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An experimental system for detection and
localization of hemorrhage using ultra-
wideband microwaves with deep learning
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Seena Dehkharghani ® **¢0< & Leeor Alon ® '*°

Stroke is a leading cause of mortality and disability. Emergent diagnosis and intervention are critical,
and predicated upon initial brain imaging; however, existing clinical imaging modalities are generally
costly, immobile, and demand highly specialized operation and interpretation. Low-energy
microwaves have been explored as a low-cost, small form factor, fast, and safe probe for tissue
dielectric properties measurements, with both imaging and diagnostic potential. Nevertheless,
challenges inherent to microwave reconstruction have impeded progress, hence conduction of
microwave imaging remains an elusive scientific aim. Herein, we introduce a dedicated experimental
framework comprising a robotic navigation system to translate blood-mimicking phantoms within a
human head model. An 8-element ultra-wideband array of modified antipodal Vivaldi antennas was
developed and driven by a two-port vector network analyzer spanning 0.6-9.0 GHz at an operating
power of 1 mW. Complex scattering parameters were measured, and dielectric signatures of
hemorrhage were learned using a dedicated deep neural network for prediction of hemorrhage classes
and localization. An overall sensitivity and specificity for detection >0.99 was observed, with Rayleigh

mean localization error of 1.65 mm. The study establishes the feasibility of a robust experimental
model and deep learning solution for ultra-wideband microwave stroke detection.

Despite recent progress, stroke remains a leading cause of death and
disability, disproportionately affecting low-income countries and the
economically disadvantaged"z. In the US alone, ~795,000 individuals are
affected per annum, with 1 in every 4 people suffering a stroke in their
lifetime’. It is estimated that ~1.9 million neurons are lost each minute
during a stroke’; however, intravenous tissue plasminogen activator—the
only thrombolytic therapy approved by the U.S. Food and Drug
Administration—is successfully administered in only ~10% of patients
due to strict guidelines prohibiting its use 4.5 h beyond a stroke event or
in patients with hemorrhage. The resulting economic burden of stroke is
thus staggering, with 34% of global total healthcare expenditure attrib-
uted to stroke, and >USD 56 billion in associated costs in the U.S. alone.
Urgent diagnosis and intervention are therefore central pillars of con-
temporary management guidelines, with initial triage of stroke patients
hinging first upon exclusion of brain hemorrhage by advanced
neuroimaging” ™.

Existing imaging solutions comprise primarily magnetic resonance
imaging (MRI)*" and computed tomography (CT)"'"'® which, while well-
established, present numerous drawbacks including: (1) lack of portability
for deployment to preclinical settings, engendering critical treatment delays
until hospital arrival in most cases'”'*; (2) high costs, exceeding millions of
dollars for contemporary clinical CT and MR systems, proving prohibitive
in many environments and perpetuating immense imbalances in global
health”. Specifically, with two-thirds of the global population lacking
accessible medical imaging, RAD-AID estimates that 3-4 billion excess
deaths could be averted through improved access™; (3) lengthy scan and
protocol durations imparting additional delays that further reduce the
likelihood of favorable clinical outcomes*'>'**; (4) requisite levels of spe-
cialization necessary for operation and interpretation of such
examinations’>”’; and, (5) safety concerns relating to ionizing radiation in
CT and strong magnetic fields in MRI". While the recent introduction of
CT scanners in specialized mobile stroke ambulance units™ may alleviate
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some delays, their operational costs have remained untenably high for all but
a small number of urban centers worldwide’ . The demand for cost-
effective, fast, safe, and deployable small-form diagnostic instruments is thus
unmet, motivating new directions using sensors.

The use of low-energy microwaves as a probe of tissue dielectric
properties has been explored and represents an intriguing means of char-
acterizing tissue properties™". Several potential advantages over MRI and
CT have motivated the development of such microwave imaging (MWI)
systems, including: (1) extremely low operational power and lack of ionizing
radiation, enabling biologically harmless use unhindered by indwelling
implants and ferromagnetic objects; (2) remarkably high acquisition speeds;
(3) low production cost; and (4) small form factor’>™”. Given these advan-
tages, in recent years, a growing number of commercial companies have
implemented microwave solutions for detection stroke as well as other of
diseases™"".

