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Regular monitoring of marine life is essential for preserving the stability of marine ecosystems.
However, underwater target detection presents several challenges, particularly in balancing accuracy
with model efficiency and real-time performance. To address these issues, we propose an innovative
approach that combines the Structured Space Model (SSM) with feature enhancement, specifically

designed for small target detection in underwater environments. We developed a high-accuracy,
lightweight detection model—UWNet. The results demonstrate that UWNet excels in detection
accuracy, particularly in identifying difficult-to-detect organisms like starfish and scallops. Compared
to other models, UWNet reduces the number of model parameters by 5% to 390%, substantially
improving computational efficiency while maintaining top detection accuracy. Its lightweight design
enhances the model’s applicability for deployment on underwater robots.

The ocean, which covers approximately 71% of Earth’s surface, represents
the largest biome on the planet. Marine organisms play a vital role in
maintaining the delicate balance of this ecosystem'™. They regulate the
global climate through carbon sequestration and support biodiversity
through complex food webs. Benthic marine organisms, such as holo-
thurians and scallops, provide food and medicinal value while enhancing
marine sediment health and productivity. For example, holothurians can
increase seabed sediment productivity by up to 50%, and scallops can filter
up to 2001 of water per hour. Therefore, regular and effective marine bio-
logical monitoring is crucial for assessing ecosystem status and imple-
menting timely conservation measures.

Given the challenging conditions of the marine environment, espe-
cially in deep underwater regions, manual detection and recording are often
difficult. Underwater robots have become essential for these tasks, but their
computational power is restricted by hardware limitations, making real-
time detection a critical requirement. Therefore, an efficient and lightweight
framework for underwater biological detection is needed’.

Recent research in object detection using deep learning has primarily
focused on two approaches: single-stage detection algorithms and two-stage

detection algorithms. Single-stage object detection algorithms, commonly
based on the YOLO series, deliver real-time results by directly generating
detection outputs. Enhancements to these algorithms typically involve
adding attention mechanisms, improving feature extraction, or designing
better feature fusion branches to improve the detection of small targets”*. In
contrast, two-stage object detection algorithms, such as the R-CNN series,
first use a region proposal network (RPN) to generate candidate regions and
then refine these regions using convolutional neural networks. Improving
two-stage detectors involves enhancing the accuracy of candidate region
generation, for example, by utilizing the self-attention mechanisms of
Transformers to improve small target detection’"”. While two-stage algo-
rithms outperform single-stage algorithms in accuracy, their high compu-
tational complexity and slower inference speed render them unsuitable for
real-time monitoring tasks. Conversely, single-stage object detection algo-
rithms are constrained by the limitations of convolutional neural networks
(CNNs), which rely on fixed-stride convolutional windows for feature
extraction. This approach restricts the receptive field at each layer, reducing
the model’s ability to capture global and long-distance dependencies”™". In
response to this challenge, researchers have increasingly explored the use of
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Fig. 1 | The pipeline of our work.
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Transformer models in object detection. Transformer, with its self-attention
mechanism, excels at capturing long-range dependencies. However, the
computational complexity of self-attention scales quadratically with the
input sequence length, resulting in substantial computational and memory
demands. Moreover, Transformer models often struggle in few-shot learning
scenarios, further limiting their applicability in certain domains'**".

To address the limitations of CNNs and Transformers, researchers
have developed novel models such as the Mamba model’. Introduced in late
2023 and increasingly utilized for computer vision tasks in 2024, Mamba
initially achieved success in image classification. It later expanded its
applications to image segmentation and object detection, making mean-
ingful contributions to advancements in computer vision technology”**.
The key advantages of Mamba are twofold: first, its global modeling cap-
ability, similar to that of Transformers, which effectively addresses the
limitations of CNNs’ receptive fields; second, its linear computational
complexity compared to Transformers, making it highly suitable for
resource-constrained scenarios.

