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Fractional flow reserve (FFR) is the current gold standard inva-
sive assessment of coronary artery disease (CAD). FFR reports 
coronary blood flow (CBF) as a fraction of a hypothetical and 
unknown normal value. Although used routinely to diagnose 
CAD and guide treatment, how accurately FFR predicts actual 
CBF changes remains unknown. In this study, we compared 
fractional CBF with absolute CBF (aCBF, in ml min−1), mea-
sured with a computational method during standard angiog-
raphy and pressure wire assessment, on 203 diseased arteries 
(143 patients). We found a substantial correlation between 
the two measurements (r = 0.89 and Cohen’s kappa = 0.71). 
Concordance between fractional and absolute CBF reduction 
was high when FFR was >0.80 (91%) but reduced when FFR 
was ≤0.80 (81%), 0.70–0.80 (68%) and, particularly, 0.75–
0.80 (62%). Discordance was associated with coronary micro-
vascular resistance, vessel diameter and mass of myocardium 
subtended, all factors to which FFR is agnostic. Assessment 
of aCBF complements FFR and may be valuable to assess CBF, 
particularly in cases within the FFR ‘gray zone’.

Ischemic heart disease is caused by insufficient CBF to the myo-
cardium. Because CBF cannot be measured directly in the cardiac 
catheter laboratory (CCL), cardiologists have relied largely upon 
sensor-tipped wire technologies (pressure, thermistor and Doppler) 
to derive several semi-quantitative indices, each serving as an 
indirect proxy for estimating CBF restriction1. Of these, pressure-
derived FFR has emerged as the most popular and evidence-based 
method for guiding revascularization in intermediate lesions2–4. The 
value of FFR is that CBF restriction can be quantified, which allows 
revascularization to be targeted at lesions that restrict CBF the most. 
FFR is, however, a semi-quantitative assessment of fractional CBF 
reduction, unable to account for variability in vessel size (diameter), 
the mass of myocardium subtended and microvascular resistance 
(MVR), all of which influence aCBF. A 15% CBF reduction (FFR 
0.85) due to a left main coronary artery stenosis is likely to result in 
a greater absolute reduction in myocardial blood flow over a larger 
myocardial territory, with potentially more serious clinical sequelae, 
than a 25% CBF reduction (FFR 0.75) resulting from disease in a 
smaller, more distal vessel. However, the opposite may be inferred 
by the FFR, and intervention may, therefore, not be targeted at the 
most physiologically significant lesion. Thus, a method that fully 
quantifies CBF changes, accounting for these important factors, 
may be of potential value. Methods for estimating aCBF in the CCL 
have been described5–8. In addition, these methods simultaneously 

measure absolute microvascular resistance (aMVR), thus resolving 
another limitation of FFR. Despite the popularity and importance 
of FFR in guiding key treatment decisions, the relationship between 
fractional and absolute CBF changes remains unknown, as does the 
potential value of these additional measurements when assessing 
patients for intervention. In this study of aCBF, we investigated (1) 
the relationship between fractional (FFR) and absolute CBF changes 
and (2) concordance and discordance between fractional and abso-
lute CBF changes.

Results
Case exclusions and software failures. In total, 256 arteries from 
169 patients met the inclusion criteria and were recruited. Of these, 
20 arteries had insufficient pressure gradient for determining aCBF, 
and 19 had inadequate angiographic views for modeling, leaving 
217 suitable cases. Of these, seven failed to mesh, and seven failed to 
converge during numerical simulation. The final analysis included 
203 arteries from 143 patients. Therefore, of those cases meeting the 
clinical inclusion criteria, the computational fluid dynamics (CFD) 
method computed physiological results successfully in 93.5% of 
cases. A software problem resulted in vessel diameter data being 
unavailable in 28 cases.

Baseline patient and vessel characteristics. The baseline demo-
graphic and clinical characteristics of all 143 patients are shown in 
Table 1. Artery-specific and lesion-specific characteristics are sum-
marized in Table 2. Overall, 51% of arteries underwent percutane-
ous coronary intervention (PCI), and 49% were treated medically. 
Ninety-three percent of arteries with a positive FFR (≤0.80) under-
went PCI, and 7% were treated with medical therapy, whereas 2% 
of cases with a negative FFR (>0.80) underwent PCI, and 98% were 
treated medically. Median hyperemic aCBF, coronary flow reserve 
(CFR) and MVR were 85.2 (63.5–116.3 ml min−1), 1.62 (1.32–2.04) 
and 0.71 (0.52–0.98 mmHg.min/ml), respectively. The aCBF was 
higher in the left main stem (LMS), left anterior descending artery 
(LAD) and right coronary artery (RCA) cases (95.6 ml min−1, 
81.6 ml min−1 and 98.8 ml min−1, respectively) than the left cir-
cumflex artery (LCX), diagonal and obtuse marginal (OM) cases 
(78.1 ml min−1, 79.9 ml min−1 and 56.7 ml min−1, respectively), but 
these differences did not reach statistical significance.

Reduction in aCBF. The median reduction in aCBF (from hypo-
thetical normal, caused by epicardial disease) was 20.6 (12.4–38.3) 
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ml min−1. FFR-positive cases were associated with a greater reduc-
tion in aCBF than FFR-negative cases (34.6 versus 11.6 ml min−1, 
P < 0.0001). The threshold for significance for reduction in aCBF 
was determined as a reduction in aCBF of ≥23 ml min−1. Reduction 
in aCBF was numerically but statistically non-significantly higher 
in LMS, LAD and RCA cases (median values: 45.7 ml min−1, 
21.1 ml min−1 and 23.7 ml min−1, respectively) compared to LCX, 
diagonal and OM branch cases (median values: 20.8 ml min−1, 
17.8 ml min−1 and 12.8 ml min−1, respectively).

Relationship between fractional and absolute flow reduction. 
Fractional CBF reduction (measured by FFR) was plotted against 
aCBF reduction (measured by the CFD method). Despite a strong 
correlation between fractional and absolute CBF reduction (r = 0.89 
and 0.86–0.92, P < 0.001), there was variability among individual 
cases (Fig. 1). When the cases were divided into those with signifi-
cant or non-significant CBF reduction according to FFR (fractional 
reduction) and according to aCBF (absolute reduction), the Cohen’s 
kappa statistic was 0.71, indicating a substantial agreement between 
the two parameters.

Concordance between fractional and absolute flow reduction. 
All 203 cases were categorized as physiologically concordant (sig-
nificant FFR and significant aCBF reduction or non-significant FFR 
and non-significant aCBF reduction) and discordant. Discordance 
between fractional and absolute CBF reduction was low in FFR-
negative (FFR >0.80) cases (9%). Discordance was significantly 
higher in FFR-positive cases (19%, P < 0.05), higher still when FFR 
was between 0.70 and 0.80 (32%, P < 0.01) and highest when FFR 
was in the 0.75–0.80 ‘gray zone’ (38%, P < 0.01). Discordance was 
0% in cases with FFR <0.70 (Fig. 1).

Factors affecting discordance. When comparing the fractional 
and absolute reduction in CBF, differences in coronary MVR, ves-
sel diameter and myocardial jeopardy were identified that were 
associated with discordance between these two measures (Fig. 2). 
In cases with FFR ≤0.80, aMVR was significantly higher (causing 
reduced aCBF) in discordant cases than concordant cases (1.02 ver-
sus 0.51 mmHg.min/ml, P < 0.01). The same was true of the FFR 
0.70–0.80 and 0.75–0.80 groups (1.02 versus 0.57 mmHg.min/ml 
and 1.00 versus 0.55 mmHg.min/ml, respectively, P < 0.01 for both 
comparisons). In cases with FFR >0.80, aMVR was significantly 
lower (causing higher CBF) in discordant cases than concordant 
cases (0.57 versus 0.84 mmHg.min/ml, P < 0.01) (causing increased 
CBF). Myocardial jeopardy was consistently and significantly lower 
in discordant cases than concordant cases in all cases with FFR 
≤0.80 (7.28 versus 5.28, P < 0.05), in those with FFR 0.70–0.80 (7.69 
versus 5.28, P < 0.05) and in those with FFR 0.75–0.80 (8.27 ver-
sus 5.21, P < 0.05). In cases with FFR >0.80, myocardial jeopardy 
was numerically higher in discordant cases, but this difference did 
not reach statistical significance (7.71 versus 5.69, P = not signifi-
cant (NS)). Vessel diameter was significantly greater in concordant 
than discordant in cases with FFR 0.70–0.80 and in those with FFR 
0.75–0.80 (3.33 versus 2.85 mm, P < 0.05, and 3.51 versus 2.92 mm, 
P < 0.05). In cases with FFR >0.80 and in those with FFR ≤0.80, 
no significant difference was observed in vessel reference diameter 
between concordant and discordant cases (2.92 versus 2.81 mm, 
P = NS, and 3.14 versus 2.85 mm, P = NS). Thus, heterogeneity in 
aMVR, myocardial jeopardy and vessel size appeared to contribute 
to discordance between fractional and absolute CBF reduction.

Discussion
The main findings of this study were that there was a substantial 
correlation between fractional and absolute flow reduction, but that 
individual case variation resulted in discordance in 9% of cases with 
a physiologically non-significant FFR and 19% of those with a physi-
ologically significant FFR. Discordance was greatest in cases within 
the FFR ‘gray zone’ where it reached 38%. Discordance between frac-
tional and absolute CBF reduction appeared to be associated with 
variability in three related factors: coronary MVR, myocardial jeop-
ardy (a marker of mass of myocardium subtended) and vessel size.

The ability to fully quantify aCBF changes may extend the ben-
efits currently provided by FFR. It would be reasonable to infer that 
a lesion that reduces CBF by 50 ml min−1 is more likely to cause 
symptoms and clinical sequelae than a lesion that reduces CBF 
by 10 ml min−1. FFR is effectively normalized for vessel size but is 
agnostic to differences in absolute flow. Whether symptoms and 
clinical sequelae are better predicted by the absolute or the frac-
tional flow reduction remains unknown. This was not the subject 
of this study. Rather, this study demonstrated that there was vari-
ability between absolute and fractional CBF reduction. In the cur-
rent study, disparity between fractional and absolute CBF reduction 
was associated with changes in three related factors: vessel size 
(diameter), myocardial resistance and the mass of myocardium sub-
tended by that artery. FFR does not account for these parameters, 
all of which are important determinants of CBF. Instead, in real-
world practice, the operator assesses these factors automatically by 
‘eye-balling’ the angiogram. Similar relationships have been demon-
strated previously with CFR and the index of microcirculatory resis-
tance (IMR). Variability in IMR accounts for discordance between 
FFR and Doppler-derived CFR9,10.

The novel method also predicted aMVR, which may be advanta-
geous for several reasons. First, naturally occurring and pathological 
variability in aMVR is known to explain discordance between pres-
sure-based and flow-based intracoronary assessment10,11. Second, 
MVR assessment is helpful in the diagnosis of coronary microvas-
cular disease and is now supported by a 2A recommendation in the 
European Society of Cardiology guidelines12. Microvascular disease 

Table 1 | Baseline patient characteristics

Characteristic Study population (n = 143) n (%), 
mean ± s.d. or median (IQR)

Demographic characteristics

 Mean age (years) 65 ± 10

 Male 108 (75.5)

 White British 128 (89.5)

 Current tobacco use 21 (14.7)

 Previous tobacco use 70 (49)

Common diagnoses

 Previous MI 36 (25.2)

 Hypertension 93 (65)

 Hyperlipidemia 108 (75.5)

 Diabetes mellitus 37 (25.9)

 Obesity 39 (27.3)

 COPD 10 (7)

 Asthma 4 (2.8)

 Peripheral vascular disease 4 (2.8)

 Atrial fibrillation 5 (3.5)

 Valvular heart disease 7 (5)

 LVEF <50% 29 (20.3)

Hematology and biochemistry

 eGFR (ml/min/1.73 m2) 82 (66–90)

 Hemoglobin (g dl−1) 141.3 ± 14.6

MI, myocardial infarction; COPD, chronic obstructive pulmonary disease; LVEF, left ventricular 
ejection fraction; eGFR, estimated glomerular filtration rate.
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responds to medical therapy but is rarely diagnosed in the CCL 
because standard tests, such as FFR, cannot identify or measure it13. 
Third, it has been suggested that concomitant microvascular dys-
function may be one reason why 20% of patients do not achieve 
full symptomatic relief with PCI, even when FFR-guided4. It is, 
therefore, interesting that the rate of discordance in FFR-‘positive’ 
patients in our study was similar at 19%.

FFR was least reliable at predicting aCBF changes in cases with 
FFR 0.70–0.80 (68% concordance) and poorest in the range 0.75–
0.80 (62% concordance). This is interesting because this FFR range 
corresponds with what has become known as the FFR ‘gray zone’. 
The DEFER trial originally proposed FFR >0.75 as the threshold for 
deferring intervention in favor of medical therapy14, whereas the sem-
inal FAME and FAME-2 trials supported a threshold of FFR >0.80  
(refs. 15,16). The higher threshold increases the sensitivity for detecting 
flow-limiting lesions but comes at the expense of reducing specificity. 
It is, therefore, interesting that the current study identified those with 
an FFR in the same range as being most discordant with aCBF.

The values of aCBF reduction are lower than those reported for the 
continuous infusion thermodilution (CIT) method17. There are two 
main reasons for this. First, our population had hemodynamically  

significant epicardial coronary artery disease, whereas data sup-
porting the CIT method are largely derived from those with 
unobstructed coronary arteries. Second, the novel CFD method 
determines the coronary outlet flow, whereas CIT predicts inlet 
flow, the former being much greater due to the loss of flow to side 
branches, particularly in the LAD, which supplies multiple branches 
to the lateral wall and septum. Outlet flow is a lesion-specific 
parameter that allows the reduction in CBF due to proximal disease 
to be derived, which may be useful when predicting the physiologi-
cal value of PCI and making revascularization decisions. Finally, the 
two methods are distinct, and a systematic or methodological influ-
ence cannot be excluded.

The methods used in this study do not compete with or invali-
date FFR. Quite the opposite is true. FFR predicts CBF as a fraction 
of an hypothetical and unknown value. The novel method translates 
this into a value, converting a semi-quantitative into a fully-quanti-
tative measurement. Moreover, the novel method requires the data 
acquired during FFR and the mathematics used in its derivation. In 
this way, the two methods may be complementary. Given that agree-
ment between FFR-predicted flow reduction and aCBF reduction 
was high in cases where FFR was >0.80 and perfect when FFR was 

Table 2 | Vessel and lesion characteristics

Artery n (%) FFR median (IQR) FFR ≤0.80 n (%) Average % stenosis Ischemic burden (myocardial jeopardy)

Left anterior descending 103 (50.7) 0.79 (0.71–0.85) 58 (56.3) 59% 6.5

Right coronary 45 (22.2) 0.80 (0.63–0.88) 25 (55.6) 66% 7.6

Left circumflex 26 (12.8) 0.80 (0.71–0.87) 14 (53.8) 64% 4.6

Diagonal 17 (8.4) 0.82 (0.79–0.86) 7 (41.2) 53% 5.1

Obtuse marginal 7 (3.4) 0.87 (0.79–0.93) 2 (28.6) 58% 3.7

Left main 5 (2.5) 0.76 (0.65–0.79) 3 (60) 63% 13.4

Total 203 0.80 (0.72–0.87) 109 61% 6.4

Ischemic burden indicates the vessel-specific myocardial jeopardy score.
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Fig. 1 | The relationship between fractional and absolute CBF reduction. Concordance between fractional and absolute CBF reduction is indicated by 
the labels according to the FFR range. Concordance means significant FFR (≤0.80) and significant reduction in aCBF (≥23 ml min−1) or insignificant FFR 
(>0.80) and insignificant reduction in aCBF (<23 ml min−1). The horizontal and leftward vertical dashed lines reflect the thresholds for physiological 
significance for FFR and aCBF. The asterisks indicate statistical significance for differences in concordance (z-scores) compared to the FFR >0.80 group 
at the *P < 0.05 and **P < 0.01** levels (exact P values (two-tailed) were 0.021 for the ≤0.80 group, <0.001 for the 0.70–0.80 and 0.75–0.80 groups and 
0.02 for the ≤0.70 group, unadjusted for multiple comparisons). There were no replicates.
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≤0.70, a hybrid approach to coronary assessment may have value, 
with assessment of aCBF being required only if the FFR value lay in 
the range of 0.70–0.80. If this approach were applied to the current 
dataset, FFR alone would be sufficient in 65% of cases, and addi-
tional assessment of aCBF would be required in 35%.

The study was observational, and so the results are hypoth-
esis generating. The clinical benefits of assessing CBF reduction in 
absolute terms are yet to be proven. The application of the proposed 
hybrid assessment is hypothetical. Currently, the CFD method does 
not account for flow to side branches, which underestimates flow in 
the proximal vessel. The novel method awaits in vivo validation but 
has been tested in vitro, in unbranched phantom models. It requires 
a pressure gradient of at least 4 mmHg, which roughly equates to a 
trans-lesional pressure ratio of 0.95. The latter means that, at the 
current stage of development, the method cannot be used in clearly 
unobstructed epicardial coronary arteries, which is a limitation in 
patients under investigation for ischemia with no obstructive coro-
nary disease. Due to an error in the software, vessel diameter data 
were unavailable in 28 cases (13.7%).

Conclusions
In patients with CAD, a substantial correlation was observed 
between (pressure-derived) fractional and (computed) aCBF reduc-
tion. Concordance between fractional and absolute flow reduction 
was high when FFR was >0.80 and <0.70 but was poorer when 0.70–
0.80 and poorest in the 0.75–0.85 ‘gray zone’ range. Assessment of 
aCBF reduction may complement FFR and extend its benefits in 
selected cases.

Methods
Patient inclusion and exclusion criteria. This study was approved by the  
South Yorkshire Health Research Authority Regional Ethics Committee  

(16/NW/0897 and 08/H1308/193). Patients were eligible for inclusion if they 
were being investigated for chest pain by invasive coronary angiography and 
pressure wire assessment, were aged 18 years or older and provided informed 
consent where appropriate. Participants were not compensated for inclusion 
and were recruited from elective and inpatient cardiac catheter lists at Sheffield 
Teaching Hospitals NHS Foundation Trust. Only cases suitable for pressure wire 
assessment were included, and so results may not be representative in other 
cases. Patients with chronic and acute coronary syndromes were included, but, 
in acute cases, only non-culprit arteries were studied. Patients with ST-segment 
elevation myocardial infarction within 60 days, contraindication to adenosine or 
contrast media, previous coronary artery bypass surgery, chronic total occlusion, 
severe valvular disease, inability to consent or without angiographically 
significant CAD were excluded. The clinical data of all patients are reported in 
Supplementary Dataset 1.

Angiographic and pressure wire data collection. Invasive coronary angiography 
was performed according to standard clinical protocols. Operators were 
encouraged to optimize target artery opacification, acquire clear views of the 
stenosis region and minimize vessel overlap and panning to facilitate arterial 
reconstruction18. A panel of three cardiologists, independent of physiological 
simulation, evaluated each angiogram to assess the reconstruction. Each panel 
member had to be satisfied for a case to be included. The panel also assessed 
global and vessel-specific myocardial ischemic jeopardy index and the percentage 
lesion stenosis for all cases. The myocardial jeopardy index is a lesion-specific 
measure of the number of myocardial segments jeopardized by a stenosis and 
is, therefore, a marker of the mass of myocardium subtended19. Pressure wire 
assessment also proceeded according to standard protocols with trans-lesional 
pressure measurements acquired under baseline and hyperemic conditions. 
Hyperemia was induced with an intravenous infusion of adenosine (140 mcg/
kg/min)20. The method for deriving aCBF (detailed below) uses data from 
angiography and a 0.014-inch pressure wire. In this study, the PressureWire X 
(Abbott Laboratories) and PrimeWire Prestige (Philips Volcano) were used. Any 
lesion with FFR ≤0.80 was regarded as physiologically significant and treated 
accordingly. FFR reports CBF as the fraction of CBF that remains, in an epicardial 
coronary artery, relative to an hypothetical normal value for that artery, under 
maximal flow conditions. Fractional (percentage) reduction in flow was, therefore, 
calculated as 1 − FFR, multiplied by 100. The hemodynamic data are included in 
Supplementary Dataset 2.
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Deriving absolute coronary flow and absolute coronary microvascular 
resistance. aCBF was computed by the CFD model. Three-dimensional 
(3D) coronary arterial anatomy was reconstructed from two angiographic 
projections ≥30° apart, acquired during ECG-gated end diastole, using an 
epipolar line transaction method21. The panel of cardiologists assessed all arterial 
reconstructions and models against the angiographic images to ensure that each 
reconstructed model was based on the artery in question. The reconstructed 
arterial volume was discretized; measured pressures were applied as boundary 
conditions; and a numerical simulation based upon solving the 3D, incompressible 
Navier–Stokes and continuity equations was performed. The principal model 
output was a calculation of aCBF, distal to the epicardial stenosis/es, at the 
location of the pressure wire transducer. A detailed description of the method 
was previously published5. Only cases with FFR ≤0.95 or ≥4 mmHg trans-lesional 
pressure gradient were included because an insufficient pressure gradient is 
associated with increased model error. By combining measurements of aCBF and 
pressure, aMVR and the reduction in aCBF due to epicardial disease were also 
calculated. aMVR (mmHg.min/ml) was calculated according to the hydraulic 
equivalent of Ohm’s law, as the ratio of distal pressure (Pd) and aCBF ( Pd

aCBF). The 
aCBF in the hypothetical non-stenosed artery was calculated as the ratio of aCBF 
and FFR ( aCBFFFR ), and the reduction in aCBF due to epicardial coronary disease was 
calculated as the difference between this and aCBF. These physiological parameters 
were calculated on a vessel-specific basis under baseline and hyperemic conditions.

The primary outcome was to assess the relationship (correlation, concordance 
and discordance) between fractional (FFR) CBF reduction and absolute CBF 
reduction in a population of patients with CAD. A subgroup analysis was also 
performed according to clinically relevant ranges of FFR (≤0.80, >0.80, 0.70–0.80, 
0.75–0.80 and ≤0.70). Simulations were performed on a Dell Precision T5600 
computer (Intel Xeon E5 2560, 2-GHz processor, 32 GB RAM) or a Dell Precision 
5540 mobile workstation (Intel Core i9-9980HK processor, 32 GB RAM).

Statistical analysis. Statistical analysis was performed in RStudio 1.2.1335  
(R, version 3.6.1) and in Microsoft Excel (16.16.27). Normality of distribution 
was assessed with histograms, Q–Q plots and the Shapiro–Wilk test. Parametric 
and non-parametric continuous data are presented as mean (±s.d.) and median 
(interquartile range (IQR)), respectively. Wilcoxon signed-rank and Mann–
Whitney U-tests were used to compare paired and unpaired grouped data. Levene’s 
test for homoscedasticity was used, and we found evidence of heteroscedasticity. 
Therefore, the Kruskal–Wallis test was used to compare groups of data (rather 
than a standard ANOVA). Proportions were compared by calculating the 
z-score. To determine the threshold for significance for aCBF reduction, a power 
regression model ( y = a · xb) was applied to absolute CBF and fractional CBF 
reduction (1 − FFR), which were plotted against each other, at a point equivalent to 
FFR = 0.80. Correlation between aCBF and percentage flow reduction was assessed 
with Pearson’s correlation coefficient (r) after log-transformation for continuous 
data and with Cohen’s kappa correlation coefficient (κ) for categorical data 
(concordance and discordance), which adjusts for agreement expected by chance 
and is a number between −1.0 and 1.0, with values of 0, 0.10–0.20, 0.21–0.40,  
0.41–0.60, 0.61–0.80, 0.81–0.90 and 1.0, indicating none (equivalent to 
chance), slight, fair, moderate, substantial, near-perfect and perfect agreement, 
respectively22. Negative values indicate agreement worse than that expected by 
chance. To detect a 15% reduction in concordance (α = 0.05) with 80% power,  
we required around 50 cases in each subgroup. We aimed to include 200 cases  
in total, to ensure ≥50 in the major subgroup comparisons (FFR-positive versus 
FFR-negative and versus 0.70–0.80). P values were not corrected for type 1 error 
(alpha) for multiple comparisons.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All the data supporting the findings in this research letter are provided as source 
data and supplementary information to this manuscript.
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To detect a 15% reduction in concordance ( 0.05) with 80% power, we required around 50 cases in each subgroup. We aimed to include 200
cases in total, to ensure 50 in the major sub-group comparisons (FFR positive vs negative and vs 0.70-0.80).

The clinical case exclusions are well described in the manuscript: Case exclusions and software success. Two hundred and fifty-six arteries
from 169 patients met the inclusion criteria and were recruited. Of these, 20 arteries had insufficient pressure gradient for determining aCBF
and 19 had inadequate angiographic views for modelling, leaving 217 suitable cases. Of these, seven failed to ‘mesh’ and seven failed to
‘converge’ during numerical simulation. 203 arteries from 143 patients were included in the final analysis. Therefore, of those cases meeting
the clinical inclusion criteria, the novel method computed a result successfully in 93.5% of cases.

This was a comparison of FFR versus abs flow. There was no replication, because these were clinical observations.

NA: there was no allocation to experimental or control groups in this study and so no randomisation.

There was no allocation to any experimental grouping. As described in th manuscript, the only blinding involved the panel of cardiologists who
analysed the myocardial jeopardy score did so blinded to the absolute flow and microvascular results.
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