte antigen genotype and acute myocardial infarction. J. Intern. Med. 268, 50–58 (2010).

    CAS  PubMed  Google Scholar 

  16. Bjorkegren, J. L. M., Kovacic, J. C., Dudley, J. T. & Schadt, E. E. Genome-wide significant loci: how important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. J. Am. Coll. Cardiol. 65, 830–845 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dansky, H. M., Charlton, S. A., Harper, M. M. & Smith, J. D. T and B lymphocytes play a minor role in atherosclerotic plaque formation in the apolipoprotein E-deficient mouse. Proc. Natl Acad. Sci. USA 94, 4642–4646 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drobni, Z. D. et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation 142, 2299–2311 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mohanta, S. K. et al. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature (in the press). Detailed description of neuro–immune–vascular interactions in the adventitia and outer media of large arteries, establishing an artery–brain crosstalk and the impact thereof on maintenance of artery tertiary lymphoid organs and the progression of atherosclerosis.

  20. Wick, G., Jakic, B., Buszko, M., Wick, M. C. & Grundtman, C. The role of heat shock proteins in atherosclerosis. Nat. Rev. Cardiol. 11, 516–529 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Cros, J. et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33, 375–386 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Narasimhan, P. B., Marcovecchio, P., Hamers, A. A. J. & Hedrick, C. C. Nonclassical monocytes in health and disease. Annu. Rev. Immunol. 37, 439–456 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Williams, J. W. et al. Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nat. Immunol. 21, 1194–1204 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lim, H. Y. et al. Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through hyaluronan-mediated regulation of smooth muscle cell collagen. Immunity 49, 1191 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, J. et al. CXCR3-dependent accumulation and activation of perivascular macrophages is necessary for homeostatic arterial remodeling to hemodynamic stresses. J. Exp. Med. 207, 1951–1966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hernandez, G. E. et al. Aortic intimal resident macrophages are essential for maintenance of the non-thrombogenic intravascular state. Nat. Cardiovasc. Res. 1, 67–84 (2022).

    Article  Google Scholar 

  27. Ma-Krupa, W. et al. Activation of arterial wall dendritic cells and breakdown of self-tolerance in giant cell arteritis. J. Exp. Med. 199, 173–183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galkina, E. et al. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J. Exp. Med. 203, 1273–1282 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jackson-Jones, L. H. et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat. Commun. 7, 12651 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Srikakulapu, P. et al. Perivascular adipose tissue harbors atheroprotective IgM-producing B cells. Front. Physiol. 8, 719 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Newland, S. A. et al. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nat. Commun. 8, 15781 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Binder, C. J. et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest. 114, 427–437 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cardilo-Reis, L. et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol. Med. 4, 1072–1086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tellides, G. & Pober, J. S. Inflammatory and immune responses in the arterial media. Circ. Res. 116, 312–322 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Roozendaal, R. & Mebius, R. E. Stromal cell–immune cell interactions. Annu Rev Immunol 29, 23–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Chan, T. D. et al. Elimination of germinal-center-derived self-reactive B cells is governed by the location and concentration of self-antigen. Immunity 37, 893–904 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Krautler, N. J. et al. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150, 194–206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin, Z. et al. Deep sequencing of the T cell receptor beta repertoire reveals signature patterns and clonal drift in atherosclerotic plaques and patients. Oncotarget 8, 99312–99322 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hamze, M. et al. Characterization of resident B cells of vascular walls in human atherosclerotic patients. J. Immunol. 191, 3006–3016 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Nilsson, J. & Hansson, G. K. Vaccination strategies and immune modulation of atherosclerosis. Circ. Res. 126, 1281–1296 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. MacRitchie, N. et al. The aorta can act as a site of naive CD4+ T-cell priming. Cardiovasc. Res. 116, 306–316 (2020).