Although Mamba has been applied to object detection tasks, our
approach offers innovative insights into its application for underwater
object detection. In this context, we introduce UWNet, a deep learning-
based object detection network, which builds on the YOLOV8 framework
and incorporates the Mamba model to enhance feature extraction. We apply
the Mamba model to underwater target detection, aimed at improving the
detection of small objects in complex underwater environments. Our multi-
scale implicit feature fusion (MSFF) module, compared to current attention-
based methods, offers a more lightweight solution for capturing small object
features. By integrating Mamba into the network’s backbone, we leverage its
selective scanning mechanism to address the limitations of CNN’s local
window feature extraction and combine the advantages of Transformers
with the linear computational efficiency of SSM. Experiments demonstrate
that our method performs exceptionally well on underwater datasets,
remarkably outperforming the latest object detection algorithms. It achieves
state-of-the-art detection accuracy and accurately detects small underwater
objects while maintaining a low parameter count. This makes it highly
suitable for deployment on underwater robots. Our method shows sub-
stantial improvements over baseline models across four test sets (Test-A,
Test-B, URPC2021, and DUO). Specifically, the mean Average Precision
(mAP50) increased by 7.1%, 7.2%, 3.1%, and 4%, respectively, and the
mAP50-95 increased by 4.8%, 5.1%, 3.9%, and 6%, respectively. Addition-
ally, our model has a parameter count of only 6.67 million, which represents

a reduction of 40%, 67%, 21%, 41%, 227%, and 390% compared to the latest
mainstream object detectors, including YOLOv7, YOLOv8s, YOLOV10s,
YOLOv11s, Mamba-YOLO-B, and RT-DETR.

UWNet effectively demonstrates the advantages of combining Mamba
with YOLO for underwater small object detection. Its lightweight design
makes it ideal for deployment on underwater robots, enabling efficient data
collection and target detection. This enhances marine exploration and
provides reliable support for ecological conservation. Figure 1 illustrates the
pipeline of our study, presenting the key steps and processes involved
throughout the research.

Results

Underwater datasets often face challenges like poor image quality and
monotonous background colors, making it harder to distinguish targets from
their surroundings. Additionally, the prevalence of small targets and their
frequent occlusion in underwater environments often hinder object detec-
tion networks from effectively capturing the key features of underwater
targets during feature extraction. In this section, we introduce two innovative
modules before presenting our proposed underwater object detection net-
work, UWNet. We then present UWNet’s performance on various under-
water datasets and compare it with the results of other object detectors.

Multi-scale implicit feature enhancement module

Attention mechanisms, including CBAM, ECA, SE, CA, and EMA™™, are
widely used to enhance the accuracy of target detection models, especially
for small objects. These methods improve feature extraction by focusing on
spatial dimensions, channel dimensions, or their combination. Despite their
effectiveness across diverse datasets, these mechanisms face limitations in
underwater environments, which are often dominated by small targets.
Over-reliance on channel or spatial features can lead the model to over-
emphasize high-resolution background information, resulting in the
extraction of irrelevant contextual details (as shown in Supplementary
Table 1, which compares various attention mechanisms with the MSFF
module).

To overcome these challenges and improve small target detection while
minimizing computational costs, we introduce a lightweight multi-scale
implicit feature enhancement module (MSFF). By utilizing advanced multi-
view feature aggregation and element-wise multiplication for implicit fea-
ture enhancement™, MSEF achieves a balanced extraction of fine-grained
details and semantic information from input images.
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Fig. 2 | Illustrates the design of the MSDBlock module and associated components in this paper. a Schematic diagram of the MSDBlock module structure. b Flowchart of
the SS2D module. ¢ Core component of the SS2D module, the selective scanning feature.

Experimental results show that the MSFF module substantially
improves model performance, especially in detecting small targets and
handling complex scenes. Through its multi-scale implicit feature fusion
mechanism, MSFF enables high-dimensional multi-scale integration of
input feature maps, leading to a marked improvement in detection accuracy
and robustness. This innovative module offers an effective solution for
computer vision tasks, showcasing exceptional adaptability and perfor-
mance in challenging scenarios.

SSM-based feature extraction module

This study utilizes the Mamba model for underwater target detection,
achieving notable improvements in both accuracy and efficiency. The
Mamba model offers several key advantages: (1) it employs the HiPPO
method to model long-distance dependencies, effectively overcoming
the limitations of CNN’s local receptive fields; (2) a selective scanning
mechanism transforms state-space equation parameters into input
parameters, enabling real-time adaptation to diverse input scenarios; (3)
it achieves linear computational complexity, greatly reducing compu-
tational costs compared to the self-attention mechanism of
Transformers.