The characterization of biologic tissues using microwave radiation
entails the collection of scattering (S)-parameters, based in transmission and
reflection measurements, commonly achieved using vector network ana-
lyzers (VNA)* or with software defined radio (SDR) to drive radiation of a
high directivity antenna®. Most existing MWI systems obtain measure-
ments in the low (e.g., 0.5-2.0) GHz range, owing in part to the relative ease
of corresponding antenna design and fabrication. With early studies
casting doubt upon any additional benefits from higher forbidden
frequencies™ (due to exponential penetration losses from electromagnetic
skin effects and tissue mismatch) as well as a generalized reduction in
dielectric contrast beyond 5 GHz, low frequency MWI has remained the
favored strategy*’. Nevertheless, rigorous experimental investigation into
ultra-wideband (UWB) systems is still lacking, and the potential benefits
afforded by their greater resolving ability and sensitivity to superficial
processes remains unknown'>*’. The emergence of contemporary machine
learning algorithms for reconstruction has further advanced the potential of
microwave systems, such as for classification and localization for
stroke”*”*; however, it bears emphasis that past approaches to hemor-
rhage detection have generally been limited to models of intraparenchymal
hematomas (IPH), a subclass of well-circumscribed bleeding mostly con-
fined to the parenchymal substrate of the brain; meanwhile, more complex
models recapitulating catastrophic, superficial subarachnoid hemorrhage
(SAH) and other diffuse extracerebral bleeding has lagged™>*”**, pointing
to vast potential applications for systems leveraging high frequency
capabilities.

We have previously shown the potential for such UWB (0.5-6.0 GHz)
systems through in silico simulation and using a deep neural network for
classification and localization of intracranial hemorrhage, exhibiting
excellent classification (AUC 0.996) and localization (sub-millimeter error)
accuracy across varied anatomical human head geometries and noise
conditions”. However, translation from in silico environments to fully
realized, physical UWB systems demands non-trivial hardware and soft-
ware solutions dedicated to the specific experimental objective. In this study,
we describe the conception, design, and development of a system for UWB
microwave experimentation, benchtop hypothesis testing, analysis, and
hardware prototyping for prediction of brain hemorrhage. A custom UWB
system was engineered for operation up to 9.0 GHz and paired with a
human head model to test morphologically variable hemorrhages under
remote robotic control. The system was used to train a dedicated artificial
neural net, hypothesizing robust and frequency-dependent hemorrhage
localization, and classification accuracy Dbenefitting from UWB
interrogation.

Methods

Antenna design

UWB microwave transmission and reception in the near field was accom-
plished with custom, circularly-loaded antipodal Vivaldi antennas modified
from Siddiqui J. et al. having shown desirable directive properties for this
antenna structure”. Initial simulations were conducted using the HFSS

simulation environment (Ansys Inc., Canonsburg, PA, USA), where the

conductor dimensions were modified to support efficient operation
(S11 < —10 dB) at frequencies between 0.75 and 10 GHz. Upon arriving at the
desired parameters, the antenna dimensions were 125.3 mm x 85.4 mm x
1.524 mm (length x width x thickness). The antenna was fabricated on a
Rogers RO4003C substrate with a dielectric constant of 3.55 and an SMA
connector was soldered to the antenna structure. Overall, a total of eight
antennas were positioned in a ring, encircling a head phantom in a common
XY-plane as illustrated in Fig. la.

Phantom design and general setup
A human head phantom was designed, and 3D printed, based on the SAM
head phantom™. The head model comprised a superficial (radially) outer
compartment mimicking muscle and an inner compartment of average
brain tissue, with outer dimensions of 258 mm (height) x 175 mm
(width) x 122 mm (depth) and an inner compartment with dimensions of
199 mm x 145 mm x 92 mm (Supplementary Fig. 1, Supplemental Results).
The phantom was printed using a stereolithography 3D printer, (Phrozen
Mega Sonic 8 K, Phrozen Tech Co Ltd., Taiwan) leaving an aperture at its
crown such that blood phantoms of varying size and morphology could be
introduced to the inner compartment and navigated remotely under robotic
guidance as detailed below.

