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Emerging devices, such as magnetic tunnel junctions, are key for energy-efficient, performant future
computing systems. However, designing deviceswith the desirable specification and performance for
these applications is often found tobe time-consumingandnon-trivial. Here,we investigate thedesign
and optimization of spin–orbit torque and spin transfer torque magnetic tunnel junction models as the
probabilistic devices for true random number generation. We leverage reinforcement learning and
evolutionary optimization to vary key device and material properties of the various device models for
stochastic operation. Our artificial-intelligence-guided codesign methods generated different
candidate devices capable of generating stochastic samples for a desired probability distribution,
while also minimizing energy usage for the devices. This framework can also be applied to other
devices and applications.

Designing application-driven devices is oftentimes a time rigorous and
resource-constrained process that requires utilizing computationally intensive
simulations, device fabrication, and testing of the physical components in the
application-specific environment. At the same time, customizing device
characteristics to a particular application can allow for performance
improvements. Automated codesign strategies are becoming increasingly
popular with advancements in the artificial intelligence (AI) field that provide
usefulmachine learningalgorithmsand frameworks1–4. Suchcodesignprovides
new opportunities to automatically customize devices for application-specific
needs tomaximizeperformance—whether that involves aparticular capability,
energy usage, latency, throughput, or even combinations of metrics. The
operation of emerging devices, such as magnetic tunnel junctions (MTJs)5–8,
can be simulated using physics-basedmodels that capture key behaviors based
on materials and device properties. By pairing these models with AI-guided
codesign, we are able to effectively optimize the device parameters for appli-
cation requirements and constraints9–11.

AI-guided methods are increasingly being adopted in electronic
design automation (EDA) flows. Recently, reinforcement techniques
have been used in EDA for multiple tasks including chip floor planning12,
architecture search2, gate sizing of VLSI13, circuit optimization14 and

analog circuit design15. Evolutionary algorithm (EA) approaches, on the
other hand, have been used for decades to design analog circuits16 and
can be creative in the design of unique solutions to a variety of
problems17. Both reinforcement learning (RL) and EA approaches are
promising for optimization tasks, each offering unique pros and cons. In
addition, recent work leverages generative AI-based circuit
characterization18 and optimization techniques19,20. In related work,
physics-informed neural networks21, originally designed for solving
partial differential equations with informed loss functions, have been
used to perform device design and optimization22–24. Codesign across
devices, circuits, architectures, and applications for a full-stack solution is
a challenge and an ongoing area of research.

In previous work, we have shown initial results in leveraging RL for
MTJ device codesign10 and EA for probabilistic circuit optimization using
different MTJ devices and tunnel diode device9. This work presents an
intelligent, automated codesign framework for emerging devices. In parti-
cular, we create a framework that is based on RL and EAs, which allows for
multi-objective optimization of parameters of emerging devices for real-
world applications. We showcase this framework by providing a compar-
isonofRLandEAapproaches fordevice design andparameter optimization
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and a demonstration of device parameters for energy-efficient random
number generation for gamma distributions for both spin–orbit torque
(SOT) and spin transfer torque (STT)MTJ devices. Though this framework
is applied in the context of true random number generation using SOT and
STT MTJ devices, it can be easily extended to other applications and other
device types.

Ultimately, our methods produce the best candidate devices and
materials properties for optimizing both performance in function and
energy efficiency. Generally, we see that performance is improved but
energy efficiency is slightly increased, compared to the default parameters
used to represent standard CoFeB MTJs. The results also show that for the
SOT MTJs, a larger range of material parameters can provide good per-
formance, and material parameters for stronger perpendicular magnetic
anisotropy (PMA) are favored. In contrast, for STTMTJs there is anarrower
range of parameters to achieve the performance, and weaker PMA is
favored.

Methods
Application: true random number generation for non-uniform
distributions
To guide the development and discussion of our codesign framework, we
focus on a single application—true random number generation (TRNG),
Fig. 1c. Despite this focus, we stress that our presented framework is general
purpose for the AI-guided design and configuration of devices to meet
application needs. Here, our devices are both SOT and STT MTJ devices.
Our target function for these devices is to produce TRNG samples from a
distribution of interest.