To adapt the Mamba model for underwater target detection, we pro-
posed MSDBIock, a feature extraction module based on CNN and SSM, as
shown in Fig. 2a. Through experimental exploration, we found that relying
solely on SSM is insufficient for capturing small target features in complex
underwater environments. This limitation arises because SSM operates as a
causal modeling method, akin to RNNs, where each output is based solely
on preceding information. Although SSM exhibits global modeling cap-
abilities, it lacks sensitivity to long-range dependencies between non-
adjacent pixels.

To address these challenges, we introduced the hybrid feature inte-
gration block (HFIB) and the unidirectional gating block (UGB). HFIB,
positioned before the SS2D module, enhances both local and global feature
extraction, enabling efficient integration with subsequent operations. The S6
module, as a core component of SS2D, performs feature extraction on the
image blocks after scan expansion, followed by scan merging before being
passed to the UGB module. UGB, which employs a gated CNN, captures

dependencies among adjacent features, dynamically selecting critical fea-
tures while suppressing redundant information. Together, these enhance-
ments improve the efficiency and accuracy of feature extraction.

Comparative experiments demonstrate substantial performance gains
in small target detection. On the URPC2020 dataset’s Test-A, our approach
increased mAP50 and mAP50-95 by 7.1% and 4.8%, respectively, compared
to the baseline model. On Test-B, the improvements were 7.2% and 5.1%.
Furthermore, compared to the Mamba-YOLO model, our method achieved
even greater enhancements on Test-B, with mAP50 and mAP50-95
increasing by 4.3% and 3.2%, respectively. These results underscore the
Mamba model’s potential for underwater detection tasks and highlight a
promising direction for future research in this field. (Additional compara-
tive data for models across various datasets are presented in Supplementary
Tables 2 and 3).

Underwater target detection network—UWNet

In underwater target detection, traditional methods often miss detections
due to the complexity of underwater environments, which include
numerous small targets, occlusions, and overlapping objects. These chal-
lenges have a substantial effect on accuracy and robustness. To overcome
these challenges, we present a network architecture called UWNet, which
builds on the high-performing YOLOV8 framework. Firstly, we replace the
original downsampling convolution with SPDConv’'. Traditional con-
volutions process the entire image directly, which can result in the loss of
spatial details for small targets during downsampling. In contrast, SPDConv
divides the input tensor into multiple subregions, enabling the network to
extract features at a finer granularity, thereby improving small target
detection. Additionally, by incorporating the MSDBlock into the backbone
feature extraction section, UWNet achieves global feature extraction,
overcoming the limitations of traditional CNNs that rely on local window-
based modeling. The integration of the multi-scale implicit feature fusion
(MSFF) with the detection head enables the network to consider informa-
tion across different scales, leading to more comprehensive feature capture.
The architecture of UWNet is illustrated in Fig. 3. Additionally, the CBS
module processes the input through convolution, batch normalization, and
the SiLU activation function.
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Fig. 3 | The network architecture of the proposed UWNet model.
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We conducted experiments using the URPC2020 dataset from the
National Underwater Robot Target Detection Algorithm Competition. This
dataset comprises 5544 images, which were divided into training and vali-
dation sets using a 4:1 ratio. The dataset features four target categories:
holothurian, echinus, scallop, and starfish. These targets are small and
widely distributed in underwater images, making detection challenging. Our
method achieved 86.5% mAP50 and 51.9% mAP50-95 on the validation set.
Additionally, the precision and recall were 84.3% and 78.6%, respectively,
showing improvements of 3.8%, 3.6%, 2.8%, and 2.2% compared to
YOLOV8n. (The detailed data for Fig. 4 can be found in Supplementary
Table 4). To further assess the effectiveness of our approach, we compared it
with the latest object detection models. While accuracy in underwater object
detection often depends on networks with greater width and depth, our
model achieved state-of-the-art performance despite its remarkably low
parameter count. This demonstrates that our method not only maintains
high accuracy but also ensures model efficiency, making it suitable for
deployment on resource-constrained underwater robots. The model has a
total parameter count of only 6.67 million, and the final trained model size is
13.5 MB, showcasing its lightweight characteristics. Compared to YOLOV9,
YOLOv10and YOLOv11, UWNet’'s mAP50-95 is higher by 3.4%, 2.3%, and
1.1%, respectively. The Mamba-YOLO model, with a total parameter count
of 21.8 million, achieved an mAP50-95 of 50.1% on the validation set,
surpassing YOLOv10 and RT-DETR, and attaining a high mAP50 score.
However, UWNet surpasses Mamba-YOLO while using less than one-third
of its parameters, demonstrating the effectiveness of our proposed
MSDBIlock in underwater target detection scenarios. Overall, our model
achieves superior performance in underwater target detection while
remaining lightweight. The only area where our method is not optimal is
GFLOPs, where it shows a slight gap compared to YOLOv5s and YOLOvt.
Nonetheless, the total parameter count of our method is lower than
YOLOWS5s, but the final trained UWNet model size is notably smaller than
YOLOVY, as detailed in Supplementary Table 4. This is partly due to