    CAS  PubMed  Google Scholar 

  42. Li, J. et al. CCR5+T-bet+FoxP3+ effector CD4 T cells drive atherosclerosis. Circ. Res. 118, 1540–1552 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vila-Caballer, M. et al. Disruption of the CCL1–CCR8 axis inhibits vascular Treg recruitment and function and promotes atherosclerosis in mice. J. Mol. Cell. Cardiol. 132, 154–163 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Tsilingiri, K. et al. Oxidized low-density lipoprotein receptor in lymphocytes prevents atherosclerosis and predicts subclinical disease. Circulation 139, 243–255 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Kimura, T. et al. Regulatory CD4+ T cells recognize major histocompatibility complex class II molecule-restricted peptide epitopes of apolipoprotein B. Circulation 138, 1130–1143 (2018). Identification of an ApoB peptide as the first Treg cell epitope in human and mouse atherosclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maganto-Garcia, E., Tarrio, M. L., Grabie, N., Bu, D. X. & Lichtman, A. H. Dynamic changes in regulatory T cells are linked to levels of diet-induced hypercholesterolemia. Circulation 124, 185–195 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wolf, D. et al. Pathogenic autoimmunity in atherosclerosis evolves from initially protective apolipoprotein B100-reactive CD+ T-regulatory cells. Circulation 142, 1279–1293 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mailer, R. K. W., Gistera, A., Polyzos, K. A., Ketelhuth, D. F. J. & Hansson, G. K. Hypercholesterolemia induces differentiation of regulatory T cells in the liver. Circ. Res. 120, 1740–1753 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Almanzar, G. et al. Autoreactive HSP60 epitope-specific T-cells in early human atherosclerotic lesions. J Autoimmun 39, 441–450 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sage, A. P. et al. X-Box binding protein-1 dependent plasma cell responses limit the development of atherosclerosis. Circ. Res. 121, 270–281 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Sage, A. P. et al. MHC class II-restricted antigen presentation by plasmacytoid dendritic cells drives proatherogenic T cell immunity. Circulation 130, 1363–1373 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Clement, M. et al. Deletion of IRF8 (interferon regulatory factor 8)-dependent dendritic cells abrogates proatherogenic adaptive immunity. Circ. Res. 122, 813–820 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Zernecke, A. Dendritic cells in atherosclerosis: evidence in mice and humans. Arterioscler. Thromb. Vasc. Biol. 35, 763–770 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Bonacina, F. et al. Myeloid apolipoprotein E controls dendritic cell antigen presentation and T cell activation. Nat. Commun. 9, 3083 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Clement, M. et al. Impaired autophagy in CD11b+ dendritic cells expands CD4+ regulatory T cells and limits atherosclerosis in mice. Circ. Res. 125, 1019–1034 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lacy, M. et al. Cell-specific and divergent roles of the CD40L–CD40 axis in atherosclerotic vascular disease. Nat. Commun. 12, 3754 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baardman, J. & Lutgens, E. Regulatory T cell metabolism in atherosclerosis. Metabolites 10, 279 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  58. Gaddis, D. E. et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat. Commun. 9, 1095 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bailey-Bucktrout, S. L. et al. Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response. Immunity 39, 949–962 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Butcher, M. J. et al. Atherosclerosis-driven Treg plasticity results in formation of a dysfunctional subset of plastic IFNγ+ TH1/Tregs. Circ. Res. 119, 1190–1203 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Taleb, S., Tedgui, A. & Mallat, Z. IL-17 and TH17 cells in atherosclerosis: subtle and contextual roles. Arterioscler Thromb. Vasc. Biol. 35, 258–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Fernandez, D. M. et al. Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576–1588 (2019). Single-cell analyses of human carotid plaques, demonstrating the complexity and heterogeneity of infiltrating adaptive immune cells and their activation in symptomatic disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Getz, G. S. & Reardon, C. A. Natural killer T cells in atherosclerosis. Nat. Rev. Cardiol. 14, 304–314 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. He, S. et al. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. Nature 566, 115–119 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schafer, S. & Zernecke, A. CD8+ T cells in atherosclerosis. Cells 10, 37 (2020).

    Article  PubMed Central  CAS  Google Scholar 

  67. Dimayuga, P. C. et al. Identification of apoB-100 peptide-specific CD8+ T cells in atherosclerosis. J. Am. Heart Assoc. 6, e005318 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Clement, M. et al. Control of the T follicular helper-germinal center B-cell axis by CD8+ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation 131, 560–570 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Hu, D. et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin beta receptors. Immunity 42, 1100–1115 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Srikakulapu, P. et al. Artery tertiary lymphoid organs control multilayered territorialized atherosclerosis B-cell responses in aged ApoE–/– mice. Arterioscler. Thromb. Vasc. Biol. 36, 1174–1185 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tay, C. et al. Follicular B cells promote atherosclerosis via T cell-mediated differentiation into plasma cells and secreting pathogenic immunoglobulin G. Arterioscler. Thromb. Vasc. Biol. 38, e71–e84 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Chou, M. Y. et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Invest. 119, 1335–1349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nus, M. et al. Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet. Nat. Med. 23, 601–610 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Ait-Oufella, H. et al. B cell depletion reduces the development of atherosclerosis in mice. J. Exp. Med. 207, 1579–1587 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kyaw, T. et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J. Immunol. 185, 4410–4419 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Sage, A. P. et al. BAFF receptor deficiency reduces the development of atherosclerosis in mice—brief report. Arterioscler. Thromb. Vasc. Biol. 32, 1573–1576 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Centa, M. et al. Acute loss of apolipoprotein E triggers an autoimmune response that accelerates atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 38, e145–e158 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hutchinson, M. A. et al. Auto-antibody production during experimental atherosclerosis in ApoE–/– mice. Front. Immunol. 12, 695220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Centa, M. et al. Germinal center-derived antibodies promote atherosclerosis plaque size and stability. Circulation 139, 2466–2482 (2019). Demonstration of the effect of germinal-center-derived antibodies in promoting atherosclerotic lesion size and modulating plaque stability in mice.