Random number generation is a key component of many computa-
tional tasks, including scientific simulations, machine learning, and cryp-
tography. In today’s computing systems, random numbers are typically
generated using pseudo-random number generators (PRNGs), which have
several key limitations, including the quality of the random numbers gen-
erated (e.g., adherence to expected distributions or predictability) and

Fig. 1 | Our AI-guided framework for device discovery and optimization for a
given application. Overview of the device model, AI-guided discovery and opti-
mization strategy, and RNG algorithm workflow. Given a target distribution, the
optimization approach (b) uses a device (spin--orbit torque or spin transfer torque)

model (a) to simulate a true random bit according to the RNG algorithm (c). The
optimization algorithm designs unique device configurations (d) that must pass
device checks to be viable. The viable devices are used to produce the target dis-
tribution for a given application (e).
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periodicity of outcomes. Furthermore, many PRNGs are restricted to gen-
erating samples from a uniform distribution; if an application requires
pseudo-random numbers from a different distribution, then additional
computation is required to convert the sampled number to the appropriate
distribution.

Recent studies intomicroelectronics and probabilistic computing have
noted the need and potential for fast and efficient TRNG and noise
sources25–28. A step beyond randombits, as indicated in ref. 25, is to produce
samples from specified distributions of interest, eliminating the need for
expensive rejection sampling. Thismotivates our decision to focus solely on
drawing from a specified distribution of interest. While we elect to focus in
on a single distribution, our prescribed framework can apply to any dis-
tribution that admits a tractable distribution. Additionally, since our devices
are acting as biased coins, popular benchmarks to test theRNGquality, such
as NIST, aren’t applicable.

We choose to focus on a particular distribution in the gamma
family. The gamma distribution is a natural generalization of the expo-
nential distribution. It is applied in a variety of applications, including
mathematical ecology (population and epidemic modeling), industrial
systems engineering (queuing theory and related service time modeling),
and finance (default modeling). While the exponential distribution
represents the waiting time of a single event arriving at a rate λ, the
gamma distribution can be thought of as the waiting time for n arrivals of
events that individually arrive at a rate λ. The two parameters of the
gamma distribution are the shape n and the rate λ. The exponential
distribution arises as the special case when n = 1. Both parameters can
take on any positive value.

For this effort, we selected n = 50.00 and λ = 311.44. This target dis-
tribution, shown in Fig. 2a, provides features not present in a simple
exponential. Namely, it provides an asymmetric shape tightly concentrated
around a single value. These features and the entire codesign framework
dramatically differentiate this work from existing literature applying vanilla
RL to a vanilla exponential distribution9,10,29. For explicit details on how we
selected these values and an application to particle tracking, please see
Supplementary Note 1.

In the context of our codesign workflow (Fig. 1), we will need an algo-
rithm that transforms output from stochastic devices to samples from dis-
tributions of interest. This is the RNG algorithm and it is the object (or
function) of interest, informing the behavior of our devices and prescribing a
need to precisely control their stochastic profile. In general, this choice of
algorithm is a step in our framework for device design and can be arbitrary.

The RNG functionwe chose provides a binary-coded randomnumber
according to the desired probability density function (PDF) by utilizing
output from tuned coinflips. Prescriptively, we begin with a PDF supported
on somefinite interval [a,b]. If thePDF is notfinitely supported,we truncate
it in a negligible way and renormalize. Our selected gamma distribution is
not finitely supported. Hence, we will need to truncate the infinite support.
We truncate our PDF to the interval [0.10, 0.24]. This interval contains
~99.79% of the mass of the distribution and is illustrated in Fig. 2a. Our
selection for the bounds of the truncation was arbitrary, but our metho-
dology would still be valid for any finite range. Note, with our RNG algo-
rithmof choice (discussed in the following paragraph) there is no possibility
of returning values outside the truncated range, evenwith noise imparted by
the device.

Fig. 2 | Overview of tree algorithm. Truncated target distribution (a) is used in the tree algorithm (b) to optimize the MTJ devices to match the desired distribution.
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Once we have an appropriate PDF, we construct a sampling decision
tree by discretizing the PDF. For a k-bit number, we divide the chosen
interval [a, b] into 2k equally-spaced bins. Note, bins need not be equally
spaced, but for easeof discussion,weassert that eachbinhas the sameextent.
Wecreate a binaryflip tree encoding the outcomesof eachof these bins from
a sequence of coin tosses. The first coin toss will have a probability of tails
equal to the integral of the PDF from a to (a+ b)/2. This partitions the
probability of the first 2k−1 bins and the second 2k−1 bins. The second layer of
the tree comprised two weighted coins. The first coin has a probability of
tails equal to the integral of the PDF from a to (3a+ b)/4. The second coin
has a probability of heads equal to the integral of the PDF from (a+ 3b)/4 to
b. This process is continued until the final layer, where the integration is
performed over the width of a single bin. In total, there will be 2k− 1
weighted coins. In practice, the coin in the topmost layer is flipped;
dependingon the outcomeof thefirst toss, a single coin in the second layer is
selected to toss. This process continues.