Mamba’s additional computational resources required for selective scan-
ning. Despite this extra cost, it is justified by the substantial improvements in
detection accuracy provided by the MSDBlock module, particularly in
dynamic underwater environments and amidst color bias interference. In
comparison to YOLOv5s and YOLOVOt, our method demonstrates a clear
improvement in detection accuracy, especially in mAP50, where it exceeds
YOLOV5 and YOLOV9 by 4% and 3.4%, respectively. Figure 4 illustrates the
comparison between model parameter count and detection accuracy.
Figure 4c illustrates the performance of different models across various
underwater scenes. The blue boxes indicate correct detections, red boxes
indicate incorrect detections, and purple boxes highlight missed targets. The
first image shows a general underwater scene with sparsely distributed
targets, making them easier to detect. The second image presents an
underwater scene with occluded targets, where multiple targets are clustered
together, increasing detection difficulty and the likelihood of false detec-
tions. The third image displays a scene with dense target distribution and
occlusions, greatly raising detection difficulty. The visualization results
clearly show that UWNet exhibits minor false detections at the edges of the
first image, caused by the uniform color in underwater images, which makes
it difficult to distinguish targets from the background at the edges. In the
second image, UWNet detects 22 targets with very few errors compared to
other models. In the third and fourth images, UWNet performs excep-
tionally well in high-difficulty detection scenarios, with only a few isolated
false detections, which can be further minimized through image augmen-
tation techniques.

Performance on two test sets

To validate the applicability of the proposed UWNet model in under-
water small target scenarios, we evaluated its detection performance
using two independent test sets in different environments. The selected
datasets are the A and B test sets from the Underwater Target Detection
Algorithm Competition URPC2020, containing 800 and 1200 test
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images, respectively. During the experiments, we used the best weights
obtained by training UWNet on the URPC2020 dataset to evaluate these
two datasets. Experimental results indicate that on the A test set, our
method improved mAP50 and mAP50-95 by 7.1% and 4.8%, respec-
tively, compared to the baseline model. Results on the B test set also
revealed notably improvements in detection accuracy, with mAP50 and

mAP50-95 increasing by 7.2% and 5.1%, respectively, compared to the
baseline model. We conducted experiments using the latest object
detectors based on the YOLO series, Mamba, and Transformer archi-
tectures on both datasets, as shown in Fig. 5. The results demonstrate that
our model achieved the highest mAP50 and mAP50-95 values on Test A
and Test B.
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In underwater detection scenarios, echinus is entirely black and
resembles rocks in underwater images, making it easy to confuse with the
background. However, due to their abundance, they are relatively easier to
detect. Scallops, on the other hand, often occupy a very small area in
underwater images, and their shape resembles the seabed, leading to fre-
quent false positives and missed detections by many models. Although
starfish have a small resolution, they are not as densely distributed as scal-
lops and have bright surface colors, making them relatively easier to detect
compared to scallops. Holothurians, while having a larger resolution
compared to scallops and starfish, exhibit non-uniform shapes in images, as
they tend to change form when startled, making them more challenging to
detect consistently.