    Article  PubMed  Google Scholar 

  80. Crane, E. D. et al. Anti-GRP78 autoantibodies induce endothelial cell activation and accelerate the development of atherosclerotic lesions. JCI Insight 3, e99363 (2018).

    Article  PubMed Central  Google Scholar 

  81. Porsch, F., Mallat, Z. & Binder, C. J. Humoral immunity in atherosclerosis and myocardial infarction: from B cells to antibodies. Cardiovasc. Res. 117, 2544–2562 (2021).

    CAS  PubMed  Google Scholar 

  82. Lorenzo, C. et al. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies. Nature 589, 287–292 (2021). An elegant high-throughput approach for the identification and evaluation of novel B cell antigens in atherosclerosis using single-cell analyses, mass spectrometry and recombinant technology.

    Article  CAS  PubMed  Google Scholar 

  83. Gistera, A. et al. Low-density lipoprotein-reactive T cells regulate plasma cholesterol levels and development of atherosclerosis in humanized hypercholesterolemic mice. Circulation 138, 2513–2526 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rhoads, J. P. et al. Oxidized low-density lipoprotein immune complex priming of the Nlrp3 inflammasome involves TLR and FcγR cooperation and is dependent on CARD9. J. Immunol. 198, 2105–2114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van den Berg, V. J. et al. Anti-Oxidized LDL antibodies and coronary artery disease: a systematic review. Antioxidants 8, 84 (2019).

  86. Papac-Milicevic, N., Busch, C. J. & Binder, C. J. Malondialdehyde epitopes as targets of immunity and the implications for atherosclerosis. Adv. Immunol. 131, 1–59 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schiopu, A. et al. Recombinant antibodies to an oxidized low-density lipoprotein epitope induce rapid regression of atherosclerosis in apobec-1–/–/low-density lipoprotein receptor–/– mice. J. Am. Coll. Cardiol. 50, 2313–2318 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. de Vries, M. R. et al. Identification of IgG1 isotype phosphorylcholine antibodies for the treatment of inflammatory cardiovascular diseases. J. Intern. Med. 290, 141–156 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Que, X. et al. Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558, 301–306 (2018). Overexpression of a single-chain variable fragment of E06, which binds to the phosphocholine headgroup, reduces systemic inflammation, atherosclerosis progression, aortic stenosis and hepatic steatosis in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bagchi-Chakraborty, J. et al. B cell Fcγ receptor IIb modulates atherosclerosis in male and female mice by controlling adaptive germinal center and innate B-1-cell responses. Arterioscler. Thromb. Vasc. Biol. 39, 1379–1389 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Tsiantoulas, D. et al. Increased plasma IgE accelerate atherosclerosis in secreted IgM deficiency. Circ. Res. 120, 78–84 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, X. et al. IgE contributes to atherosclerosis and obesity by affecting macrophage polarization, macrophage protein network, and foam cell formation. Arterioscler. Thromb. Vasc. Biol. 40, 597–610 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tay, C. et al. B-cell-specific depletion of tumour necrosis factor alpha inhibits atherosclerosis development and plaque vulnerability to rupture by reducing cell death and inflammation. Cardiovasc. Res. 111, 385–397 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Hilgendorf, I. et al. Innate response activator B cells aggravate atherosclerosis by stimulating T helper-1 adaptive immunity. Circulation 129, 1677–1687 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lavine, K. J. et al. The macrophage in cardiac homeostasis and disease: JACC macrophage in CVD series (part 4). J. Am. Coll. Cardiol. 72, 2213–2230 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Van der Borght, K. et al. Myocardial infarction primes autoreactive T cells through activation of dendritic cells. Cell Rep. 18, 3005–3017 (2017). This study shows that cardiac cDC1s drive the proliferation and differentiation of cardiac α-myosin-specific Treg cells at steady state, while cDC2s drive the proliferation of autoreactive T cells and their differentiation into effector cells after myocardial infarction.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Lv, H. et al. Impaired thymic tolerance to alpha-myosin directs autoimmunity to the heart in mice and humans. J. Clin. Invest. 121, 1561–1573 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tang, T. T. et al. Pathologic T-cell response in ischaemic failing hearts elucidated by T-cell receptor sequencing and phenotypic characterization. Eur. Heart J. 40, 3924–3933 (2019). Bulk TCR sequencing on heart-infiltrating T cells reveals TCR clonotypes shared between ischemic failing hearts of several patients, with a dominance of CD4+ TH1 cells and cytotoxic CD8+ T cells.