Five different hemorrhage models, each simulating the dielectric
properties of intracranial hemorrhage, were designed in order to introduce
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Fig. 1 | Dynamic stroke model setup. a Robotic system used for phantom navigation
within the head model. A 650 mm rod was used to connect the robot to the blood
phantom (left). A three-dimensional printed head model was used and filled with brain-
mimicking dielectric liquid (top-right, with its position in the model shown by paired red
arrows) and encircled by an array of custom ultra-wideband antipodal-Vivaldi antennas
for near-field measurements (bottom-right). b Three-dimension printed blood phan-
toms including spherical hemorrhage models of varying inner diameter, as well as
morphologically more complex star- and plus-shaped models.
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dielectric disturbances within the head, including: i. three distinct spherical
models with diameters of 10 mm, 20 mm, and 30 mm (with inner volumes of
0.52 ml, 4.18 ml, and 14.14 ml, respectively); ii. A star-shaped model; (3.7 ml);
and iii. a plus-shaped model (9.5ml), each used to introduce complex
dielectric disturbances to the head phantom during dedicated experimenta-
tion. The blood phantoms were designed as fillable volume shells with single
compartment and fabricated using the Formlabs Form 3B (Formlabs Inc,
Massachusetts, USA) SLA 3D printer using the transparent biomed clear
resin. The blood, muscle, and brain materials were compositions of tween 20
(polysorbate 20), NaCl, and water to reflect dielectric properties of the cor-
responding tissue. Utilization of liquids was particularly important for the
brain compartment as the goal for this dynamic phantom was to move a
second blood compartment within the head and this required. Further details
on the composition of the liquids can be found in the Dielectric Liquid
Preparation section within the Supplemental Materials. The head phantom,
blood phantom and positioning table are illustrated in Fig. 1a, b.

Mechanical and robotic localization system

To ensure fixation of the antennas relative to the head phantom, a 3D
printed positioning table was designed with holders in order to immobilize
the antenna array. A system of self-locking tiles was 3D printed and inter-
locked to meet the specifications of the phantom but readily modifiable to
accommodate a wide range of experimental layouts. On the reverse face of
each tile, recesses were engineered to house nuts and to provide a robust base
for secure bolt fixation. Custom-designed tile holders were produced for the
head phantom and antennas, and the overall configuration was designed in
order to maximize stability of the phantom and antenna array during
experimentation.

To ensure precise navigation, a Niryo Ned (Niryo robotique indus-
trielle, Wambrechies, France) robotic system was used, providing a
repeatability of 0.5 mm’". The system was equipped with self-reporting
feedback on the spatial coordinates of the hemorrhage model in real time. In
order to permit navigation of the phantom within the head model under
robotic guidance, a firm linear rod of length 650 mm was 3D printed from
Acrylonitrile Butadiene Styrene (ABS) having a dielectric constant of ~3.2
used to articulate the hemorrhage to the robotic arm™. To mitigate coupling
between the robot and the antenna array, the robot was elevated and placed
on a grounded copper sheet with an encircling copper mesh around the
opening through which the rod entered. Custom software was developed in
Python for design of the automation protocol and execution of the trajec-
tory (Fig. 1a).

Acquisition procedure

A 2-port vector network analyzer (VNA) system (ZNB-20, Rohde &
Schwarz GmbH, Munich, Germany) was used to support UWB measure-
ments and was coupled to a switch matrix (ZN-Z84, Rohde & Schwarz
GmbH, Munich, Germany) to expand the number of measurable ports to
eight channels. This arrangement allowed computation of a full 8-port S-
parameter network, allowing comprehensive characterization of transmis-
sion and reflection properties. The range of measurement spanned from
0.6-9.0 GHz, with a total 8412 frequencies in stepped sweep mode, with
1 MHz steps. While the antenna had a reflection coefficient of —10 dB at
0.75 GHz, a lower minimum frequency of 0.6 GHz was chosen as the lower
bound of the measurement sweep in order to assess for potentially valuable
information content from the lower frequencies (despite the declining
antenna efficiency at those frequencies, where reflection coefficients were <~
—3dB). An n-port Unknown through—Open—Short—Match (UOSM)
calibration”> was performed at the ends of the 8 coaxial cables to
improve data quality and measurement accuracy ™.

For each acquisition, the robotic navigation system was used to
translate the position of the hemorrhage phantom within the inner brain
compartment of the phantom. After each translation, S-parameter mea-
surements were conducted using the VNA and switch matrix to toggle
through the antenna array before advancing the hemorrhage to its sub-
sequent location. Importantly, when utilizing the robot in conjunction with

the rod, boundaries arising from the inner wall of the head impeded the
extent of translation in some dimensions, dependent upon the geometry of
each hemorrhage phantom; consequently, the trajectory of the phantoms
was prescribed specifically such that the peripheral-most station was made
uniform and could accommodate every one of the hemorrhage phantoms
without perturbing the head. We established a grid with intervals of 10 mm
in the X-, Y-, and Z-directions; bounding box dimensions for the largest
hemorrhage were 90 mm, 95 mm, and 60 mm, respectively. This resulted in
a total of 127 positions within the head phantom, each of which was used in
the random navigation trajectory of the robot-rod-phantom assembly.