In contrast to precomputing all 2k− 1 coin weight values in the full
probability tree—a process that grows exponentially with the desired bit
precision—we insteadmodify the scheme and utilize an online process.We
traverse through only those branches of the probability tree that are relevant
for each sample by exploiting the cumulative distribution function (CDF).
This scheme is suitable for any distribution for which the CDF can be
defined. For our gamma distribution, we merely integrate our truncated
PDF for x∈ [0.10, 0.24] to obtain our CDF.

Let F denote the CDF of a desired finite distribution on some interval
[a, b]; that is, FðxÞ ¼ P½Y < x�. In an online fashion, the first coin weight is
determined by evaluating

FðbÞ � F ðaþ bÞ=2� �

FðbÞ � FðaÞ :

This coin is thenflipped. If the outcome is 1, for example, then the next coin
weight is determined by evaluating

FðbÞ � F ðaþ 3bÞ=4� �

FðbÞ � F ðaþ bÞ=2� � :

Since this process is online, the weight of the next coin flipped depends on
the outcome of the previous coin. Based on that outcome, the interval of
integration (the evaluation points in the denominator) and the midpoint of
the integral (the second evaluation of F in the numerator) change
dynamically too.

Compactly, if we let b represent the binary representation of the
output random number, we can define the probability that the kth bit of b
will equal 1 as

P½bk ¼ 1� ¼ Fðx2Þ � Fðx1Þ
Fðx2Þ � Fðx0Þ

; ð1Þ

where x0 and x2 represent the endpoints of the current interval and x1
represents the midpoint. By dynamically setting x0, x1, and x2 as successive
locations according to the outcome of the previous coinflip, we can pro-
gressively sample a binary-coded digit from an arbitrary CDF.

Using this approach, we use a simple recursive algorithm that dyna-
mically sets x1 and x2 depending on the outcome of the previous coinflip bk.
If bk = 1, thenwemove the lower bound to the current probability threshold,
x0 ← x1. Likewise, if bk = 0, we reset the upper bound (x2 ← x1). Next, we
compute the next as the halfway point between the upper and lower bounds
(x1 ← (x2− x0)/2). This process is illustrated in Fig. 2b.

Device models: magnetic tunnel junctions
The second component of the codesign framework includes the device
models, Fig. 1a. We utilize physics-based models of these devices to accu-
rately capture the device behaviors based on the device and material
properties. This allows us to effectively optimize the devices to target desired
distributions while considering additional constraints such as energy effi-
ciency. This component can be updated to explore numerous devices using
variousmodeling techniques, whether it be physics-basedmodels,machine-
learning models, or incorporating physical device readings. This flexibility
allows the framework to optimize for multiple devices regardless of the
modeling approach.

We use a numerical model of MTJs based on a macrospin approx-
imation of the Landau–Lifshitz–Gilbert (LLG) equation30,31, modeling a
standard MTJ stack with PMA comprised CoFeB (free layer)/MgO/CoFeB

Fig. 3 | Device model schematics with perpendicular magnetic anisotropy.
Schematic illustrations of the modeled spin--orbit torque magnetic tunnel junction
(SOT-MTJ) (a–c) and spin transfer torque magnetic tunnel junction (STT-MTJ) (d–f)
with perpendicular magnetic anisotropy. a The SOT charge current (JSOT) is applied
through terminal T3 to T1 to rotate the free layer (FL) in-plane, and the change of
magnetoresistance is read through an MTJ via terminals T2 and T1 after JSOT is

removed. An additional STT charge current JSTT between T1 and T2 provides biasing
of the coin. d The current (JSTT) induces a stochastic switching of the free layer, which
is reset with Jreset after each read operation. b, e Example device S-curve showing how
STT current amplitude (JSTT) between T1 and T2 biases the bit probability for both
device types. c, f Two example random bitstreams generated using the simulation
model29, with accompanying pulsed SOT or STT currents in units of mA.