    Article  CAS  PubMed  Google Scholar 

  99. Xia, N. et al. A unique population of regulatory T cells in heart potentiates cardiac protection from myocardial infarction. Circulation 142, 1956–1973 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Komarowska, I. et al. Hepatocyte growth factor receptor c-Met instructs T cell cardiotropism and promotes T cell migration to the heart via autocrine chemokine release. Immunity 42, 1087–1099 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dobaczewski, M., Xia, Y., Bujak, M., Gonzalez-Quesada, C. & Frangogiannis, N. G. CCR5 signaling suppresses inflammation and reduces adverse remodeling of the infarcted heart, mediating recruitment of regulatory T cells. Am. J. Pathol. 176, 2177–2187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. DeBerge, M. et al. Monocytes prime autoreactive T cells after myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 318, H116–H123 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Lee, J. S. et al. Conventional dendritic cells impair recovery after myocardial infarction. J. Immunol. 201, 1784–1798 (2018).

    Article  CAS  PubMed  Google Scholar 

  104. Boag, S. E. et al. T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. J. Clin. Invest. 125, 3063–3076 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yang, Z. et al. Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation 114, 2056–2064 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Santos-Zas, I. et al. Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling. Nat. Commun. 12, 1483 (2021). Evidence for a deleterious role of CD8+ T cells following acute MI in mice and pigs through the production of granzyme B, with circulating levels of the latter being predictive of 1-year mortality in people with acute MI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Forte, E. et al. Cross-priming dendritic cells exacerbate immunopathology after ischemic tissue damage in the heart. Circulation 143, 821–836 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Hoffmann, J. et al. Myocardial ischemia and reperfusion leads to transient CD8 immune deficiency and accelerated immunosenescence in CMV-seropositive patients. Circ. Res. 116, 87–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Chen, X. M. et al. Gene expression pattern of TCR repertoire and alteration expression of IL-17A gene of γδ T cells in patients with acute myocardial infarction. J. Transl. Med. 16, 189 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Klingenberg, R. et al. Clonal restriction and predominance of regulatory T cells in coronary thrombi of patients with acute coronary syndromes. Eur. Heart J. 36, 1041–1048 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Xia, N. et al. Activated regulatory T-cells attenuate myocardial ischaemia/reperfusion injury through a CD39-dependent mechanism. Clin. Sci. 128, 679–693 (2015).

    Article  CAS  Google Scholar 

  112. Wang, Y. et al. C-X-C motif chemokine receptor 4 blockade promotes tissue repair after myocardial infarction by enhancing regulatory T cell mobilization and immune-regulatory function. Circulation 139, 1798–1812 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Hofmann, U. et al. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation 125, 1652–1663 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Matsumoto, K. et al. Regulatory T lymphocytes attenuate myocardial infarction-induced ventricular remodeling in mice. Int. Heart J. 52, 382–387 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Weirather, J. et al. Foxp3+CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  116. Wigren, M. et al. Low levels of circulating CD4+FoxP3+ T cells are associated with an increased risk for development of myocardial infarction but not for stroke. Arterioscler. Thromb. Vasc. Biol. 32, 2000–2004 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Zacchigna, S. et al. Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nat. Commun. 9, 2432 (2018). Evidence for a role of Treg cells in promoting fetal and maternal cardiomyocyte proliferation after MI in mice, with a significant impact on infarct size and cardiac contractility.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Bansal, S. S. et al. Dysfunctional and proinflammatory regulatory T-lymphocytes are essential for adverse cardiac remodeling in ischemic cardiomyopathy. Circulation 139, 206–221 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Adamo, L. et al. Myocardial B cells are a subset of circulating lymphocytes with delayed transit through the heart. JCI Insight 5, e134700 (2020). Detailed characterization of B cells in naive mouse hearts and their circulating origin and transit properties through the heart.