On Test A and Test B, UWNet attained the highest detection accuracy
for holothurians, an irregularly shaped target class, with mAP50 scores of
0.741 and 0.655, respectively. For echinus, the most sample-diverse class,
UWNet effectively captured key features, achieving mAP50 detection
accuracies of 88.6% and 88.1% on the two test sets. Additionally, UWNet
excelled in detecting densely distributed scallops, outperforming all com-
parison models in detection accuracy. While UWNet’s mAP50 perfor-
mance on starfish was marginally lower than RT-DETR, it achieved the
highest precision under the stricter mAP50-95 evaluation metric.

In comparison, the RT-DETR model, with ResNet50 as its backbone,
has 32.66 million parameters—390% more than UWNet. Furthermore, RT-
DETR introduces substantial computational complexity, making it unsui-
table for real-time underwater robotics. More critically, RT-DETR
demonstrated poor generalization across underwater datasets, high-
lighting its lack of robustness in underwater detection tasks. Detailed

performance data for the models on Test A and Test B are available in
Supplementary Table 5.

Validating the generalization of UWNet across different under-
water scenarios

To assess UWNet’s generalization across various underwater environments
and water quality conditions, experiments were conducted on two addi-
tional datasets: DUO and URPC2021. The DUO dataset includes 6671
training images and 1111 test images, while the URPC2021 dataset com-
prises 7600 images split into training and validation sets in a 4:1 ratio.
UWNet was trained separately on each dataset, with hyperparameters
iteratively optimized based on experimental outcomes to enhance
performance.

On the DUO dataset, UWNet achieved mAP50 and mAP50-95 scores
of 87.1% and 69.5%, surpassing state-of-the-art object detectors. Compared
to the baseline model, UWNet increased mAP50 and mAP50-95 by 4% and
6%, respectively. Notably, UWNet recorded the highest AP50 values across
all target categories: 89.3% for holothurian, 93.5% for echinus, 71% for
scallop, and 94.4% for starfish.

On the URPC2021 dataset, UWNet achieved mAP50 and mAP50-95
scores of 85.5% and 52.4%, achieving the highest accuracy among all
comparative models. UWNet exhibited superior detection for holothurian,
scallop, and starfish, with its echinus detection trailing YOLOv11 by just
0.2%. Notably, YOLOv11 has a deeper network and larger parameter count,
with 9.41 million parameters compared to UWNet’s 6.67 million. Fur-
thermore, after training, YOLOv11’s model size is 18.5 MB, compared to
UWNet’s 13.5 MB. This highlights UWNet’s ability to maintain high
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Fig. 6 | Heatmaps of feature extraction in various models. a Performance of
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the GradCAM method. The left side shows the original input image, followed by the
visualization results of the baseline, YOLOv10, Mamba-YOLO, and UWNet models.

detection accuracy while reducing model complexity and storage needs,
making it ideal for underwater applications.

The experiments on the DUO and URPC2021 datasets validate
UWNet’s effectiveness in underwater target detection and robust general-
ization across datasets. To further evaluate the model’s performance,
GradCAM was employed to generate heatmaps, visually comparing
UWNet’s focus on objects and regions during feature extraction with other
models. Visualizations of these feature maps are shown in Fig, 6.

Discussion

Underwater target detection is currently a major area of interest among
researchers, who are addressing two main challenges in this field. First,
existing underwater datasets often suffer from image blurring and color
distortion’*, Underwater images frequently exhibit a blue or green color
cast due to light absorption and scattering, making it difficult to differentiate
between targets and the background. Second, underwater targets are often
small and can overlap, complicating the detection of all targets simulta-
neously. To address these challenges, it is crucial to develop a precise and
lightweight underwater target detection network. Such a network should
achieve accurate detection results with minimal parameter cost, making it
suitable for deployment on underwater robots. This advancement would
greatly enhance detection accuracy while satisfying real-time requirements,

thereby enhancing marine exploration. Detecting and tracking underwater
organisms in real time, along with monitoring population trends, are crucial
for evaluating the stability of marine ecosystems and aiding scientific
research.

In Fig. 7, we analyzed the size distribution of targets across various
underwater datasets. The analysis reveals a common trend: echinus are the
most frequently annotated small-sized targets, while holothurians pre-
dominantly appear as medium or large-sized objects in underwater scenes.
For detailed data on each dataset, refer to Supplementary Table 6. UWNet
exhibits strong performance in detecting echinus, achieving AP50 scores of
88.6%, 88.1%, 91.5%, and 93.5% on the URPC2020 test sets, the URPC2021
dataset, and the DUO dataset, respectively. Figure 7 also shows that scallops
and starfish are the next most abundant small targets after echinus in the
URPC2020 and URPC2021 datasets. However, the detection performance
for scallops is relatively lower compared to other targets. This reduced
performance may be due to the small size of scallops in images, making them
difficult to distinguish from the seabed in the blue and green-dominated
underwater backgrounds, which hampers the model’s feature extraction
capabilities. Despite this, UWNet considerably outperforms other models in
detecting scallops and starfish, further demonstrating its superior capability
in handling small underwater targets. Overall, UWNet achieves optimal
results across all three underwater datasets, underscoring its robustness in
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Fig. 7 | Statistics of dataset label box sizes. a The distribution of annotated
bounding box sizes across different datasets, from left to right: DUO, URPC2020,
and URPC2021 datasets. b The distribution of bounding box sizes for different
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categories in the DUO, URPC2020, and URPC2021 datasets. The categories are
presented in the following order (from left to right): holothurian, echinus, scallop,
and starfish.

various underwater scenarios. The experimental findings effectively show-
case the Mamba model’s superior capability in handling small underwater
targets. Our method has the following advantages: Firstly, we have designed
a feature extraction module—MSDBlock, which effectively integrates the
Mamba model into the underwater detection scenario, addressing the issue
of information loss for small targets during local window feature extraction
in CNN methods. The Mamba model establishes long-distance depen-
dencies through HiPPO and selectively retains or discards input informa-
tion by parameterizing the model’s input. Secondly, we have introduced a
module—the multi-scale implicit feature fusion module (MSFF). This
module, through multi-perspective feature extraction, comprehensively
extracts feature information of the input image at different receptive fields.
Subsequently, it implicitly increases the feature dimensions, mapping the
input features to higher dimensions, thereby enhancing the model’s learn-
ability. Through the MSFF module, the model can better differentiate
between target and background information.

Lastly, addressing the challenges faced in current underwater target
detection, we have proposed a network framework—UWNet. During the
experiment, we focused on the network architecture design while iteratively
optimizing the hyperparameters across three datasets based on the experi-
mental results, ensuring that the model achieved optimal performance.

Comparing with other state-of-the-art models, YOLOV9 introduced
programmable gradient information (PGI) and auxiliary reversible bran-
ches, which considerably enhanced detection accuracy. However, this
enhancement was achieved at the expense of increased model parameters
and longer training durations. YOLOv10 addressed the latency issue caused
by Non-Maximum Suppression (NMS) and enabled end-to-end object
detection. While both models perform well in general scenarios, they still
require further refinement for underwater target detection applications.
YOLOW11, the latest object detector released in 2024, features a more effi-
cient feature extraction module called C3k2, designed to enhance the
model’s feature extraction capabilities. Additionally, a self-attention
mechanism was incorporated in the last layer of the backbone to improve
the model’s global perception ability. RT-DETR combines the strengths of

CNNs and Transformers, utilizing the global modeling capabilities of
Transformers for object detection tasks. However, a major limitation of RT-
DETR is its large parameter size and slow inference speed, making it less
suitable for real-time detection. Additionally, its performance in detecting
small underwater targets is suboptimal, primarily because Transformers rely
on large datasets for training, and specialized underwater small target data is
often scarce. In contrast, this paper introduces UWNet, which combines the
strengths of Mamba and CNNs. UWNet attains optimal detection accuracy
while maintaining the lowest number of parameters, outperforming current
state-of-the-art detectors in underwater target detection.

Our future research will focus on two key aspects. First, although the
current model’s parameter size is relatively efficient, further optimization
can be achieved through model pruning and knowledge distillation to create
an even more lightweight underwater target detector. Second, we aim to
explore two underwater data augmentation methods: one involves using
underwater image processing techniques to enhance image clarity and
reduce the impact of color distortion; the other leverages generative Al
models, such as the Diffusion model, to augment underwater datasets. This
would allow the model to learn from various colors and backgrounds by
expanding the available data for underwater target detection. Additionally,
we plan to evaluate UWNet’s applicability for detecting small targets in non-
underwater environments, further validating its versatility across different
application scenarios. Through systematic experiments and performance
optimization, we anticipate that UWNet will demonstrate robustness and
flexibility in a wide range of object detection tasks.

The stability of marine ecosystems is closely tied to the sustainable
development of countries worldwide. However, human exploitation of
natural resources has gradually disrupted this balance. To address this issue,
quantitative monitoring of marine organisms is essential for assessing the
stability of marine ecosystems in real-time. The technology for underwater
target detection is crucial in this process, as it effectively identifies and
records both the species and the abundance of marine organisms. providing
reliable data to support marine conservation efforts. Our proposed method,
UWNet, is a lightweight and high-precision network architecture. When
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integrated with underwater robots, it enables efficient detection and precise
quantification of underwater organisms, offering scientists immediate data
to assess changes in the marine environment. Additionally, UWNet can be
used to track rare underwater species, facilitating their protection in real
time. By continuously monitoring the movements and behaviors of these
species, scientists can better understand their survival status and implement
appropriate conservation measures to prevent population decline. In con-
clusion, underwater target detection technology is critical for maintaining
the stability of marine ecosystems. Its application will inject new energy into
global marine conservation efforts, fostering a harmonious coexistence
between humanity and nature.

Methods

State space models

Due to its strong ability to capture long-range dependencies and efficiently
represent dynamic systems, the structured state space model (SSM) has
garnered increasing attention from researchers. SSM is conceptually similar
to recurrent neural networks (RNNs), with the primary distinction being
that SSM removes the nonlinear transformation component from the
hidden state update equations. At its core, SSM is represented by a set of
linear ordinary differential equations, as shown in Eq. (1):

H(t) = Ah(t) + Bx(t)
y(t) = Ch(t)

Where A is the state transition matrix, representing the relationship of the
hidden state h(t) as it evolves over time. The input matrix B and output
matrix C represent the relationships between the input signal x(f), hidden
state h(t), and output y(f), respectively. However, in deep learning appli-
cations, the given signals are often discrete. This necessitates converting the
state-space equations from a continuous system to a discrete system. This
conversion is one of the key improvements in the evolution of SSM to S4—
parameter discretization. Specifically, this is achieved by applying a zero-
order hold to the input signal. The rules for parameter discretization are
shown in Eq. (2):

¢y

A = exp(AA)

3 1 (2)
B = (AA) (exp(AA) — )AB

After applying the discretization rules, the discrete SSM representation
is given as shown in Eq. (3):

W, = Ah,_, + Bx,

(3)
¥ = Chy

The final Mamba model incorporates a selective scanning mechanism
into the SSM, allowing the parameters A-C in the state-space equation to
become input-dependent parameters (which can influence the state tran-
sition matrix A through the discretization rules). This mechanism is par-
ticularly important for underwater small target detection. Its core advantage
lies in scanning information from different directions, enabling a compre-
hensive understanding of the input data within both the current and global
context. This allows the Mamba model to dynamically adjust the parameter
matrices.

In underwater target detection, UWNet incorporates the Mamba
model to address the unique challenges posed by underwater environments.
Underwater images often suffer from substantial color distortion, pre-
dominantly in blue and green tones, which complicates the distinction
between targets and the background. Additionally, the presence of
numerous small and frequently overlapping targets poses formidable
challenges to traditional CNN-based local feature extraction methods. To
address these issues, we propose the MSDBlock module within the UWNet
model. This module seamlessly integrates CNN and SSM techniques,
enabling precise local feature extraction while effectively capturing global
features.

The MSDBlock incorporates a lightweight attention mechanism called
the Hybrid Feature Integration Block (HFIB), which optimizes attention on
target regions during local feature extraction. The local features extracted by
HFIB are subsequently embedded into the SSM module, which leverages
selective scanning to model long-term dependencies in underwater images,
capturing deep global scene information. By progressively modeling fea-
tures from local to global scales, the MSDBlock provides subsequent net-
work layers with rich and structured feature representations. In UWNet, the
MSDBIlock serves as the backbone feature extraction module, enhancing the
network’s ability to represent features for complex underwater targets.

Implicit feature mapping

Element-wise multiplication is an effective mechanism for feature fusion. By
directly multiplying features element by element from different subspaces, it
achieves implicit high-dimensional nonlinear feature mapping without
increasing the network’s depth or width, thus controlling model complexity.
Moreover, this operation exhibits behavior analogous to polynomial kernels
in kernel methods, enhancing the feature space’s representational power
while ensuring computational efficiency. As a result, it offers a practical
solution for deep learning models dealing with high-dimensional feature
representations.

To address the challenge of distinguishing objects from complex
underwater backgrounds, this paper introduces an implicit multi-scale
high-dimensional mapping method called the MSFF module. In the multi-
scale feature extraction stage, the MSFF module first employs average
pooling on the input feature maps, reducing redundancy while preserving
critical information. Subsequently, a set of parallel depthwise separable
convolutions extracts multi-scale features, where each branch performs
convolutions along horizontal and vertical directions separately, effectively
capturing fine-grained features at multiple scales.

During the feature fusion stage, the MSFF module uses element-wise
multiplication to fuse multi-scale features implicitly, projecting them into
higher-dimensional spaces to improve feature distinguishability for object-
background separation. To enhance the fused features further, a Sigmoid
activation function is applied after the element-wise multiplication to
improve the non-linear expressiveness of the features. Finally, a residual
connection integrates the optimized fused features with the original input
features, enabling efficient cross-layer information exchange. I n UWNet,
the MSFF module is strategically positioned before each detection head,
enhancing the model’s capacity to accurately identify and capture under-
water targets.

Model architecture and training

Our deep learning model is built upon the YOLO framework, comprising
three core elements: the Backbone, the Neck, and the Head. The
SPDConv and MSDBlock modules are integrated into the Backbone to
enhance the model’s feature extraction capabilities from input images.
The MSFF module is added before each detection head in the Head
section to improve the model’s ability to detect targets of different sizes.
For the URPC2020 dataset, the batch size was set to 8, while for the
URPC2021 and DUO datasets, the batch size was set to 16. The input
image size during training was 640 x 640, and the number of training
epochs was set to 200. We employed the built-in image augmentation
strategies provided by YOLOVS, including mosaic, fliplr, and translate.
The model was trained using the SGD optimizer, with both the initial
learning rate (Ir0) and final learning rate (Irf) set to 0.01, and the initial
momentum set to 0.937. In this study, the experiments were conducted
using PyTorch 2.0.0 and Cuda 11.8. All training, validation, and testing
on the URPC2020 dataset was done on an NVIDIA RTX 2080Ti. Due to
the large number of training images in the URPC2021 and DUO datasets,
the training, validation, and testing processes on both datasets were
performed on two NVIDIA RTX 2080Ti. Specifically, we trained the
model using the URPC2020, URPC2021, and DUO datasets, and tested
the model’s performance on each dataset. The weights obtained from
training on URPC2020 were used to evaluate the model on the Test A
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and Test B datasets. (The detailed model training hyperparameters are
provided in Supplementary Table 10).

Validation metrics on underwater datasets
We assessed the performance of various models on underwater datasets by
utilizing the following metrics: Accuracy, Recall, Average Precision (AP),
mean Average Precision (mAP), Floating Point Operations (GFLOPs), and
parameter count (Para, M). The calculation methods for Accuracy (P),
Recall (R), AP, and mAP are provided in Eq. (4):

.. TP
Precision = ——
TP + FP

TP
Recall = ——
CCTINTEN

1 4
AP = / P(R)dR @
0

1<
mAP == " AP,
n<
i=1

In the formulas mentioned above, TP stands for true positives, TN for
true negatives, FP indicates false positives, and FN signifies false negatives.
AP indicates the detection precision for a specific target class, while mAP
represents the average detection precision across all classes. These two
metrics are commonly used to assess the accuracy of detection models.
GFLOPs refers to the number of floating-point operations required to
process a single input image; a lower value indicates a less complex model.
GFLOPs and Para (parameter count) are typically used to evaluate a model’s
lightweight performance, with lower values indicating a more lightweight
and efficient model.

Data availability
The underwater datasets used in this study (URPC2020, URPC2021, and
DUO) have all been uploaded to the GitHub repository.

Code availability
The code for this study can be found at https://github.com/]JML123123/
UWNet.
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