Measurements for the brain and muscle-, air-, and water-filled head
phantom substrates (motivation for utilization of these measurements can
be found in the Neural network training and validation), were conducted
with the rod placed in different positions of the phantom, however, without
the blood mimicking stroke phantoms attached to the end of the rod. These
measurements were conducted to ensure that model training was unbiased
by the presence of the rod itself. To address the risk of overfitting, which is
well-recognized in machine learning algorithms trained on limited data, we
conducted additional measurements with the head phantom filled by air or
water rather than hemorrhage as a means of data augmentation.

Software was developed in Python to interface with the VNA and robot
using vendor-provided libraries in order to automate data acquisition. The
complex-valued S-parameters were processed using the open-source scikit-
tf library®. A front-end interface was developed using PySide6 libraries
providing real-time plotting of the scattering measurements, robot move-
ments, and tracking of captured data. A desktop PC was used to interface to
the VNA using a USB port and to the robot over Ethernet cable. All final
acquisitions were performed with the head phantom filled with human
brain-mimicking (interior compartment) and muscle-mimicking (exterior
compartment) liquids for the five different hemorrhage phantoms, note that
these acquisitions were repeated once for air-filled (empty) head phantom
and another time for water-filled head phantom as well. The acquisition
time for each point when using a 100 kHz Intermediate Frequency (IF)
bandwidth was 72 s, with a 12 s delay (measured empirically) imposed after
each translation to mitigate motion-related noise.

Neural network architecture

The neural network architecture proposed in this study was tailored to
interpret complex S-parameter data. The architecture was segmented into
two cardinal components: the convolutional layers and the terminal fully
connected segments (Fig. 2). The former is characterized by a Residual
ConvBot (Fig. 2a) and a series of bottleneck residual blocks®” (Fig. 2b),
termed “ResidualBlocks”. These ResidualBlocks function as feature
extractors, converting intricate, high-dimensional data into lower-
dimensional form while retaining important information. The unique
arrangement of these ResidualBlocks ensured a balance between model
intricacy and operational output. The terminal components of the network
were anchored by a series of fully connected layers. A linear layer served as
an integration point for the outputs of the ConvBots (Fig. 2¢), combining the
magnitude and phase (derived from real and imaginary components) of the
input data. The layers were designed for discrete predictive functions,
including pinpointing the location coordinates of the hemorrhage and
classifying the hemorrhage shape. Full details of the network architecture
can be found in the Neural Network Architecture section in the Supple-
mental Materials.

Neural network training and validation
The network included three outputs comprising two classifications (multi-
class classification with SoftMax) and a three-dimensional regression.
Multi-task learning network training was performed with the Adam
optimizer using the following loss function:

1

loss = L =% > (L, + MSE + dist(p, p)) + CE, + CE, (1)

N
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Fig. 2 | Network architecture. a The RobotNet structure with (b) a tiling layer for preprocessing of data. ¢ Seven Residual Blocks were used as building blocks for the Residual
ConvBot (d) design. The architecture contains several fully connected layers for the final output prediction. e dictionary illustrating the layer structure.

0 hemorrhage
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where p is the ground truth location and p is the predicted location. L;, MSE,
and dist are the 1-norm, mean squared error, and distance difference
between ground truth and predicted locations, respectively. N denotes the
batch number, CE denotes the cross-entropy loss, and o ensures that the
gradients for localization become zero in those cases for which the
hemorrhage did not exist (i.e., no-hemorrhage class), while still allowing
training for the classification task. The initialization of the learning rate of
the Adam optimizer was set to 0.0001, which was decreased every hundred
epochs by a factor of 5. The network was trained on all media for 500 epochs
with batch sizes of 48 over 70% of the data and tested on the remaining 30%
of data of only the brain-filled head phantom excluding the air- and water-
filled. The air- and water-filled phantom datapoints were used for
augmentation during training to reduce potential overfitting but were not
used in the test set.

From the training set, 10% of the dataset was held out for validation
and hyper-parameter optimization. The hold-out method was used for
data separation in all stages. To have a fair comparison, 30% of the
dataset was randomly chosen from the initial 127 locations. Of the
chosen test locations, all the related measurements were excluded from
training and validation sets. This ensured the network remained blinded
to these entries thus eliminating cross-contamination between training
and test sets.

no hemorrhage

Evaluation of frequency range and antenna number

An ablation study was conducted to investigate the effects of varying the
frequency range and number of antennas on network performance. Con-
sistency in all other hyperparameters was maintained to isolate the impact of
the selected variables. For the frequency range evaluation, four distinct spans
were chosen: 0.6-1.5 GHz, 0.6-3 GHz, 0.6-6 GHz, and the full range of
0.6-9 GHz. For each span, we adapted the S-parameter matrix to corre-
spond to the chosen frequency band by retaining the pertinent rows and
columns and setting others to zero before network training commenced.
After zeroing out the undesired frequencies, classification and localization
errors were evaluated. For the evaluation of the number of antennas used on
network performance, the following combinations of antennas were tested:
(i) antennas 1 and 3; (ii) antennas 1, 3, and 5; (iii) antennas 0, 1, 4, and 5; and
iv. all 8 antennas in the array. As with the exploration of frequency
dependency, the S-parameter matrix was modified for each configuration,
with relevant rows and columns preserved and non-pertinent ones nullified
before network training.

Statistical analysis

Network performance was summarized with a confusion matrix for multi-
class classification using frequency spans of 0.6-1.5 GHz, 0.6-3.0 GHz,
0.6-6.0 GHz, and 0.6-9.0 GHz. The specificity and sensitivity of hemor-
rhage detection was computed. To assess the fidelity of the localization
predictions, the probability distribution function (PDF) of the error in x-
and y-directions, XY-plane, and XYZ-space were computed and plotted for
frequency spans of 0.6-1.5 GHz, 0.6-3 GHz, 0.6-6 GHz, and 0.6-9 GHz.
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Distance error in hemorrhage localization was expressed in a normalized
histogram of the distance error, with the single variate (X- and Y-directions)
data fitted to a folded normal distribution function®, and the bi-variate (in
XY-plane) distance errors fitted to a Rayleigh distribution function®.
Notably, because an array of distributed channels did not exist in the z-
direction, a declining accuracy was anticipated in z-direction, which was
confirmed in preliminary analysis. All statistical analysis was performed
using the SciPy® library in python.

Results

Excellent performance was demonstrated using the complete antenna array
together with the entire range of UWB frequencies. Specifically, sensitivity
and specificity of >0.99 were observed for hemorrhage detection, with an
overall median localization error of 1.67 mm. Full results for classification
and localization tasks are summarized in Fig. 3. Specifically, the larger fre-
quency spans, of 0.6-6.0 GHz and 0.6-9.0 GHz, outperformed the narrower

ranges in classification, Notably, despite excellent overall performance in the
multi-class classification task for the 0.6-6.0 GHz range, there were a small
number of instances for which a plus-shaped phantom was misclassified as a
20 mm diameter sphere, while the full frequency range exhibited better
performance in discriminating spherical and non-spherical phantoms.
Together, the results suggest that the extended UWB frequency ranges
generally provide a superior combination of localization (with a median
distance error of 1.67 mm in the xy-plane, Table 1) and classification per-
formance (Fig. 3).

Among the individual sub-ranges of frequencies, the 0.6-6.0 GHz span
yielded the best overall performance in classification of hemorrhage classes,
peaking in its identification of the smallest (10 mm diameter) spherical
phantom at a classification accuracy of 98.25% and a misclassification rate of
only 1.75%. Overall multi-class classification for this frequency span was
94.88%. The lowest individual performance was 81.87% for the frequency
span 0.6-3.0 GHz. Importantly, there was high overall sensitivity to the

Confusion matrix for blood phantom classification in model brain
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Fig. 3 | Classification and localization results. a Classification confusion matrix for
varying blood phantoms as well as the case of no-hemorrhage for network training
using different frequency spans. b Overall classification performance for

(c)

hemorrhage (all phantoms combined) versus no hemorrhage, demonstrating overall
sensitivity and specificity of >0.99. ¢ Histogram of the localization error in the XYZ-
space and XY-plane.
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morphological characteristics of the hemorrhage phantoms; specifically,
using the full frequency rage (0.6-9.0 GHz) there were no instances of a
spherical phantom of any size being misclassified as a non-spherical phan-
tom, or vice-versa. Further, a strong capacity for discrimination of varying
spherical phantom volumes was observed, with no cases of the smallest
10 mm sphere being misclassified as the largest 30 mm sphere, or vice-versa.
Only a small percentage (10.53%) of hemorrhages in the 20 mm class were
misclassified as either a 10 mm or 30 mm hemorrhage. The single worst
performing classification task was observed in prediction of the star-shaped
phantom using the 0.6-3.0 GHz sub-range, for which 33.33% of cases were
misclassified as plus-shaped phantoms; however, only 6.14% of such cases
were misclassified using the frequency sub-range of 0.6-6 GHz (Fig. 3a).

Table 1 | Median Error for different frequency spans

Frequency span (GHz) Median error (mm)

X Y z XY XYZ
0.6-1.5 2.52 1.67 3.93 3.82 6.61
0.6-3 1.13 1.04 4.46 1.9 5.68
0.6-6 1.03 0.99 5.66 1.69 6.79
0.6-9 1.08 0.96 5.54 1.67 6.85
1.5-3 1.17 1.17 5.02 1.99 6.44
3-6 1.19 1.22 6.47 2.02 7.82
3-9 1.35 1.32 6.17 2.37 7.33
6-9 2.38 2.05 8.89 3.96 10.95

Distance error histogram for X-direction
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For the star-shaped phantom, although the volume was 3.7 ml (volu-
metrically almost identical to the 3.5 ml of the middle-sized sphere), excel-
lent discrimination (>99.9%) was present between the two, further
suggesting sensitivity to morphologic characteristics irrespective of volumes.
The largest class-wise false-positive and false-negative rates between the star-
shaped phantom and the plus-shaped phantom were 9.65% and 6.14% (star-
shaped predictions), respectively, for the best performing network. The
histogram of the localization error in XYZ- and XY-space is illustrated in
Fig. 3¢, demonstrating a median error of 5.68 mm and 1.90 mm in the XYZ-
and XY-space. As anticipated from our antenna array’s geometry, the his-
togram for the XY distance error reveals a reduced error compared to the
XYZ error distribution, related to the arrangement of the antennas in the XY
plane around the head phantom, rather than stacked in the Z-direction.

The error distribution for frequency spans 0.6-1.5 GHz, 0.6-3 GHz,
0.6-6 GHz, and 0.6-9 GHz in the X-direction, Y-direction, and XY-plane
are shown in Fig. 4. The PDF of the error in the X- and Y-directions and in
the XY-plane both revealed squared residuals of <0.24. For the narrowest
frequency span of 0.6-1.5 GHz, the distribution was the widest, achieving a
maximum folded normal mean error of 2.98 mm. Conversely, the narrowest
distribution (mean of 1.14 mm was obtained for the widest frequency span
of 0.6-9.0 GHz). Figure 4b depicts the error distribution for the Y axis,
showing that the best performance was observed for the network trained on
the widest range (1.05mm), while the least favorable performance was
observed on the narrowest range (2.01 mm). Figure 4c illustrates the dis-
tance error in the XY plane; here, a similar trend was present, with the
strongest performance associated with the widest frequency range of
0.6-9.0 GHz (1.65 mm). A detailed summary of the median error across
frequency spans can be found in Table 1.
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Fig. 4 | Frequency dependence of localization. Probability distribution function (PDF) of the distance error histogram for the X-direction (a), Y-direction (b), and XY-plane
(¢). The mean fitted Folded Normal distributions for X and Y are shown to decrease as the frequency span increases.
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Fig. 5 | Antenna set and localization error.

a Placements of the antennas relative to the head
phantom. b Model performance in relation to the
number of antennas employed in the experiment,
demonstrating the effect of increasing antenna
number on localization accuracy.
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Table 2 | Median error for different antenna numbers in
the array

Antenna set Median error (mm)

X Y z XY XYZ

1and3 1.54 1.65 7.47 2.62 9.69
1,3,5 1.37 1.32 4.85 2.17 6.37
0,1,4,5 1.20 1.20 5.62 2.10 6.96
0-7 1.08 0.96 5.54 1.67 6.85

The relationship between the number of antennas utilized and the stroke
localization error in the X-direction, Y-direction, and XY-plane is illustrated
in Fig. 5. Stroke localization error was analyzed for the full frequency span of
0.6-9.0 GHz, demonstrating a reduction of localization error as the number
of antenna elements was increased. In the case of two antennas 90-degree
apart (antenna 1 and 3), median localization error was 2.62 mm in the XY-
direction; however, incrementally, as the number of antenna elements was
increased to 8-elements, the error was reduced to 1.67 mm. With regards to
the X-, Y-, and XY-directions, an increase in the error in each individual
component was observed. A summary of the median error in for different
antenna combinations is summarized in Table 2.

Discussion

Measurement of tissue dielectric properties has long been a focus of the
biomedical community, motivated by potential applications in a multitude
of neurological diseases. While past studies have reported the potential of
microwave-based stroke characterization’***""**, this study utilized oper-
ating bandwidths of ~8.4 GHz and a dynamic hemorrhage model, com-
prising five different shapes and 127 positions.

Our system was constructed in the context of near-field stroke
classification and localization, with the goal of utilizing supervised deep
learning approaches to learn dielectric signatures. Because supervised
learning was used to classify and localize hemorrhage models, the
experimentation necessitated a flexible hemorrhage system capable of
being navigated throughout the head, such that many data points could
be acquired. This system included the fabrication of UWB antennas and
creation of a mechanical system to mobilize blood-mimicking phantoms
of varying shapes and sizes inside a multi-compartment head model. In
previous in-silico reports, we have shown the potential advantages of
UWB approaches for the detection of dielectric disturbances in head
models”, and in this work, a physical realization of such a system was
constructed.

A residual convolutional network structure was used as the core for
higher dimensional feature extraction, and for classification and locali-
zation, a collection of fully connected layers was used. While there exist
many potential approaches for learning from the complex-valued S-

parameter space, our architecture was conceived as a small working
model with 1.7 million parameters. In examining the classification per-
formance more closely, a sensitivity and specificity of ~1.0 was achieved
for hemorrhage detection (Fig. 3b). Further, when utilizing UWB, none
of the spheres, irrespective of their size, were mistakenly predicted as
star- or plus-shaped phantoms (Fig. 3a, 0.6-9.0 GHz), pointing to a
remarkable sensitivity for complex morphological characteristics, even in
excess of volumes alone, which were nearly identical for the disparately
shaped star phantom (3.7 ml) and middle-sized sphere (3.5 ml). Simi-
larly, predictions for the star-shaped phantom were only misclassified in
any instance as a plus-shaped phantom but never as a spherical
hemorrhage. The data supports that wider frequency ranges in many
cases improved geometric discrimination of hemorrhages, with the most
accurate classification in the 0.6-6.0 GHz sub-range.

The system yielded a median localization error for hemorrhage of
5.68 mm and 1.9 mm in the XYZ-space and XY-plane, respectively. This
difference in error between the XYZ-space and XY-plane was not
unexpected in view of the limited number of antennas in the Z-direction,
thus limiting information in that direction. Where localization errors did
occur, the effects are traceable, at least in part, to errors of the robotic
system itself. Specifically, the mean XY positioning error of the robot
with the attached rod was ~1.5mm at baseline, which places in more
remarkable perspective the localization accuracy of the full model. It
should be noted that the best performing frequency span for the locali-
zation task was using 0.6-9.0 GHz where excellent performance in dis-
criminating spherical and non-spherical phantoms were achieved. The
results suggest that the best choice of UWB frequency ranges is likely
dependent on the network architecture and the task in question. Notably,
while past studies have suggested the presence of ‘forbidden frequencies’
between 1.5 and 4 GHz”, the ablation results demonstrated the presence
of valuable information encoded with these frequencies and unlocked by
the neural network in use in our study. A similar conclusion was
observed in our previous in-silico study, where UWB information was
used for characterization and localization of hemorrhage in 2D head
models”.

One limitation of this study was the dual-compartment phantom
used. We have chosen this type of phantom as it allows navigation of the
blood compartment within its cavity. Given that the interior of the brain-
mimicking material was aqueous, this facilitated translation of the blood
compartment such that scattering measurements at different positions
and frequencies could be acquired in a practical timeframe and without
physical or mechanical perturbation of the phantom. More anatomically
realistic phantom designs would be highly desirable; nonetheless, several
persistent challenges have hindered introduction of anatomically accu-
rate phantoms, namely: (1) challenges associated with capturing the
detailed anatomy of a particular subject (e.g., heads that include gray
matter, white matter, CSF, muscle, etc.). (2) challenges associated with
designing average anatomies from populations (i.e., obtaining the correct
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average volume and structure of each compartment), and (3) challenges
associated with matching the precise dielectric properties of different
tissues at UWB frequencies. Such considerations act jointly towards
undermining the introduction of more sophisticated and anatomically
realistic head phantoms. This concession, where simpler phantoms are
used has, as a result, been widely adopted by the research community and
regulatory bodies (FDA, IEC, etc.) when evaluating wireless technology.
Here, we aimed at creating a dynamic phantom with a moveable stroke to
enable learning of hemorrhage characterization and better understand
the utilization of UWB together with machine learning for the task. The
goal was motivated by previous in-silico and in-vivo studies by our group
and others, suggesting that machine learning algorithms can be used to
characterize the size and location of hemorrhage™*****’. Such machine
learning approaches often require large datasets, and thus we aimed to
demonstrate that large datasets can be created with this type of dynamic
phantom and UWB microwave setup.

While the anatomic complexity of the human head exceeds that
attainable in physical phantoms, this carries the associated benefits of
greater dielectric complexity and greater variations in the dielectric prop-
erties across the frequencies tested, and hence the potential for greater
discrimination between the signatures of normal and pathologic tissues.
These greater dielectric differences at different frequencies can assist
learning to identify and characterize stroke with suitable algorithms. Fur-
thermore, while many hemorrhages may be ovoid by nature, in this study,
two more complex hemorrhage shapes (cross and star) were included. The
goal of including these shapes was to introduce more subtle dielectric
structures to differentiate between, resulting in a differentiation accuracy of
~85%, when scanning from 0.6 to 9 GHz. Notwithstanding, even though
highly desirable, the introduction of more complex phantoms into this
framework, requires further research in terms of the phantom design (while
allowing a dynamic stroke to be placed inside the phantom) and preparation
of dielectric fluids that closely resemble the anatomy at UWB frequencies.
These tasks are unfortunately beyond the scope of this work and would need
to be investigated in future studies.

It should be noted that acquisitions were conducted on muscle-brain,
air- and water-filled mediums. These scans were conducted over the course
of many weeks, since for each condition many positions were measured, and
each measurement was performed only after the liquid system was allowed
to stabilize. This required a highly controlled environment during the
experiments and as a result measurements were conducted on a single head
phantom. Experiments on more phantoms would result in a linear increase
in measurement time with the number of additional phantoms while most
likely resulting in better generalization across phantoms. Future research
may include an investigation of the reduction of scan time to accommodate
experimentation on a greater number of phantoms. With regards to the
stroke classification problem, we designed the study such that stroke can be
classified similar to many other supervised learning classification studies
(e.g., supervised approaches to classify animals from photos, where different
instances of all the classes are fed into the model for training). In this context,
future studies may include a model that can estimate the geometry of the
stroke based on the scattering information alone, similar to back-scattering
reconstructions that are often used in microwave imaging. Overall, the
performance of our system benefitted from several unique attributes,
including the successful development of UWB capabilities spanning
0.6-9.0 GHz.

Conclusion

This work reports, for the first time, the benefits of localization accuracy
enabled through the use UWB hardware alongside deep neural network, as
well as hemorrhage classification with dynamic phantoms. The apparent
sensitivity to morphologic characteristics, in excess of simple dimensional or
volumetric features, points strongly to the benefits of deep learning tools in
the exploration of UWB microwave scattering. The overarching long-
itudinal goal of this study was to establish practical foundations of operation
and to lay the physical groundwork prior to human scanning. Among the

practical outcomes of the current study was the design of the acquisition
system, UWB antennas, and other hardware that are directly translatable
towards UWB scanning of humans. Furthermore, the initial convolutional
neural nets defined here (with possible modification) can be used once
moving to future subject scanning. In future work on stroke patients, stroke
localization and characterization can be possible by learning diagnoses from
the radiologic imaging which will be used for training the neural net from
the UWB measurements (as inputs). Therefore, we view this work as a
steppingstone for better understanding the impact of UWB as a potentially
clinically translatable tool. Among the benefits of a fully realized UWB
scanning system is the ability to collect vast amounts of scattering data with
an acquisition speed far exceeding conventional MRI protocols, and at a far
lower cost for deployment compared to gold-standard imaging systems. We
thus foresee the possibility for relatively seamless introduction of future
clinical systems that could be trained and tuned against ground truth human
subjects imaging to extend the observations of our benchtop model to the
clinical domain.

Data availability

S-parameters data for the air-, water-, and muscle- brain-filled phantoms
and all positions can be downloaded in reference®. Where, for each
phantom condition all measurement positions were saved to a single HDF5
(h5) binary data file.

Code availability
Reconstruction code utilized for non-commercial use can be found in
reference™, under the “code” directory.
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