https://doi.org/10.1038/s44172-025-00376-8 Article

Communications Engineering |            (2025) 4:43 4

www.nature.com/commseng


(fixed layer). ThisMTJ stack can be operated in different modes for TRNG;
an SOT-MTJ device is shown in Fig. 3a. In the SOT operation, an applied
JSOT current in a heavy metal layer beneath the stack rotates the magneti-
zation of the free layer (FL) to be in-plane via the spin Hall effect, then
removed for relaxation, as the free layer settles to itsPMAlowest energy state
to either the 1 or 0 states. This process can be biased using an applied JSTT
current through the stack. The model is developed in Python and FOR-
TRAN and accounts for device-to-device variability expected for state-of-
the-art magnetic random-access memory (MRAM)29,32. An example com-
putedSOTS-curve is shown inFig. 3b relating the biasing current JSTT to the
bit probability, and two example random bitstreams are shown in Fig. 3c.
These bitstreamswere produced with extrinsic parameters, applying charge
current density of amplitude JSOT =−4 × 1011 A/m2 without field assist,
pulse duration of 10 ns, followed by relaxation of 15 ns. The chosenmaterial
parameters for ferromagnetic CoFeB are damping constant α = 0.03, ani-
sotropy constant Ki = 1 × 10−3 J/m2, saturation magnetization
Ms = 1 × 106 A/m, and spin Hall angle η = 0.3. Detailed device parameters
are shown inTable 1.We leverage thismodel29 for optimization experiments
at room temperature (T = 300 K) in the next section to codesign the device
as a TRNG for a gamma probability distribution function.

Unlike the SOT-MTJ device, an STT-MTJ device does not require a
SOT current to rotate the FL in-plane. Instead, the supplied STT current
provides the entire mechanism for stochastic switching. Resetting the FL to
be in the—z direction between each sample, an STT current through the
stack has a probability to switch the FL depending on the STT magnitude.
The STToperation is shown inFig. 3d,with corresponding example S-curve
and bitstreams in Fig. 3e, f. The STT device parameters to generate these
bitstreams were the same as those listed for the SOT device, while the pulse,
relax, and reset times for the STT are 1 ns, 10 ns, and 10 ns, respectively, and
shown in the insets in Fig. 3c, f.

AI-guided codesign framework: reinforcement learning
The last component of the codesign framework includes the AI-guided
codesign strategies, Fig. 1b. This work explores and compares both RL and
EA to help determine the optimal parameter values for the materials and
devices in order to display a desired distribution while accounting for
additional constraints, i.e., energy efficiency. The codesign framework is
flexible and extendable allowing the investigation of additional constraints
to fit the requirements of the given application if needed.

RL is a class ofmachine learning techniques that trains an agent to learn
optimal decision making for a given environment (the world the agent

inhabits) in order to maximize its rewards33. The main control loop begins
with the agent taking an action based on the observations available to it for a
given state of the environment. The observations provide key information
the agent may use to gauge its current situation to determine potential
actions to take. The agent is then provided a reward that either penalizes or
affirms said action and the environment is updated by transitioning to the
next state triggered by the agent’s action as shown in Supplementary Fig. 1.

This state–action–reward dynamic is a crucial component of various
RL algorithms. A popular branch of these algorithms is policy-based
approaches which is what we are using in this work. This approach focuses
on optimizing the policy which is responsible for providing the agent with
optimal actions to take. We used a well-established RL algorithm called
proximal policy optimization (PPO) by OpenAI for our RL algorithm34.
PPO limits the policy change at each epoch to avoid large policy updates
which helps to converge to an optimal solution by mitigating large,
destructive policy changes.

For eachof thedevicemodels solving for theRNGapplication, a similar
RL setup was constructed to train an agent to optimize the materials and
parameters of the two devicemodels to best exhibit the desired distribution.
To accomplish this, two metrics were leveraged to define optimal config-
urations: Kullback–Leibler (KL) divergence and energy. KL divergence
helps determine how close one distribution is to another, and energy cal-
culations relate to how efficient the device is. Therefore, to obtain the best
configurations, the agent is trying to minimize both metrics.

To facilitate the RL optimization, we leveraged OpenAI’s RL frame-
work, Stable-Baselines335. This framework allowed us to build a custom
environment that integrates the devicemodels to allow agents to explore the
parameter search space to optimize against KL divergence and energy
consumption. The framework also provides built-in RL algorithms which
simplify the training process by easily allowing the switching of training
algorithms, including the PPO algorithm we utilized. For both devices, the
agent was trained for 6000 timesteps and then tested on 150 episodes with
each episode consisting of 60 timesteps. For more information, refer to
Supplementary Methods.