    Article  PubMed Central  Google Scholar 

  120. Rocha-Resende, C. et al. Developmental changes in myocardial B cells mirror changes in B cells associated with different organs. JCI Insight 5, e139377 (2020).

    Article  PubMed Central  Google Scholar 

  121. Horckmans, M. et al. Pericardial adipose tissue regulates granulopoiesis, fibrosis, and cardiac function after myocardial infarction. Circulation 137, 948–960 (2018). Identification of lymphoid cell clusters in human and murine epicardial adipose tissue and their role in regulating cardiac remodeling post-MI.

    Article  PubMed  Google Scholar 

  122. Wu, L. et al. IL-10-producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction. Proc. Natl Acad. Sci. USA 116, 21673–21684 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rocha-Resende, C., Pani, F. & Adamo, L. B cells modulate the expression of MHC-II on cardiac CCR2 macrophages. J. Mol. Cell. Cardiol. 157, 98–103 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Zouggari, Y. et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. 19, 1273–1280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sun, Y. et al. Splenic marginal zone B lymphocytes regulate cardiac remodeling after acute myocardial infarction in mice. J. Am. Coll. Cardiol. (in the press). Identification of MZ B cells as mediators of adverse cardiac remodeling post-MI and the contribution of miR21-dependent upregulation of HIF1α to this effect.

  126. Haas, M. S. et al. Blockade of self-reactive IgM significantly reduces injury in a murine model of acute myocardial infarction. Cardiovasc Res 87, 618–627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kaya, Z., Leib, C. & Katus, H. A. Autoantibodies in heart failure and cardiac dysfunction. Circ. Res. 110, 145–158 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Zhao, T. X. et al. Rituximab in patients with acute ST-elevation myocardial infarction (RITA-MI): an experimental medicine safety study. Cardiovasc. Res. 118, 872–882 (2021). Treatment with rituximab is safe when given in the acute ST-elevation MI setting and substantially alters circulating B cell subsets.

    Article  PubMed Central  Google Scholar 

  129. Tsiantoulas, D. et al. B cell-activating factor neutralization aggravates atherosclerosis. Circulation 138, 2263–2273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lehrer-Graiwer, J. et al. FDG-PET imaging for oxidized LDL in stable atherosclerotic disease: a phase II study of safety, tolerability, and anti-inflammatory activity. JACC Cardiovasc. Imaging 8, 493–494 (2015).

    Article  PubMed  Google Scholar 

  131. Binder, C. J. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat. Med. 9, 736–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Houben, T. et al. Pneumococcal immunization reduces neurological and hepatic symptoms in a mouse model for Niemann–Pick type C1 disease. Front. Immunol. 9, 3089 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Grievink, H. W. et al. The effect of a 13-valent conjugate pneumococcal vaccine on circulating antibodies against oxidized LDL and phosphorylcholine in man, a randomized placebo-controlled clinical trial. Biology 9, 345 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  135. Ren, S. et al. Rationale and design of a randomized controlled trial of pneumococcal polysaccharide vaccine for prevention of cardiovascular events: The Australian Study for the Prevention through Immunization of Cardiovascular Events (AUSPICE). Am. Heart J. 177, 58–65 (2016).

    Article  PubMed  Google Scholar 

  136. Ren, S. et al. Effect of the adult pneumococcal polysaccharide vaccine on cardiovascular disease: a systematic review and meta-analysis. Open Heart 2, e000247 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zhao, T. X., Newland, S. A. & Mallat, Z. 2019 ATVB Plenary Lecture: interleukin-2 therapy in cardiovascular disease: the potential to regulate innate and adaptive immunity. Arterioscler. Thromb. Vasc. Biol. 40, 853–864 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Zhao, T. X. et al. Regulatory T cell response to low-dose interleukin-2 in ischemic heart disease. NEJM Evidence 1, EVIDoa2100009 (2021). In this phase 1b/2a study, low-dose IL-2 expanded Treg cells without adverse events of major concern, and single-cell RNA sequencing demonstrated the engagement of distinct pathways and cell–cell interactions after low-dose IL-2.