AI-guided codesign framework: evolutionary algorithms
Evolutionary optimization is an optimization approach inspired by prin-
ciples in natural evolution. In evolutionary optimization, potential solutions
are represented as genomes, and a population of genomes is maintained
throughout the optimization. Each genome is converted into a phenome
and evaluated through afitness function, which corresponds to the objective

Table 1 | Device and material parameters for SOT and STT operation, along with their default parameters established through
literature and prior works10,38–42

Spin Orbit Torque (SOT) MTJ

Parameter Symbol Min Range Max Range Defaults Parameter Type

Gilbert Damping Constant α 0.01 0.1 0.03 Material

Surface Anisotropy Energy Ki 0.2 × 10−3 J/m2 1 × 10−3 J/m2 1 × 10−3 J/m2 Device

Saturation Magnetization Ms 0.3 × 106 A/m 2 × 106 A/m 1.2 × 106 A/m Material

Parallel Resistance Rp 500Ω 50,000Ω 5000Ω Device

Spin Hall Angle η 0.1 2 0.3 Material

Current Density JSOT 0.01 × 1012 A/m2 5 × 1012 A/m2 0.5 × 1012 A/m2 Device

Pulse Width tpulse 0.5 ns 75 ns 10 ns Device

Spin Transfer Torque (STT) MTJ

Parameter Symbol Min Range Max Range Defaults Parameter Type

Gilbert Damping Constant α 0.01 0.1 0.03 Material

Surface Anisotropy Energy Ki 0.2 × 10−3 J/m2 1 × 10−3 J/m2 1 × 10−3 J/m2 Device

Saturation Magnetization Ms 0.3 × 106 A/m 2 × 106 A/m 1.2 × 106 A/m Material

Parallel Resistance Rp 500Ω 50,000Ω 5000Ω Device

Pulse Width tpulse 0.5 ns 75 ns 1 ns Device
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function that is either minimized or maximized. Selection procedures are
used to select parents from the population of individuals based on their
fitness values. Then, reproduction operations such as randommutation are
performed with the parents to produce children genomes, which then
replace the parents. To allow for multi-objective optimization, we use the
non-dominated sorting genetic algorithm II (NSGA-II)36. In NSGA-II,
individuals are selected to fall along the Pareto front, with a crowding
distance metric that is used to promote diversity among the selected
individuals.

Here, the individual genomes in our population are real-valued arrays,
where each gene in the genome represents the parameters of the device type.
We use Gaussian mutations to mutate the real values in the array. In
evaluating the device performance, we use two objectives: KL divergence
and energy usage. The goal is to minimize both of those values—similar to
the RL approach. If the configuration is invalid, then the KL divergence and
energyusage values are set to a large value (1,000,000) to strongly discourage
invalid configurations.

We utilized the Library for Evolutionary Algorithms in Python
(LEAP)37 to facilitate our EA optimization. LEAP is a general-purpose
framework for evolutionary algorithms that employs a pipelining feature for
search and optimization algorithms with useful distribution and visualiza-
tion features. They provide multi-objective optimization algorithms,
including NSGA-II36 utilized in this work. The framework allows for easy
modification of population, training generations, mutation, and crossover
parameters—key aspects of evolutionary algorithms—which allowed us to
test various training setups. For both devices, 25 runswere performedwith a
population size of 50 for 50 generations of evolution.

Note, all figures, graphs, and diagrams were created by the authors of
this paper. The Matplotlib library in Python was used for graph creation,
PowerPoint for flowdiagrams, andRhinoceros 3D for device visualizations.

Results
Reinforcement learning results
Figure 4 shows an overview of the results for our RL approach to device
design. Figure4a, b show thePDFcomparisons for theSOTandSTTdevices,
respectively. Each figure shows the distributions produced by the average of
the top5devices generated throughRL, thedistributionproducedby thebest
device configuration, and the result of the PRNG all compared against the
target distribution.Note that thePRNGwas sampled the sameamount as the
MTJ devices (100,000) to allow for comparisons. As can be seen in these
figures, the optimized device resultsmatchwell to the target distribution and
are mostly consistent with what is seen for the PRNG.We can see in Fig. 4b
that there is significantly more variation for the STT device than the SOT
device, particularlywith drift from the distributionof the generatednumbers
between 0.20 and 0.22. This is expected behavior, as the STT device sto-
chasticity should be harder to tune due to having one control knobwhile the
SOT device has two control knobs.While the SOT device needs its free layer
to be brought in-plane and then allowed to relax, the current to flip the STT
device needs to be fairly precise to achieve proper biasing. However, the
tradeoff is added complexity and terminals to the SOT-MTJ compared to the
STT version that can use a 1 transistor, 1 resistor STT-MRAM structure.

Figure 4c, d show the five best configurations discovered for the SOT
and STTdevices, respectively, alongwith their respectiveKLdivergence and
energy metrics. The top 5 devices are considered to allow comparison of
configuration variability through the optimization strategies among the top
performers. In order to provide a baseline, these optimized configurations
are compared against a PRNG and “default” values for each device para-
meter, established through literature and prior works38–42. It is worth noting
that the individual color ranges for the energy and KL divergence metrics
were determined by looking at all device configurations (SOT and STT), for
both automated codesign strategies (RL and EA), including the default
configurations and the PRNG. The optimized configurations for both
devices were able to outperform the default configurations in terms of KL
divergence. However, the energy metric wasn’t improved upon from the
default configuration, and this can be attributed to less weight being applied

to the energy metric in the fitness score—increasing the weight can incen-
tivize better energy efficiency. It is clear that there is not one set of para-
meters that leads to the best performance for a givendevice set, though there
are trends for certain parameters. In particular, the Gilbert damping con-
stant (α) is consistent across both the STT and SOT devices.

For the SOT device, the trelax and tpulse parameters tend to stay toward
thehighendof the allowed range, but the same isnot true for the STTdevice,
where there is more variation in the parameter values used in the top 5
devices. This indicates that it is worthwhile to customize the parameters for
each individual device type. For the remaining parameters, values across the
ranges are used for each of the top 5 device configurations for the STT
device, but values toward the lower bound are preferred for the SOT device
whichmay suggest the agent falling in a local optima. Looking at the energy
and KL divergence metrics, we can see that the SOT device produced more
energy-efficient configurations that more closely matched the target dis-
tribution compared to the STT device.

Figure 4e, f depict the Pareto fronts comparing energy consumption
and KL divergence of the valid configurations for both SOT and STT
devices, respectively. As seen by the figures, there are significantly more
samples for the SOT device compared to the STT device. This suggests that
there is a smaller subset of valid configurations for the STT device as
opposed to the SOT device, as expected.

This disparity allowed for a larger exploration of the energy and KL
divergence space for the SOT device, while the STT device has clusters of
samples, suggesting that there may be fewer configurations that deviate too
far from the desired distribution as seen by fewer occurrences of larger KL
divergence scores. Nevertheless, both devices share a similar trend: closely
matching the target distribution (lower KL divergence score) typically
results in increased energy consumption.This tradeoff is a crucial element to
be aware of when designing such devices since it offers a gradient of pos-
sibilities to best match the application requirements.

Figure 4g, h showcase the probability distributions of the parameter
ranges that were explored through RL for both SOT and STT devices,
respectively. From the graphs, we can clearly see that the majority of the
parameter exploration took place at the bounds of the parameter ranges for
both devices. This matches with the top parameters discovered (Fig. 4c, d),
where the parameter values tend to be toward the bounds of their respective
ranges. This suggests that the agent may have fallen into a local optimum;
however, the Pareto fronts suggest that the agent was still able to discover a
wide breadth of the performancemetrics’ (energy andKLdivergence) space.

Evolutionary algorithms results
Figure 5providesanoverviewof theEAresults fordevicedesign. Figure5a, b
display the PDF comparisons of the SOT and STT devices, respectively.
Once again, we see that the device parameters discovered by the EA closely
mimic the desired distribution and the distribution generated by the PRNG.
Similarly to theRL results,we also see that the STTdevice hasmorevariation
from the distribution than the SOT device, but this time for generated
numbers between 0.16 and 0.18, which indicates that different parameter
sets may result in more variation at different points in the distribution.

Figure 5c, d show the top 5 device configurations discovered across EA
runs along with their KL divergence and energy metrics for the SOT and
STT devices, respectively. These are compared against the default config-
urations andPRNG. Similar to theRL results, these configurationswere also
able to outperform the default configurations in terms of KL divergence.
However, the energymetric is relatively close to thedefault configuration for
the SOT device, except for the STT device, where the optimized config-
urations had better KL divergence scores at the expense of increased energy
consumption compared to the default configuration. Additionally, the
device configurations are much more similar to each other, with consistent
values discovered for trelax, tpulse, and α across a majority of the best con-
figurations for both device sets. This is most prominently seen in the STT
device, where most of the variation occurs in the Rp parameter. The para-
meter values also tend to be closer to the bounds of the respective ranges
except for the Rp parameters for STT and the η parameter for SOT.
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Figure 5e, f depict the Pareto fronts for the multi-objective EA,
comparing energy consumption and KL divergence of the valid config-
urations for both SOT and STT devices, respectively. We can see that
there are a variety of device types that are explored across the perfor-
mance space for both SOT and STT. These figures once again show that

there are many configurations that use less energy but have high KL
divergence. Unlike the RL results, Fig. 5f shows more exploration in the
STT space. This plot shows that the EA likely explored two distinct local
optima in the search space at two different energy levels (one higher
and one lower) with varying levels of KL divergence. However,

Fig. 4 | Reinforcement learning optimization results for spin–orbit torque (SOT)
and spin transfer torque (STT) devices. a, b PDF comparison of top 5 device
configurations, best configuration, pseudo-random number generator (PRNG), and
target distribution for both SOT and STT devices. c, d Parameter configurations of
top 5 devices with energy and Kullback-Leibler (KL) divergence metrics compared

against the default configurations and a PRNG for both SOT and STT devices.
e, f Pareto fronts comparing energy and KL divergence metrics of various SOT and
STTdevice configurations. g,hProbability distributions of the parameter ranges that
were explored for both SOT and STT devices.
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well-performing (low KL divergence and low energy) device configura-
tions were still discovered. Similar to RL, there are fewer valid config-
urations for the STT device, which further supports the idea that there is
a smaller subset of valid configurations for this device type.

Figure 5g, h show the probability distributions of the parameter
ranges that were explored through the EA approach for both SOT and
STT devices, respectively. We can see in these plots that only the
extremes in the parameter range are explored for some parameter sets

like α, tpulse, trelax, and Ki. This is consistent with what we saw for those
parameter values in the RL approach as well. However, while the RL
approach kept to the extremes for all of the device parameter values,
the EA explores across the ranges for some of the device parameters, in
particular Ms and Rp. We can confirm in Fig. 5c, d that the best-
performing configurations for Rp and Ms tended to fall more toward
the middle of the available parameter range, rather than at one of the
two extremes.

Fig. 5 | Evolutionary algorithm optimization results for spin–orbit torque (SOT)
and spin transfer torque (STT) devices. a, b PDF comparison of top 5 device
configurations, best configuration, pseudo-random number generator (PRNG), and
target distribution for both SOT and STT devices. c, d Parameter configurations of
top 5 devices with energy and Kullback-Leibler (KL) divergence metrics compared

against the default configurations and a PRNG for both SOT and STT devices.
e, f Pareto fronts comparing energy and KL divergence metrics of various SOT and
STTdevice configurations. g,hProbability distributions of the parameter ranges that
were explored for both SOT and STT devices.

https://doi.org/10.1038/s44172-025-00376-8 Article

Communications Engineering |            (2025) 4:43 8

www.nature.com/commseng


Discussion
The key contribution of this work is the complete device codesign frame-
work for true random number generation based on abstract device models
for EA andRLapproaches, which is illustrated in Fig. 1. The creation of such
a framework requires device expertise, AI expertise, and application
expertise. However, now that the framework and components have been
established, it isworthnoting that thoughwehave showcased results forEA-
and RL-based automated codesign approaches, SOT and STT-MTJ devices,
and gamma distributions, we can easily extend this work in the future by
augmenting or swapping out components within the framework. First, we
can investigate other design or optimization approaches for the device
parameters, such as particle swarm optimization or generative AI. Next, we
can swap out or augment the MTJ devices with other probabilistic devices.
Finally, we can use the framework to pick materials and device parameters
for other non-uniformdistributions or target codesign for other application
domains.

Our second contribution is the demonstration of codesignedmaterials
and device parameters for both SOT and STT-MTJ devices for efficient
randomnumber generation and thus, new candidate devices. It is important
to note that though the default parameter values for both the SOT and STT
devices are very similar, both RL and EA approaches discovered parameter
sets that were clearly different for each of the two devices. This clearly
indicates that leveraging an automated optimization approach for dis-
covering device parameters is worthwhile for these sets of devices. Specifi-
cally, by leveraging anoptimizationapproach for each individual device type
and application combination, device parameter sets can be discovered that
improve performance over the defaults for a particular application, while
also tuning the parameters to incentivize certain metrics such as energy
efficiency. In thiswork, theparameter rangeswere kept in ranges realistically
achievable in the CoFeB–MgO system through materials engineering;
future work could expand the ranges further to explore not yet discovered
systems.

The lastmain contributionof thiswork is the comparisonofRLandEA
approaches for device design. In comparing these two approaches, there are
several points worth noting. First, the EA approach we used, NSGA-II, is
particularly focused on multi-objective optimization and exploration of
points along the Pareto front, whereas we used a reward function that
weighted the objectives into a single score for the RL approach. It is worth
noting that althoughmulti-objective approaches exist for RL43, they are less
popularly used than EA algorithms such as NSGA-II, which is why we

focused on a weighted reward function for RL here. However, determining
the appropriate weights for a multi-objective weighted reward function is
non-trivial and often requires trial-and-error to determine the best weights
for each objective.

We observe that both EA and RL explored configurations across the
Pareto fronts; however, the EA approach explored the parameter search
space to a larger degree, while the RL approach tended to stay toward the
extremes. It is worth noting that this can be at least partially attributed to the
smaller number of training timesteps (6000) for the RL approach compared
to the EA approach (50 population size*50 generations*25 runs = 62, 500
timesteps). This disparity between the number of training timesteps for the
two approaches was due to time and computing constraints; therefore, we
would like to revisit this point in the future to compare the two approaches
with similar training times.However, evenwith a smaller number of training
timesteps, the RL approachwas able to producemore unique configurations
in its top-performing candidates compared to the EA approach as demon-
strated byFigs. 4c, d and5c, d.Another observation is that both optimization
strategies resulted in the STT device configurations displaying larger varia-
tions in their PDFs compared to the SOT device. This, once again, suggests
that the STT device has a smaller subset of valid configurations and may be
more sensitive to the parameter configurations. Overall, both RL and EA
approaches have clear advantages and disadvantages.

We summarize the Ku (Ku =Ki/tf, where tf is the free-layer thickness)
andMs pairs found by each approach for each device in Fig. 6. To orient the
configurations within the plot, we derive a simple relationship between Ku

and Ms to achieve PMA. Considering only the anisotropy energy density,
the total effective anisotropy can be written as

Keff ¼ Ku �
μ0M

2
s

2
ð2Þ

IfKeff > 0, the devicewill exhibit stronger PMAbehavior, while ifKeff < 0 the
PMA will weaken (and eventually become IMA). When Keff = 0, we can

define a “border” by Ku ¼
μ0M

2
s

2 ; this line is shown in black in Fig. 6a.
Looking at the regions inhabited by each device, the STT devices remain
relatively close to the border, while the SOT devices favor stronger PMA.
This is likely because a strong PMA is critical for the SOTdevice to return to
a ± z magnetization state during relaxation. Example bitstreams generated
by SOTdevices found via the RL and EAapproaches are shown in Fig. 6b, c,

Fig. 6 | Summarization of saturation magnetization and volume anisotropy
energy density optimization results. a The saturation magnetization (Ms) and
volume anisotropy energy density (Ku) pairs for the top five configurations of each of
the spin–orbit torque (SOT) and spin transfer torque (STT) devices found via
reinforcement learning (RL) and evolutionary algorithm (EA) approaches. The SOT

and STT devices generally favor configurations that have stronger perpendicular
magnetic anisotropy (PMA), though the SOT devices favor weakerMs than the STT
devices. (b, c) Sample bitstreams generated using the top SOT configuration found
by RL and EA approaches. d, e Sample bitstreams generated using the top STT
configuration found by RL and EA approaches.
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showing the expected SOT behavior. For most SOT devices in the config-
urations list the bitstreams exhibit this desired functionality, however, it is
noted that occasionally the optimization strategies cause the SOTdevices to
operate in a stochastic regime instead, including the top discovered con-
figurations; see Supplementary Note 2 for more information. Further, the
top STT device bitstreams in Fig. 6d, e look as expected, stochastically
switching to+ z with an application of the STT current. Finally, it is noted
that the tendency of both approaches to minimize α is likely related to the
critical current required to driveMTJ switching; in ref. 44, it was shown that
the critical switching current depends proportionally on α, and thus a
smaller α allows for switching to occur at lower current densities.

Conclusions
In this work, we proposed an AI-guided codesign framework to optimize
SOT-MTJ and STT-MTJ devices for a TRNG application by utilizing RL
and EA. We successfully motivated such a framework by producing valid
device configurations that closely match the target distribution while
optimizing for energy efficiency. We also demonstrate the feasibility of
swapping components of the workflow to fit application requirements by
switching out different device types (SOT vs. STT) and design/optimi-
zation strategies (RL vs. EA). We found that by optimizing the para-
meters of the devices beyond their default values, we can tune the MTJ
devices to more closely mimic the desired distribution while simulta-
neously minimizing energy usage, demonstrating that using
optimization-guided codesign approaches can discover or optimize
devices for particular applications.

As noted previously, we intend to use this framework to tune the
parameters of additional probabilistic device types, such as tunnel diodes
andother types ofMTJs, aswell as investigate generating samples fromother
probability distributions beyond exponential and gamma. Additionally, we
plan to continue investigating other approaches for material and device
parameter search, such as particle swarm optimization, to further under-
standwhat the tradeoffs are for eachoptimization approach. Finally, we also
plan to extend to circuit and systemdesignwhile codesigning the devices for
various application types, providing a full-stack optimization paradigm.

Data availability
All data generated or analyzed during this study are included in this pub-
lished article (and its Supplementary Information files).

Code availability
Please refer to our source code for implementation details: https://github.
com/utinclab/Stochastic_MTJ_Model.
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