    Google Scholar 

  139. Yu, X. et al. Innate lymphoid cells promote recovery of ventricular function after myocardial infarction. J. Am. Coll. Cardiol. 78, 1127–1142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Trotta, E. et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat. Med. 24, 1005–1014 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Khoryati, L. et al. An IL-2 mutein engineered to promote expansion of regulatory T cells arrests ongoing autoimmunity in mice. Sci. Immunol. 5, eaba5264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine–receptor complexes. Science 359, 1037–1042 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Herbin, O. et al. Regulatory T-cell response to apolipoprotein B100-derived peptides reduces the development and progression of atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 32, 605–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Kimura, T. et al. Atheroprotective vaccination with MHC-II-restricted ApoB peptides induces peritoneal IL-10-producing CD4 T cells. Am. J. Physiol. Heart Circ. Physiol. 312, H781–H790 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Tiret, L. et al. Genetic analysis of the interleukin-18 system highlights the role of the interleukin-18 gene in cardiovascular disease. Circulation 112, 643–650 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Sheedy, F. J. et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14, 812–820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pattarabanjird, T., Li, C. & McNamara, C. B cells in atherosclerosis: mechanisms and potential clinical applications. JACC Basic Transl. Sci. 6, 546–563 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kyaw, T. et al. B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ. Res. 109, 830–840 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Rosenfeld, S. M. et al. B-1b cells secrete atheroprotective IgM and attenuate atherosclerosis. Circ. Res. 117, e28–e39 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Srikakulapu, P. et al. Chemokine receptor-6 promotes B-1 cell trafficking to perivascular adipose tissue, local IgM production and atheroprotection. Front. Immunol. 12, 636013 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tsiantoulas, D. et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J. Lipid Res. 56, 440–448 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Obermayer, G. et al. Natural IgM antibodies inhibit microvesicle-driven coagulation and thrombosis. Blood 137, 1406–1415 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Perry, H. M. et al. Helix-loop-helix factor inhibitor of differentiation 3 regulates interleukin-5 expression and B-1a B cell proliferation. Arterioscler. Thromb. Vasc. Biol. 33, 2771–2779 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Doring, Y. et al. B-cell-specific CXCR4 protects against atherosclerosis development and increases plasma IgM levels. Circ. Res. 126, 787–788 (2020).

    Article  PubMed  CAS  Google Scholar 

  157. Gruber, S. et al. Sialic acid-binding immunoglobulin-like lectin G promotes atherosclerosis and liver inflammation by suppressing the protective functions of B-1 cells. Cell Rep. 14, 2348–2361 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Grasset, E. K. et al. Sterile inflammation in the spleen during atherosclerosis provides oxidation-specific epitopes that induce a protective B-cell response. Proc. Natl Acad. Sci. USA 112, E2030–E2038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ensan, S. et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nat. Immunol. 17, 159–168 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Tsiantoulas, D. et al. APRIL limits atherosclerosis by binding to heparan sulfate proteoglycans. Nature 597, 92–96 (2021). Identification of a non-canonical function for the B cell cytokine APRIL with critical implications for vascular homeostasis and atherosclerotic cardiovascular disease.

    Article  CAS  PubMed  Google Scholar 

  161. Ryu, H. et al. Atherogenic dyslipidemia promotes autoimmune follicular helper T cell responses via IL-27. Nat. Immunol. 19, 583–593 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Zhivaki, D. & Kagan, J. C. Innate immune detection of lipid oxidation as a threat assessment strategy. Nat. Rev. Immunol. 5, eaba5264 (2021).

  163. York, A. G. et al. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716–1729 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ridker, P. M. How common is residual inflammatory risk? Circ. Res. 120, 617–619 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Z.M. is supported by the British Heart Foundation (RCAM/104, RCAM-659, RRCAM.163), the British Heart Foundation Center for Research Excellence (RE/18/1/34212), and the NIHR Cambridge Biomedical Research Centre (RG85315). C.J.B. is supported by grants from the Austrian Science Fund (FWF SFB F54) and the Vienna Science and Technology Fund (LS18-090). Z.M. and C.J.B. are supported by the Leducq Foundation (Transatlantic Network of Excellence; TNE-20CVD03).

Author information

Authors and Affiliations

Authors

Contributions

Z. M. and C. J. B. wrote the manuscript and reviewed it for important intellectual content.

Corresponding authors

Correspondence to Ziad Mallat or Christoph J. Binder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Jan Nilsson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallat, Z., Binder, C.J. The why and how of adaptive immune responses in ischemic cardiovascular disease. Nat Cardiovasc Res 1, 431–444 (2022). https://doi.org/10.1038/s44161-022-00049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44161-022-00049-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing