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Active heterogeneous mode coupling in
bi-level multi-physically architected
metamaterials for temporal, on-demand
and tunable programming
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Traditionally materials show an uncoupled response between normal and shear modes of

deformation. Here we propose to achieve heterogeneous mode coupling among the normal and shear
modes, but in conventional symmetric lattice geometries through intuitively mounting electro-active
elements. The proposed bi-level multi-physically architected metamaterials lead to an unprecedented
programmable voltage-dependent normal-shear constitutive mode coupling and active multi-modal
stiffness modulation capability for critically exploitable periodic or aperiodic, on-demand and
temporally tunable mechanical responses. Further, active partial cloaking concerning the effect of far-
field complex stresses can be achieved, leading to the prospect of averting a range of failure and
serviceability conditions. The tunable heterogeneous mode coupling in the new class of symmetric
metamaterials would lead to real-time control of mechanical responses for temporal programming ina
wide range of advanced mechanical applications, including morphing and transformable geometries,
locomotion in soft robotics, embedded actuators, enhanced multi-modal energy harvesting, vibration

and wave propagation control.

Artificially engineered multi-physical lattice-based metamaterials have
started receiving tremendous attention over the last couple of years due to
their ability to modulate physical properties and shapes actively even after
manufacturing. The term multi-functional is used often in this context for
referring to a range of material characteristics that are counterintuitive and
unusual for realizing simultaneously compared to those of any typical
naturally occurring materials"’. Some examples of such characteristics
include ultra-lightweightness with high specific stiffness, property mod-
ulation, zero or negative elastic moduli and Poisson’s ratios, vanishing shear
modulus, negative mass density, electromagnetic and mechanical cloaking,
tunable wave propagation characteristics, and their on-demand
programmability’. Here the term lattice indicates 2D and 3D repetitive-
unit cells (representative volume element) based design where each unit cell
can have a regular shape, such as square, hexagonal, triangular, pentagon,
etc., leading to a bending or stretching dominated behavior of the con-
necting beam-like straight or curved members. After tremendous progress
in computationally conceptualizing and manufacturing lattice metamater-
ials with complex cell geometries over the last decade, a strong rationale has
evolved lately to achieve active and on-demand property modulation in real-
time with greater sensitivity. The central theme of this paper is to

demonstrate active normal-shear mode coupling in regular symmetric 2D
geometries through the introduction of bi-level rationally designed multi-
physical architectures at the elementary beam-level that is also applicable to
a wide range of other 2D and 3D lattices.

Initial works on mechanical metamaterials can be traced back to the
research concerning effective elastic properties obtained through passive-
type designs of lattice architectures, where the effective properties can be
obtained as a function of unit cell geometries along with intrinsic material
properties™'’. In this class of metamaterials, the normal and shear modes are
typically decoupled, indicating that there would be normal deformation
under far-field normal stresses and shear deformation under far-field shear
stresses. Further, there would be no instance of normal and shear defor-
mations simultaneously under the application of only one mode of stress or
deformation. A large number of these metamaterials are developed on the
traditional premise that once these are manufactured based on a unit cell
geometry, the effective mechanical properties cannot be modulated further
on an active and on-demand basis. The mechanical analyses in such lattice
metamaterials involve evaluating the effective elastic properties, failure
strength, energy absorption capacity and their simultaneous multi-objective
modulation. In the current paper, we will focus on hexagonal honeycombs
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for demonstrating the active normal-shear mode coupling. Such hexagonal
lattice geometries with efficient space-filling features are widely adopted in
engineering applications and found in naturally occurring structural forms
across the length scales''. Masters and Evans'” reported an analytical model
for the prediction of elastic constants of hexagonal honeycombs considering
flexural, stretching, and hinging of cell members. Wang and Stronge'” used a
micropolar elasticity theory to derive the stiffness matrix for regular hex-
agonal honeycombs. Balawi and Abot' reported a strain-energy-based
refined analytic model for regular honeycombs taking curvature into con-
sideration at each intersection point of the lattice. Xu et al."” modified the
traditional regular honeycomb into AuxHex structure (unit cells with both
auxetic and hexagonal honeycomb patterns) in their study and derived the
effective elastic moduli and plastic collapse stresses of the lattice. Mukho-
padhyay et al.'® developed the theory for heterogeneous multi-material
lattices, while Mukherjee and Adhikari'” further extended the theory to
incorporate beam-level axial and shear deformations. Mukhopadhyay
et al."® derived the closed-form elastic moduli expressions of multi-material
honeycomb lattices considering the effect of filler material. In the field of
multi-material lattices, functionally graded metamaterials with longitudinal
and thickness-wise beam-level gradation have been proposed for elasticity
tailoring, failure mode manipulation (ductile and brittle) and applications in
extreme surrounding environments (including hydrogen storage tank)'**.
Khalili and Alavi*' utilized the modified strain gradient theory to derive
elastic moduli of the microcellular auxetic honeycomb lattices. Other
directions of research in the field of cellular lattice metamaterials include
nonlinear large deformation analysis”, the effect of residual and intrinsic
stresses”*, the effect of structural irregularity in the lattice geometry'**, the
influence of vibrating environment on the effective elastic moduli of
lattices™, and single-curvature beam lattices”’ and anti-curvature lattice
designs™”’. Lately, the concept of inverse design and exploitation of machine
learning algorithms have shown promising outcomes in developing novel
metamaterial architectures™ .

The literature reviewed in the preceding paragraph does not consider
the notion of real-time active property modulation of effective mechanical
properties. This implies it is impossible to modify or change the char-
acteristics of the metamaterials once they are manufactured in order to suit
specific applications or active operational demands. In this context, to
possess on-demand property modulation capability, the metamaterial
architecture should contain active elements in the geometry that can be
activated based on thermoelasticity, magnetostriction, piezoelectricity, or
other multiphysics-based phenomena'. The smart theories of such active
components can be qualitatively appreciated through the typical
expressions”*: € = so + dE, € = so + d'H, and € = so—BAT, where 0 and
€ are strain and stress; E and H are the applied electric and magnetic field;
A is the applied temperature variation; s, d, d’,  are elastic compliance,
piezoelectric coefficient, magnetoelastic constant and thermal moduli ten-
sor respectively. It can be noticed that the elastic deformations (strains) of
such smart materials can be programmed by an externally applied electric
field, magnetic field and temperature difference along with typical
mechanical stresses which unfolds a de novo scope of exploiting their
coupled physics along with metamaterials architectures to achieve on-
demand property modulation. For instance, Sinha and Mukhopadhyay™
and Singh et al.* proposed active honeycomb lattices made of magneto-
active elements, wherein the effective stiffness can be modulated (contact-
less) as a function of magnetic field and mechanical stresses. Lim” reported a
temperature-adaptable Poisson’s ratio modulation in honeycombs with
rectangular unit cells having rigid crossbeams (as upright members) and
alternating bimetallic strips (as slant members) as the cell walls. In Wang
and Liu’s work®, a similar unit cell structure is modified with piezoelectric
elements where one of the strips of the bimetallic cell wall is replaced by a
piezoelectric patch. The rigid crossbeam member is kept rigid and of a single
material as before. They reported a half-beam-based analytical model to
formulate its voltage-dependent effective Young’s moduli. The work of
Wang and Liu™ is inspired by earlier research of Singh et al.**’, where they
reported a bottom-up unit cell-based analytical framework for active

honeycombs using a modified piezo-stiffness matrix. Different multi-
physical property modulation aspects were highlighted including the exis-
tence of negative Young’s modulus in the static scenarios, on-demand sign
reversal of Poisson’s ratios, the effect of asymmetric piezo-placements on
effective mechanical properties of honeycomb, etc. However, it has been
observed experimentally and analytically that lattices with alternating bi-
material piezoelectric elements give rise to higher piezoelectric sensitivity
compared to conventional unimorph and bimorph configurations* ™.
Motivated by these findings, in the present study we would propose a novel
alternating tri-layered piezo-metallic strip-based bi-level (coupled design
space at the beam level and the unit cell level) metamaterial architecture
(including slant as well as upright members as depicted in Fig. 1A-D) with
unique active capabilities, as discussed in the following sections. In the
context of earlier works™", we introduce the placement of piezoelectric
elements more effectively following a physics-informed beam-level archi-
tecture for achieving higher voltage sensitivity, and subsequently adding the
piezoelectric elements to the vertical upright members leads to an unpre-
cedented programmable mode coupling between the axial and shear
deformations. The earlier works show that shear modulus cannot be
modulated as a function of voltage. As an integral part of this study, we
would show here that shear modulus can also be voltage-dependent along
with Young’s moduli and Poisson’s ratios following the current active tri-
member design. Further, from the analytical derivation viewpoint, we would
introduce a direct and more accurate formulation from the very funda-
mental constitutive equation of piezoelectricity, rather than adopting an
approximate equivalent moment and force-based approach used in the
earlier works.

In the literature of metamaterials, symmetric unit cell geometries like
hexagonal, rhombic, rectangular or triangular tessellations, while preferred
for the ease of manufacturing, cannot lead to normal-shear mode coupling
under applied unimodal strain or stress. So far, only a few special classes of
lattice have been found to exhibit such mode coupling, albeit in a passive and
non-programmable regime (i.e. the active property modulation is not
achievable). For instance, 2D chiral cellular lattices, composed of arc-
shaped, V-shaped, and semicircular-shaped cell walls****, have been inves-
tigated for their effective normal and coupled mechanical properties. Fleisch
et al.*® reported an experimental study to investigate a normal-shear cou-
pling effect in modified 2.5D and 3D chiral-based mechanical metamater-
ials. Mousanezhad et al.” investigated the effective elastic properties of chiral
and anti-chiral honeycombs based on an energy-based approach. A critical
review of such literature concerning normal-shear mode coupling in lattice
metamaterials reveals that besides complex unit cell geometries, the current
state-of-the-art does not possess the capability of active and on-demand
modulation of such heterogeneous mode coupling. The proposed bi-level
multi-physically architected metamaterials would lead to an unprecedented
programmable voltage-dependent normal-shear mode coupling for criti-
cally exploitable temporally periodic or aperiodic, on-demand and tunable
mechanical responses. Further, as a derivative of such a metamaterial would
lead to normal-torsional mode coupling as depicted in Fig. 1E. The active
programmable modulation in the coupled responses, obtained through
symmetric lattice geometries, would have crucial applications in soft
robotics, aero-dynamically adaptive morphing aircraft wings and wind
turbine blades, robotic control and gripper applications, MEMS devices
(refer to Fig. 1F, G), and a range of other advanced engineering technologies.

Methods

Underlying concepts of the high-fidelity computational frame-
work for actively coupled strain field

The multi-scale bottom-up framework for developing active metamaterials
is illustrated in Fig. 1A-D, starting from beam-level architecture, unit cells
and lattices to the level of structural application. We have considered a tri-
membered unit cell, wherein the piezo patches are placed on the vertical and
slant beam substrates as pairs for greater voltage sensitivity. Such beam-level
architecture is rationalized through the physics-based insight that the
bending moment at the center of each beam-like member becomes zero due
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Fig. 1 | Bi-level architected lattice metamaterials with active mode coupling. these from sub-figure numbers. D Beam-level composite architecture with optimally
A Prospective application of active lattices with mode coupling in adaptive wing placed active material (piezo) components. E Normal-shear mode coupling meta-
morphing structures. B Active lattices with normal-shear mode coupling including  materials resulting in tunable normal-torsion-bending coupling modes.
visual representation through equivalent continua. C Representative volume ele- F Prospective application of active mode coupling through periodic actuation for

ment or unit cell for computing the homogenized mechanical behavior. Note that ~ deformation-based locomotion in soft robotics. G Prospective exploitation of

the lengths of upright (i.e. vertical) and slant members are taken as unequal here (¢ normal-shear mode coupling in aerodynamically adaptive wing morphing as

and L respectively), while the angle of the slant member BO with X-axis is 6. The aerofoil skin™. Note that the central theme of this paper is normal-shear coupling
joints in the unit cell (A, B, C and O) are indicated using blue color to differentiate  realized through piezo-active honeycombs as shown in the middle of the figure.
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to the periodic boundary condition of the unit cells, leading to an S-like
beam-level deformed shape under the application of lattice-level far-field
stresses. Thus, placement of the piezo patches in the current form would
either tend to accentuate or dilute the S-like curvatures under far-field
mechanical stresses, depending on the polarity of applied voltages. This
would, in turn, control the lattice level effective deformation behavior as a
compound effect of the voltage-induced and mechanical far-filed stress-
induced beam-level deformations. In the present section, analytical for-
mulations are divided into the following two sections (beam level and unit
cell level) where individual deflections of each cell wall (i.e. idealized beams)
under electromechanical loadings are obtained considering cell walls as
Euler-Bernoulli beams. The influence of beam-level deformation has been
extended further to the unit cell level to quantify the overall elastic defor-
mation and electromechanical coupling phenomena of the honeycomb
lattice. Note that both axial and bending contributions in the cell’s overall
deformation are taken into consideration throughout the present for-
mulation for achieving a high level of accuracy. Although it has been
observed that the contribution of axial (and also shear) deformation is
generally at a minimal level in comparison to that of bending unless /L > 0.2
(cell wall’s thickness, f, and length, L) for hexagonal cellular lattices™.

In the following sections, we first present the beam-level deformation
physics under multi-physical stimuli and subsequently, the lattice-level
computational analysis is presented.

Beam-level deformation physics

In the present study, the cell walls of the honeycomb are analyzed by con-
sidering it as Euler-Bernoulli beam with an out-of-plane width of w. Pie-
zoelectric patches (e.g. PZT) are embedded onto the cell surfaces in an anti-
symmetric manner, wherein in the first half of the wall, two piezo patches are
attached to the top and bottom surfaces of the substrate layer. In the second
half, the same piezo patches are attached in a reverse way (refer to
Fig. 1B-D). During the application of the external remote mechanical
stresses and under the application of voltage, each cell wall undergoes
deformation where each node (joints) behaves as rotationally restrained
to maintain a periodic deformed shape. In each member of the unit cell
(i.e. representative volume element), the scheme of applied voltage is
depicted in Fig. 1C that leads to an anti-symmetric ‘S’ curvature at the beam
level. The end nodes of the cell walls are taken as rotationally restrained
(this boundary condition satisfies the periodicity of the unit cells in
deformed configurations), and the closed-form expression for such beam’s
deformation is derived here using the fundamentals of Euler-Bernoulli
beam theory. Due to the existence of symmetry in the bending moment
diagram about the mid-point of the beam (with a null bending moment at
the mid-point, as a result of the both-end rotationally restrained boundary
condition), it is quite reasonable to consider the beam of length L as
two cantilever beams of length L/2 joined at the mid-point. The total
deflection (axial and transverse) will be the summation of the cantilevers’
respective deflections. Generally, piezo patches in such beam configuration
will generate an equivalent moment and axial force in the system. The
present formulation is developed directly from the very fundamental con-
stitutive equation of piezoelectricity. Existing approximate equivalent
moment and force approach™* are used later for validating the present
formulation.

The honeycomb cell walls are embedded with piezoelectric patches on
both sides in an alternating manner. Note that here this alteration denotes
the change of polarization directions and voltages over its span. For the span
0 <x < L/2, the polarization direction in both piezo layers is along the z-
direction whereas in L/2 < x < L, it is along the negative z-direction of the cell
wall (x-z is the attached local in-plane coordinate system of each cell wall).
The global coordinate system X-Y is attached to the lattice where w is the
out-of-plane width of it. Since the lattice is periodic in nature, we can
concentrate on one single representative volume element (or unit cell) and
analyze it with appropriate periodic boundary conditions (as ensured by the
rotationally restrained edges of the connecting beams) to obtain the global
effective mechanical properties. In the present case, the tri-membered unit

cell is shown with t,,, and t, as the thicknesses of the substrate (metallic) layer
and piezo layers respectively. Under the simultaneous application of vol-
tages on the outer piezo surfaces and far-field mechanical load to the lattice
(refer to Fig. S1), the metamaterial will exhibit a coupling state between its
normal and shear strains. Even under the simultaneous application of far-
field mechanical stresses and electrical voltage, due to the existence of
symmetry in the overall bending moment diagram, the full beam can be
analyzed with the help of a cantilever-type bimorph beam with length L/2.
Considering the sense of applied voltages on the beam surfaces and polar-
ization directions of each layer (shown in Fig. 1D), the following constitutive
stress-strain relations for each beam layer can be obtained:

1%
€ = 5?1‘7; —dy (t_u>
14

ey =sfoy (1b)

\4

I E I i

€, = §10, +dj <_t )
14

Here, (u, m, 1) denotes the upper, mid and bottom layers of the beam,
respectively. €, and o, indicate the internal uniaxial strain and stress gen-
erated across the beam’s cross-section due to the application of external
mechanical (F, and F,) and electrical loads (V,, and V). d3; and sk, are the
piezoelectric coupling coefficient and the elastic compliance of the
piezoelectric element at a constant electric field, respectively. The thickness
of each piezoelectric layer is taken as #, whereas that of the substrate layer is
taken as f,. The in-plane coordinate system (z—x) is taken along the neutral
axis of the beam, located symmetrically w.r.t. two piezo layers.

Considering the principle of superposition under small deformation,
axial and transverse deflection of the beam-like cell wall members can be
obtained as (refer to subsections S2.1 and S2.2 of the supplementary material
for detailed derivation)

(1a)

(1c)

_ L (Fxsllsl + Vidyw—V,dy W)

S wsl (22)
2 m
13sE g 3L% dy s (tm + tp>
s Snsup _ V 4V (2b)
z wst y 2st ( “ l)
where s, =s; 1, +6s]1,°t, + 125} t,t,” +8s7t,> and s] =

Stitm + 257it,. In the following paragraph, we discuss some of the special
cases that can be deduced for bi-morph beam elements.

Considering equation 2 and based on the polarity and magnitude of
voltages (V,, and V) applied on piezoelectric layers (refer to Fig. 1D), three
possible actuation scenarios (mode) can be achieved. (I) Hybrid actuation
mode: V,,# V;and thus, there will be both—axial and bending piezoelectric
deformations of the beam due to the piezo-loads. Formulations in all the
sections are done according to this mode to generalize the problem. (II) Pure
bending mode: V,,= V; and thus, there will be only piezoelectric bending
deformation to the beam due to the piezo-loads. (III) Pure axial mode:
V,,= —V;and thus, there will be only piezoelectric axial deformation to the
beam due to the piezo-loads. However, in all these aforementioned modes,
mechanical deformations (both—axial and bending) will exist due to the
external mechanical loads F, and F, applied on the beam. Therefore, the
total deformation under the assumption of small strain, can be obtained as a
superposition of the deformation components due to mechanical load and
piezoelectric load.

Lattice-level elastic stress and strain fields: Bottom-up beam-
based computational framework

In this section, we discuss a bottom-up beam-based approach for obtaining
the lattice-level deformation fields. The beam-level deformation physics
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discussed in the preceding section is extended here to the lattice level.
Before going straight to the main formulation, it is imperative to discuss the
deformation behavior of piezo-embedded vertical member of the unit cell.
To illustrate that, an approximate piezoelectric moment-force term (My
and Fy) is introduced. Afterward, a simple bent problem is exemplified
with the help of those two terms. An equivalent moment (My,) and axial
force (Fy) operating at the two opposite ends (nodes) of the beam can be
used to simulate the effect of piezo patches on the deformation of the
beam®. Figure S3A shows a two-noded and three-noded piezoelectric
beam element and their equivalent moment-force arrangement. My, can be
obtained from the present formulation by equating v;, with the
mechanical transverse deflection of a cantilever due to the moment My,
Similarly, Fy can be obtained by equating u;, with the axial deflection of a
cantilever due to the axial force Fy.

Analytical expressions of terms, My and Fy are not given here because
these terms are not used in the present formulation, rather only shown for
illustration purposes in later subsections. Now, to understand whether there
will be any effect of applied voltages of the vertical member of the present
unit cell on the slant members, one simple two-membered (AOB) bent
structure is considered (Fig. S3B). The applied voltages of the vertical
member (OA) are approximated by its equivalent moment-force terms
(introduced previously) whereas the slant member (OB) is kept inactive.
Considering the free-body diagram of AOB, the calculated internal bending
moment, M(x) at any cut of the slant member (OB) can be given as:
M(x) =2My — My — My + Fy(L — x)cos 0 — F,(L — x) cos 6 = 0.
As there is no bending moment generation due to My, and Fy here, there will
be no bending deformation of the slant member due to the applied voltage in
the vertical member. The same has been verified with a three-membered
unit cell in COMSOL (shown in Fig. S3C) where the voltage is applied on the
vertical member only. It can be noted that there is no deformation to the
slant members. All these observations can be summarized as: no deflection
and slope changes occur in the slant members due to voltages applied on the
vertical members of the honeycomb unit cell. This understanding has been
utilized in succeeding sections to derive the effective elastic properties of the
honeycomb metamaterial under different load cases.

To understand the nature of the coupled deformation field we will
consider three different scenarios of far-field applied stresses, covering
normal and shear stresses (refer to subsections S3.1, S3.2 and S3.3).). As
shown in Fig. 1C, the voltages applied on vertical members of the unit cell
are V3 and V7, whereas that of two slant members are V<, and V3. Under
such electrical loading, in each member of the unit cell, there will be pie-
zoelectric axial as well as bending deformations. In the present formulation,
a linear-elastic deformation under a small strain assumption is used for the
honeycomb.

Under the application of external mechanical uniaxial stress (o) in the
X-direction, the effective normal and shear strain components can be
obtained as

85 sin 0 + 8%, cos 0

— (3a)
ex Lcosf
o — 8% sin 0 4 85, cos 6 — 8%, (3b)
Y h+ Lsin6
Sh
C ____“AO 3¢
Yxy h+ Lsin6 3o

In the above expressions, 85, 8%, 84, and 8%, can be obtained based on
the beam-level deformation physics discussed in the preceding section (the
exact expressions are also provided in subsection S3.1). The superscript C is
used to denote coupled strain components, which would normally be absent
in conventional materials. Subsequently, using the fundamental definitions
of Young’s moduli and Poisson’s ratios, the following closed-form

expressions can be obtained

o, A (vy)
El - : = E; (/s : E1R s\ (Vi (4)
XL (Vi) + 430 (Vi) (T)

B (Vi Vi VE) + B3 (Vs Vi, V3)

e (&
(

)
V- V- g (5)
€x 12(VR7 VR7V ) +ﬁ 12(VR7VR7 V3) _>

Here the expressions of the coefficients (/\f‘ and 8;) are given in section S6
of supplementary material where the following ratios have been used:
Ly=1 1, =Z—:,sf1 2%7‘/11 V;,VS = ?,Vz =“§—I§. Note that the
coefficients, )Lf‘ are the functions of V3, only, whereas f3;" are the functions
of Vg, V%, and V3. From the expressions as functions of o, and V¥ in
Egs. (4) and (5), it is evident that the voltage applied on the vertical member
has an influence on the effective Poission’s ratio of the lattice, whereas the
effective Young’s modulus is solely controllable by voltages on the slant
members.

Under the application of external mechanical uniaxial stress (c,) in Y-

direction, the effective normal and shear strain components can be obtained as

— 8%, cos 0+ 8%, sin O

__ (6a)
ex Lcos®
o — 8% 4 0%, cos O 4 8%, sin 0 (6b)
v h+ Lsin@
6b
C ____“AO 6c
Y =y Lsing (6)

In the above expressions, 85, 8%, 84, and &%, can be obtained based on
the beam-level deformation physics discussed in the preceding section (the
exact expressions are also provided in subsection S3.2). Subsequently, using
the fundamental definitions of Young’s moduli and Poisson’s ratios, the
following closed-form expressions can be obtained:

_ oy _ AP (Vs Vi, V)
AR (Vi Vi VR) AT (Vi Vi Vi) ()

@)

2 (VR7 V;{v V3) + ﬂvn (VRa V;{v V}SQ) (%)
=-2= : G,
€Y Vzl(VR?VR7V3) +ﬂ ZI(VR,Vi,V;) (%)

The expressions of the coefficients (/\EZ and 8.2) are given in section S7 of
supplementary material where the same ratios as mentioned earlier have
been used to simplify the expressions. Note that both the coefficients, A-
and, 3;* are the functions of V, V%, and V3. Similar dependency trends of
voltages and elastic properties (refer to Egs. (4) and (5)) can be observed in
Egs. (7) and (8). However, contrary to dependency trends of prior X-
directional far-field stress (refer to Egs. (4) and (5)), both the effective
Poisson’s ratio and the effective Young’s modulus in Y-directional far-field
stress are influenced by the voltage applied on the vertical member.

Under the application of external far-field shear stress (7yy), the
effective normal and shear strain components can be obtained as

€ 84, c0s 0 + 85 sin 0
X Lcos @

(92)
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8% + 8o sin 6 — 85 cos O

C_ 9b
€y h+ Lsin6 (%b)
%o 8% cos 050 sin 6 (90)
VXY T (¥ Lsin®) " (h+Lsin0) (2L cos 6)

In the above expressions, 85, 84, 850, 8%, and 85, can be obtained based
on the beam-level deformation physics discussed in the preceding section
(the exact expressions are also provided in subsection S3.3). Subsequently,
using the fundamental definitions of shear modulus, the following closed-
form expression can be obtained

G, = Ixy — AIGIZ (VR’ V;)
Va9 (Vi VE) 457 (VR) (22)

Xy

(10)

The coefficients )LiG‘Z(z' = 1,2, 3) are given in section S8 of supplementary
material. Here the coefficients, /\IG” and AZG  are the functions of Vg, V3,
whereas 15" is the function of V3 only. It can be noted that the shear
modulus is voltage-dependent in the proposed metamaterial along with
Young’s moduli and Poisson’s ratios.

From Egs. (3) and (6), it may be noted that for uniaxial normal loading
cases, the voltages applied on the vertical member (V> and V) will be solely
responsible for the generation of coupled shear deformation in the unit cell. In
other words, these two deformations (normal and shear) will have inde-
pendently controllable capabilities if two different voltages are applied on the
slant and vertical member i.e. V2#V? and V;#V3. On the other hand, they
will become coupled (dependent) if equal voltages are applied throughout the
unit cell ie. V3 = V$ =V, and V; = V= V. In the latter scenario,
voltage (V,, and V;) becomes the only external coupling factor.

Contrary to uniaxial normal loading cases, an opposite trend has been
observed in shear loading case. It can be seen from Eq. (9) that voltages on
slant member (V?, and V7) will only induce normal deformation to the unit
cell. Applied shear and coupled normal modes will become dependent only
if equal voltages are applied throughout the unit cellie. V3 = V3 = V, and
V;’ = Vj = V. External mechanical stresses (ox or oy or 7xy) will have no
influences on the coupled deformation in their respective load cases. It’s only
external voltage that will play the role of such coupling phenomena. As the
primary objective of the present work is to highlight axial-shear coupling
phenomena, the aforementioned coupling condition (ie. V3 = V¢ =V,
and V; = V§ =V)) is used afterward for presenting numerical results
unless otherwise mentioned.

Results and discussion
Multi-level validation of the computational framework
Before presenting the computational results on active normal-shear mode
coupling, it is imperative to validate the accuracy of the current analytical
model both at the cell wall (beam) as well as unit cell (RVE) levels. We
discuss the beam-level validation first, wherein the boundary conditions are
taken the same as one end fixed and the other end rotationally restrained (to
maintain the periodicity in the unit cells as discussed earlier). Throughout
the beam validation, PZT5H (lead zirconate titanate) and aluminum are
used as piezoelectric and substrate materials, respectively. Piezoelectric
poling directions are taken normal to the beam’s longitudinal axis. The same
active beam has been modeled within the Piezoelectricity multiphysics
interface of the COMSOL Multiphysics FEA (finite element analysis)
environment for performing static analysis using triangular finer mesh
elements. A perfect bonding interface between the piezo layer and substrate
layer is assumed and the condition of ground-electrode (V' = 0) is applied at
this interface only.

We have considered different deformation modes for the beam-level
validation. First, the pure-bending-deformation condition is established by

considering only transverse mechanical force (F,) applied on one end of the
beam. The piezoelectric voltage applied on the upper surface is taken as the
same magnitude and of the same polarity as that of the bottom surface
(V,=V)). It will result in a traverse deflection to the beam, with no axial
deformation. Figure S5 shows the linear variation of the deflection with its
two external input parameters. Figure S5A and B highlight the independent
influences of voltage and force where one of them is taken as zero, whereas,
in Fig. S5C and D, both are taken as non-zero.

Figure S6 highlights a pure-axial-deformation scenario where only an
axial load (F,) is applied and voltages are taken as V,, = — V. This too provides
alinear variation with such external loads. It can be observed that the cell walls
(i.e. composite piezoelectric beams) are bending-dominant as their axial
deformations are noticeably less than the transverse deformation. For
example, for the current beam with no external mechanical loads, the ratio of
axial piezoelectric deformation to transverse piezoelectric deformation is in
the order of ~107>. A good agreement unfolds when comparing the results of
the current beam-level formulation with those of the matrix-based technique
and COMSOL. It gives us adequate confidence to implement Eq. (2) in
deriving the elastic deformation at the lattice level based on unit cell defor-
mations. Though Figs. S5 and S6 demonstrate the influence of external load
parameters separately, it has also been confirmed that present closed-form
expressions for beam deformation (6, and §,) are equally applicable to the
system in which all loads (F, # 0, F,, # 0, V;# 0 and V; = 0) are active.

Due to the lack of literature on smart honeycomb structures with the
present bi-level architected piezo-configuration, three different validation
methodologies have been adopted at the unit cell and lattice level instead of
direct comparison with available data. (1) The lattice level effective elastic
properties are compared with the closed-form results of available literature®
where the thickness of piezoelectric components is considered as zero (ie.
conventional mono-material honeycomb lattices) as a special case. (2) The
results are compared with a unit cell-based assembled direct stiffness method
(matrix approach) conceptualized in the present work with the help of beam-
level stiffness matrices including piezo elements. Note that such a direct and
brute-force analytical method in the context of active lattice analysis is pro-
posed for the first time here considering an appropriate unit cell and periodic
boundary conditions. Though such an approach is more straightforward
(compared to the bottom-up approach proposed in the preceding sections)
once the appropriate unit cell and boundary conditions are figured out, it is
computationally expensive and less insightful. (3) Further, the lattices are
simulated in one computational finite element package to achieve more
confidence. For the sake of flow in the understanding, the assembled direct
stiffness method and the approach based on the commercial finite element
package are described in the following two paragraphs before presenting the
validation results at the unit cell and lattice level.

A modified stiffness matrix and an equivalent piezoelectric load vector
for a 2D two-noded piezo-embedded hybrid beam (bimorph) element can
be derived by using strain-energy principles and variational method con-
sidering the present hybrid beam (refer to Fig. 1D)”. If the beam element of
length L and out-of-plane width w, having three degrees of freedom (axial,
transverse and rotational deformations) in each node is subjected to the
external voltages V,, and V; on the upper and bottom piezo layer, respec-
tively, its 6 x 6 stiffness matrix [K] and load vector [F,] can be given as
follows:
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Here the dummy index i denotes the piezo (p) layers (upper and bottom
layer both) and middle substrate (m) layer of the beam and therefore,
EA;=EyA, + EpA,, EH;=EH,+E,H, and El=E,,+E,l,. The
values of A, H; I, B, and J, can be given as: {A;, H; I} =

ffi(:m,m{ 1 z Z2}dydz and {B, J,}= HP%{ 1 z}dydz.
The current unit cell in Fig. 1C can be considered as a symmetric triangular
assembly of six two-noded hybrid beam elements. Applying the modified
stiffness matrix ([K]) and the equivalent piezo-load vector (F,) along with
typical mechanical load vector (F,,), the equilibrium equation of each two-
noded beam element at their local coordinate systems can be written as [K]
{¢} = [F] = [F,] + [F,,]. After assembling all the matrices, the global
force-displacement equation of the unit cell is obtained through symbolic
computing and solved under appropriate periodic mechanical boundary
and loading conditions. For mechanical nodal forces and moments, the
same shown in Figs. S2 and 4 have been followed. Note that the assembled
direct stiffness method involves a range of matrix operations including,
evaluation of the individual beam stiffness matrices of the constituting
beams in a unit cell, determination of the orientation matrices of each of the
members, conversion of the individual beam-level stiffness matrices from
local to global exes system, structural assembly to obtain the global stiffness
matrices, and evaluation of the load vector, followed by imposition of
periodic boundary condition and computationally intensive matrix
inversion. While mechanically straightforward to implement, this approach
becomes computationally intensive. On the contrary, the proposed bottom-
up approach leads to direct closed-form expressions for the normal and
shear deformations along with the effective elastic moduli of the active
lattices, making it computationally efficient and physically insightful.

As a separate method of unit cell level validation, the same active lattice
unit cell has also been modeled within the Piezoelectricity multiphysics
interface of COMSOL Multiphysics FEA environment for performing static
analysis using triangular finer mesh elements (13,091 elements).
Throughout the validation, PZT5H (lead zirconate titanate) and aluminum
are used as piezoelectric and substrate materials, respectively. As piezo-
electric poling directions are taken normal to the walls” longitudinal axes, six
different coordinate systems are defined using base vectors for three cell
walls where the third axis directions are aligned with respective poling
directions. A perfect bonding interface between the piezo layer and substrate
layer is assumed and the condition of ground-electrode (V' = 0) is applied at
this interface only. Rotations about out-of-plane axis are restricted at the
outer three nodes of the RVE for normal loading cases, whereas in shear
loading cases, equivalent reaction moments (refer to Fig. S4) are applied at
the nodes manually. For each FEA simulation, the parameters that are taken
constant are summarized in Table S1. An initial validation for the present
unit cell-based approach at the lattice level can be made if we render each
hybrid member of the lattice close to a non-piezoelectric mono-material
linear elastic member. This can be done by simply changing the following
parameters as st — s and V,=V;—0 (ie. V§ = sz — 0) in our
derived closed-formed expressions. It will then converge to the closed-form
expressions of effective elastic moduli from the existing references'”*,
corroborating the accuracy and validity of the present analytic model in an
exact manner through a special case. Subsequently to include the piezo-
electric effect, a hybrid bending-dominant unit cell structure is taken into
account. Here the term, hybrid, implies the condition: V,, # V. The term,
bending-dominant, indicates the fact that axial deformation due to both
mechanical as well as piezoelectric effects is ignored as the ratio of axial to
bending deformation is around 10~° ~ 10~ for the considered parameters
(refer to Table S1).

Figure S7 shows the elastic strain variations (comparative results) for all
three loading cases, associated with their coupled state where external stress
(tensile and shear) is varied between 10 and 1000 Nm™2 The ratio of

voltages on the upper and lower surfaces of the piezoelectric layer in all three
members of the unit cell is taken between —2 and 2. As the present for-
mulations are performed under small deformation assumption, linear
relations between stress and strain are observed in the plots. Figure S7A-I
reveal an important fact that the parameter V,/V; can reverse the lattice’s
tensile effect. For instance, as shown in Fig. S7B, compressive deformation
begins to take place in a certain range of V,,/V;ratio (V,/V;=—2to —1.3)
when a constant tensile load (g, = 100 N m?) is applied to the system. The
results obtained from both the unit cell-based assembled direct stiffness
method (matrix approach) and finite element-based approach are noted to
be in excellent agreement with the beam-based analytical approach, leading
to adequate confidence for extending the investigation further concerning
normal-shear coupling phenomena.

Coming to the validity of the fundamental reciprocal theorem in the
context of effective elastic moduli, it has been verified numerically that the
following relation holds good for all the lattice configurations, applied far-
field stresses and voltages: lim .« _, 2 :’/i = 1. This enhances reliance on the
analytical derivations concerning strain fields and the expressions of effec-
tive elastic constants.

To summarize, we have proposed an insightful bottom-up beam-based
analytical framework for exploring the normal-shear coupling and effective
elastic moduli of the proposed active lattices. The bottom-up beam-based
analytical framework is further validated with the unit cell-based assembled
direct stiffness method (matrix approach) and finite element-based
approach considering active elements. In addition, we present an exact
lattice-level analytical validation with respect to available literature con-
sidering the special case of passive conventional lattices. The beam-level
deformation physics is separately validated before proceeding to the lattice-
level validation. Such an extensive validation considering elementary beam
level and lattice level and involving multiple approaches would garner
adequate confidence in the computational results discussed herein.

Active mode coupling and constitutive programming of
elastic moduli
Normal-shear mode coupling. The present section elaborates on the
normal-shear coupling correlation of the current hybrid active honey-
comb lattice. To achieve the coupling, the aforementioned relation
(ie.V:=VS =V, and V; = Vi =V)) between voltages of the cell
members is conformed throughout this section. The external tensile
stresses and voltages are considered here in the range of 10-1000 N m >
and —200 to 200 V, respectively. Therefore, the hybrid voltage ratio (V,/
V) in each member is adjusted between —2 and 2, while the voltage in the
bottom layer is maintained at 100 V. Figure 2A and B shows the output
normal strain and its coupled in-plane shear strain when an external axial
stress o, is applied to the lattice along X-direction. Figure 2A represents
the linear dependency of normal strain (e,) with applied normal stress
and voltage ratio where both of these parameters are in direct relation
with €,. For a certain range of voltage and normal stress, the domination
of voltage-induced load over mechanical applied load can reverse the
sense of output axial strain which is shown by the white-dotted triangular
region in Fig. 2A. For example, for a voltage ratio of (—1.8) and applied x-
directional tensile stress of 60 N m 2, compression along x-direction is
being shown by the lattice with a strain value of 0.0029, establishing the
notion of negative Young’s modulus. Additionally, it can be noticed that
the strain values close to the member’s piezoelectric pure bending state
are higher than its pure axial state. It has also been verified by plotting
separately the same normal strain with respect to the strain at its pie-
zoelectric pure bending state (V,, = V) (refer to Supplementary Fig. S8 for
further insights). This implies that the current lattice is a bending-
dominant structure for the given piezoelectric material and structural
parameters (refer to Table S1). The same is true for coupled shear strain
(yfy) as well which is shown in Fig. 2B.

Figure 2D and E depicts the strain spectrums for Y-directional normal
loading case (considering both the magnitude and signs of the strains). The
ranges of hybrid voltage ratio and external stress are kept the same as prior
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Fig. 2 | Normal-shear mode coupling under the application of normal far-field
stress. Contour plots are presented for the induced strain of a regular honeycomb
lattice (Lgr = 1 and 6 = 30) as a function of the applied direct stress (¢) and piezo-
electric voltage ratio (V,/V)). A and B Normal strain (e,) and its associated shear
strain (yfy) when normal far-field stress is applied along the X-direction.

C Schematic visualization of (X-directional) normal and associated shear strain at
lattice level. D and E Normal strain (e,) and its associated shear strain (yfy) when

-2
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normal far-field stress is applied along the Y-direction. F Schematic visualization of
(Y-directional) normal and associated shear strain at lattice level. Note that the white
(in sub-figure A) and blued-dotted (in sub-figure D) regions represent the negative
strain (compression) when tensile stress is given as input. The red-dotted (in sub-
figures A and D) lines highlight the two different piezoelectric actuation modes i.e.
pure-bending (V,, = V}) and pure-axial (V,, = —V)). The normal stress is given in

Nm ™’ units.

loading cases. In contrast to the previous X-directional loading, the current
Y-directional tensile loading state exhibits an increase in output normal
strain e, with applied stress but a decrease in voltage ratio. Further, in
comparison to the prior loading instance, there has been a larger area in
Fig. 2D where the output strain’s sign inverts (shown by a dotted border).
Note that in X-, Y-directional normal states and their associated shear states,
it has been noticed that the zero-strain line (€, = 0) divides the spectrum
into two regions where the strain (absolute) values are symmetric with
respect to one another, albeit having opposite sense. In Fig. 2D, for instance,
the combination of V,/V;=0.5858, 0, =500 Nm 2, and V,/V,=0.30303,
0, = 570 N m ™’ can yield a normal strain with a magnitude of 0.001013 since
these two are situated on level lines that are symmetric with regard to the
zero-strain line. Coming to its coupled shear strain yfy in Fig. 2E, the trend is
similar to that of X-directional loading scenario as it is contributed by the
vertical member under the same piezoelectric loading. Note that the
clockwise and anticlockwise modes of shear strain generation are observed
in the piezoelectric pure-axial state in both cases (refer to Fig. 2B and E). In
other words, shear deformation occurs in the anti-clockwise sense in all
other regions except in the range of —1 and —2 of the hybrid voltage ratio,
where clockwise shear deformation develops.

Figure 3A-C shows the variation in shear strain and its associated
coupled normal strains in two directions (X and Y) of the lattice under
external shear stress. Both the external loading parameters (applied shear
stress and piezoelectric voltage ratio) are in direct relation with in-plane shear
strain y,,. All combinations of the loading parameters shown in Fig. 3A result
in positive shear deformation, with the exception of those whose values fall
beyond the zero-strain line (yy, = 0). For example, the present lattice gives a

negative shear strain of magnitude 0.002 when a positive shear stress of
40 N 'm* is applied to it in the presence of an applied hybrid voltage ratio of
—1.72. This establishes the notion of negative shear moduli from a purely
mechanical viewpoint. For the current external shear stress range investigated
here, it has been observed that the strain values at the pure-axial state are
roughly 18-90% lower than its pure-bending state. Furthermore, the coupled
normal strains in X and Y-directions show a symmetric behavior with respect
to the pure-axial state (refer to Fig. 3B and C). In other words, at pure-axial
state (V,/V;=—1), both give zero normal strain and the sense of strains
beyond this state is opposite to each other. For instance, tensile strain is
obtained along the X-direction in the voltage ratio range (—1 to 2), whilst
compression of almost the same magnitude occurs in the Y-direction. It is
important to note that in all the aforementioned load cases, the definition of
hybrid voltage ratio is kept the same for both the slant and vertical member.
Two different hybrid voltage ratios on these two members will give the lattice
more flexibility in controlling the global strain field.

In Fig. 4A-C, the extent of normal-shear coupling is quantified by
introducing a parameter # which is the ratio of the coupled strains
(v V5 €5,) to the corresponding strains (€., €., yy) at the applied loading
direction. It can be seen that there is no coupling (7 = 0) when piezo layers
are in a passive state (V' = 0) which is equivalent to the established theory in
existing literature®. The coupling effect increases with applied piezo voltage
as well as the thickness of the piezo layer in all the load cases. Such an
increase is more rapid in the Y-directional loading scenario for the given
voltage range (0-100 V) and its value goes beyond 1 after a certain voltage.
In Fig. 4C, the normal-shear coupling about the X- and Y-direction are
shown separately. It results in two different strain ratios which are opposite
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in sense. There exists a very minimal difference in the values along these two
directions. Note that as we have shown the result at a constant hybrid-
voltage ratio, the results are valid for a wide range of voltages of piezoelectric
layers. At the very high voltage zone (beyond 10°~10* V), such trends would
vary to some extent due to emergent nonlinearity which is not shown here
diagrammatically. In normal loading cases (X and Y), the aforementioned
trend of thickness with coupling ratio will change at the high voltage zone. In
Fig. 4A-C, the general slope of the curves indicates the sensitivity of piezo
thickness on the corresponding coupling ratio, wherein a clear trend can be
noticed that the voltage sensitivity increases with increasing piezo thickness.

Remarks. Uncoupled normal and shear modes: The notion of partial
mode cloaking. It can be noted that the central theme of this article is to
demonstrate active mode coupling between the normal and shear strains.
As discussed in the preceding sections, this means both normal and shear
strains would co-exist under the application of far-field normal or shear
stresses. However, it is possible to achieve an unprecedented completely
decoupled response, wherein only shear strain (and no normal strain) can
be obtained under far-field normal stresses, and only normal strain (and
no shear strain) can be obtained under far-field shear stresses.

Based on the expressions of corresponding strain fields as presented in
the “Methods” section, Section S4 provides exact analytical conditions and
further numerical demonstrations (refer to Fig. S10) for three different sce-
narios: (I) €, = €, =0 and Y%y #0, under applied far-field normal stress in X-
direction, (II) €, =€, =0 and y§1§¢0, under applied far-field normal stress in
Y-direction, and (III) Yy =0, e)[{C:tO and e?C:tO, under applied far-field shear
stress. Note that the subscript UC is used here to represent the uncoupled
strain components under the application of far-field stress in a different mode.
In this context, the ability of achieving zero-strain in the direction of applied
far-field stress puts forth the notion of partial mode cloaking’, wherein the
influence of unwanted and additional far-field stress can effectively be negated
as per active application-specific demands. During operational and service-life
conditions, such active partial cloaking of the effect of far-field stresses or loads

would be crucial to avert a range of prospective failure and serviceability
constraints. The on-demand cloaking models will subsequently lead to
advanced digital twins, wherein the effect of unwanted stresses in intelligent
mechanical, aerospace, and biomedical structures can be identified in real-time
and subsequently their influences in terms of targeted strains can be eliminated
through programmed voltages for an uninterrupted mechanical performance.

Effective elastic properties. After exploring the strain field under
applied far-field mechanical stress and external voltage, the next level
derivative of interest is the voltage-dependent modulation of effective
elastic properties (such as Young’s moduli, shear modulus, and Poisson’s
ratios). Here computational results of the effective elastic moduli are

presented following V, = 1; V5, = V3 =

% for the sake of reducing the
1

number of influencing parameters (refer to the closed-form expressions
presented in the preceding section). First, we establish that piezoelectric
lattices with cell walls made of alternating bi-material strips show higher
sensitivity and magnitudes than normal non-alternating piezoelectric
lattices. A comparative study of the current lattice architecture with
respect to the literature™ is performed by obtaining the voltage sensitivity
of its effective elastic moduli with respect to applied piezo-voltages (refer
to Fig. 4D-F). Here only two moduli (E; and E,) are compared with the
literature as the remaining moduli (G, Vi, and v,;) are voltage-
independent in the existing literature”. It can be noted that overall
sensitivity has improved for both moduli which makes the present lattice
architecture a better choice for active property modulation. Similar
trends of sensitivity are also observed in Fig. 4E and F for the case of shear
modulus, G5, and Poisson’s ratios, v;, and v,;.

Three geometrical parameters in the design space (g, L, and 6) are
considered here to explore their influences on five effective constants (Ey, E,,
G2 V12, and v,1) of the lattice. All the analyses are performed at a constant
static mechanical stress of 1000 Pa. Figs. 5A-C and S8A, B present the
nonlinear variations of elastic constants with hybrid-voltage-ratio (in the
range of —2 to 2) at five different thicknesses of the piezo layers. Elastic
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thicknesses. C Variation of coupling ratios as a function of voltage applied under
shear loading for different piezo thicknesses. Note that in the above three cases, a
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throughout the lattice. The red arrows here in sub-figures A-C denote an increase in
piezo thicknesses. The general slope of the curves in sub-figures A-C indicates the
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sensitivity of piezo thickness. D Voltage sensitivity of Young’s moduli. For com-
paring it with the honeycomb lattice proposed by Singh el al.”, equal voltage
(V,=V;=1V) is applied on both the piezoelectric layers in the present lattice at
constant stress (o =10 Pa). E Voltage sensitivity of shear modulus in the present
lattice at constant shear stress, 7, = 10 Pa. F Voltage sensitivities of Poisson’s ratios
at constant stress (0= 10 Pa). The above results are presented considering Ly =1,
6 = 30. The voltage sensitivities for elastic moduli are given in N m > V!, while those
for Poisson’s ratios are given in V™.

moduli gradually reduce with the voltage ratios, whereas the same increases
with piezo-thicknesses (refer to Fig. 5A-C). A similar trend is observed in
other existing piezo-embedded lattice structures™ which indirectly affirms
the validity of the present results. However, if we extend the hybrid-voltage-
ratios to the higher range, the existence of a single critical ratio (V%) for each
piezo-thickness-ratio will be observed where the magnitude of moduli
becomes significantly higher. A few examples of such critical ratios are given
in Table S2. The existence of these critical ratios is also shown in Figs. 5C,
S9B, and S11. Such critical values are realized due to a complex coupled
effect of applied voltage, far-field stress level and unit cell geometry, the
physics of which is exactly captured through the proposed bottom-up
analytical framework. Overall, the magnitudes of elastic moduli will
decrease nonlinearly as the distance from the critical point increases and
eventually, it becomes less varying. It has also been noticed that in the pre-
critical zone, negative elastic modulus will prevail whereas the post-critical
zone offers only positive elastic modulus (Fig. 5A-C are within the post-
critical zone). In this context, it may be noted that earlier literature™*
reported a few static and dynamic studies where the existence of negative
elastic moduli was noted, indicating a state transition in the lattice defor-
mation behavior.

Figures 5C and S9B show the variation for two Poisson’s ratios with
hybrid-voltage-ratio (in the range of —8 to 8). In contrast to v,;, which has a
direct relationship with piezo-thicknesses, v;, has an inverse relationship
with it. Similar to elastic moduli, there exist critical ratios for each thickness

which are listed in Table S2. As the distance from the critical point rises,
Poisson’s ratio, v, reduces in the post-critical zone (and it increases in the
pre-critical zone) and becomes nearly saturated at a certain value. The
Poisson’s ratio, v,; shows a similar trend, except in the instance where tz = 1.
In the case of tg = 1, an opposite trend will be observed in two zones. Note
that positive Poisson ratios will prevail in both zones unless an auxetic
configuration is considered.

Figures. 5D-I and S9C-F present the influence of other two geo-
metrical parameters i.e. height-to-length ratio (Lr) and cell angle (6),
taking #g and voltage ratio as constant. Results are shown for auxetic
(6 < 0) and non-auxetic lattices (6 > 0) separately. For auxetic lattice, the
geometrical constrainti.e. Ly + 2 sin 8>0 is conformed so that the vertices
of the interior cell member remain untouched during the manufacturing
and deformation'®”". In the figures, unfeasible geometry indicates the
combination of those Ly and 6 where the aforementioned geometric
constraints are being violated. Note that in the present study, 6 is taken
anti-clockwise as positive. In Figs. 5D, F and S9C, it can be seen for non-
auxetic lattices that (for a particular height-ratio) effective E, and G,
increase with cell angles whereas an opposite trend is observed in the case
of E;. The magnitudes of the moduli are smaller than that of the lattice’s
intrinsic material properties. This kind of elastic moduli trend with cell
angles is supported by existing literature. For instance, utilizing the
volume-average methodology and the energy method, Qiu etal.” reported
asimilar pattern in their non-auxetic normal honeycombs. Figs. 5E, G and
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Fig. 5 | Influence of lattice architecture and external stimuli on the effective
elastic properties. A Variation of Young’s modulus, E; with hybrid-voltage ratio at
constant mechanical normal stress (o) for different values of tz. B Variation of shear
modulus, G, with the hybrid-voltage ratio at constant shear stress () for different
values of tz. C Variation of Poisson’s ratio, v, with the hybrid-voltage ratio at
constant normal stress (o) for different values of #z. D, F, H Contour plots of
effective elastic moduli for non-auxetic lattices as a function of Lr(=h/L) and cell
angle (0). E, G, and I Contour plots of effective elastic moduli for auxetic lattice as a

Cell angle (6 in degree)

Cell angle (6 in degree)

function of Lr(=h/L) and cell angle (). Here the constant stresses (0, 0,, T,) and the
voltage, V; are kept equal to 1000 Pa and 100 V, whereas the length of the inclined
member and thickness of the substrate layer are kept at 60 and 0.3 mm, respectively.
The arrows (red in sub-figures A and B, blue in sub-figure C denote an increase in
piezo thicknesses. In the first three sub-figures, the following condition is conformed:
Lr=1.5 and 6 =30, while in the remaining sub-figures: tg = 1 and Vg = 3. The elastic
moduli are here given in Nm ™

S9D present moduli in an auxetic scenario where only E; exhibits a
negative Young’s modulus. It is observed that the trends of E; and E, with
cell angle are quite similar (magnitude-wise) to those of non-auxetic cases.
While G, increases with the magnitudes of cell-angle (|6]) at higher height
ratios, and the trend reverses at lower height ratios. Regarding height
ratios, in both auxetic and non-auxetic lattices, an overall increment and a
decrement with Ly are observed in E, and G, respectively. However, the
diminishing tendency of E; with height-ratio in non-axuetic lattices is
reversed in auxetic lattices.

The contour plots for Poisson’s ratios (v1, and v,;) are depicted in
Figs. 5H, I and S9E, F for both the lattice architectures. It has been noted that

negative in-plane Poisson’s ratio predominates in auxetic lattices, and vice-
versa for the non-auxetic configurations. Overall the magnitude of v;,
gradually declines with the cell angle in both architectures, whereas the trend
becomes the opposite in v,;. Compared to elastic moduli, the effect of cell
angle on Poisson’s ratios is less dominant. Moreover, v;, in both lattices is
found to be in direct relation with the height ratio (Lg), but the relation
becomes inverse in the case of v,;.

Summary and perspective
The numerical results presented in the preceding section demonstrate active
and programmable normal-shear mode coupling based on the bi-level
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optimally mounted metamaterial architecture. This leads to achieving on-
demand controllable coupled shear deformation along with normal defor-
mations under the application of far-field normal stress, and vice-versa. It is
demonstrated that the normal and shear modes can be completely
uncoupled under specific conditions of applied far-field stress and the
voltages, leading to a notion of on-demand partial mode cloaking. Further,
we show that the proposed active metamaterial architecture shows pro-
grammable elastic moduli (two Young’s moduli and shear modulus) and
Poisson’s ratios as a function of applied external voltage, wherein a single
material can be made stiff or flexible in real-time by orders of magnitude.

Through the proposed lattice metamaterial, we show that active
modulation of elastic properties and normal-shear coupling can be rea-
lized through simple symmetric unit cell architectures, leading to improved
manufacturing flexibility and efficiency. Here the discussion regarding ease
of manufacturing is not limited to additive manufacturing, where
achieving complex lattice geometries is relatively more straightforward, but
exorbitantly time-consuming in many cases. On the contrary, traditional
subtractive manufacturing methods are still widely used for making hex-
agonal lattices at industrial scales. In such methods, having a simple geo-
metry for the lattice leads to efficient manufacturing processes. The active
components can be attached to the beam substrates as patches, or realized
through coating. However, with the recent progress in additive manu-
facturing, the proposed lattices can be envisaged to be additively manu-
factured along with the active components wherein the expense,
manufacturing duration, mechanical strength, and durability factors
should be investigated further.

Concerning the proposed multi-physical metamaterial, we have devel-
oped a high-fidelity bottom-up beam-based computational framework that is
validated independently at multiple length scales for ascertaining prediction
accuracy. This includes validation of the optimally mounted piezoelectric
elementary beams with appropriate boundary conditions to conform unit cell
level periodicity and subsequent lattice-level validation considering unit cells.
The bottom-up beam-based analytical framework for analyzing the proposed
metamaterial is validated with a unit cell-based assembled direct stiffness
method (matrix approach) and finite element-based approach considering
active elements. In addition, we present an exact lattice-level analytical vali-
dation with respect to available literature considering the special case of
passive conventional lattices. Such extensive validation considering elemen-
tary beam level and lattice level and involving multiple approaches would
garner adequate confidence in the computational outcomes.

The active and programmable control on the normal-shear mode
coupling and the effective stiffness along with the capability to modulate the
deformation field in normal and shear directions could be exploited in
applications where lightweight, on-demand specific stiffness, as well as
active shape-morphing properties, are demanded such as morphing aerofoil
and wind turbine blades, MEMS devices, robotic control and gripper
applications. For example, in order to achieve aerodynamically adaptive
optimal flight performance, on-demand span, chord, and sweep morphing
in aerofoils can be achieved readily through active in-plane deformation,
while camber morphing could be attained through programmable differ-
ential deformation of multi-layer metamaterials (refer to Fig. 1G)™. Further,
the property of active and on-demand seamless transition of the proposed
metamaterial between stiff and flexible characteristics can be exploited
during operational conditions. In conventional materials, high stiffness
demands high density as well, leading to additional weight. However, higher
stiffness (both in normal and shear modes), on an on-demand basis, can be
achieved in the proposed metamaterial actively through applied voltage
without any additional weight. For example, under flying conditions, the
aircraft wings would require higher stiffness due to increased aerodynamic
loads. Such demands can be actively met using the proposed metamaterial
by supplying algorithmically controlled voltage. In addition, on-demand
flexibility in the metamaterial can also be achieved to avert resonance and
improve energy absorption capability under impact loading. Further, during
operational and service-life conditions, the notion of active partial cloaking
concerning the effect of far-field stresses or loads would be crucial to avert a

range of prospective failure and serviceability constraints. Exploitation of
the full potential of the proposed metamaterial would lead to substantially
reduced fuel consumption, reduced carbon footprint, enhanced economic
benefits, and sustainability’ during manufacturing and operational
conditions.

In the field of soft robotics, the concept of achieving movement
through deformation mechanisms is often referred to as deformation-based
locomotion, leading to navigating complex and dynamic environments,
adapting to various tasks, and interacting safely with humans and other
objects. This approach involves designing and utilizing soft, flexible mate-
rials and structures that can change their shape and deform to generate
motion, rather than relying on traditional rigid components and
mechanisms™*. Such locomotion in the proposed piezo-embedded hon-
eycomb metamaterial with normal-shear coupling can be readily achieved
and temporally controlled using external voltages. It can be accomplished
through repetitive and temporally programmed voltage-induced deforma-
tion stages as shown in Fig. 1F involving sequential loading and unloading,
wherein the coupled shear deformation plays a crucial role (refer to the
supplementary movies M1 and M2 showing a 3D rendered view and 2D
view, respectively). The locomotion can be realized using two frameworks:
(1) sequential loading and unloading along the normal vertical direction
while keeping a constant electrical voltage and (2) sequentially applying
voltage and then turning it off under a given value of loading. The spring in
the schematic design of supplementary movie M1 is attached to allow some
normal deformation while realizing shear deformation under the applica-
tion of sequential normal load or voltage. However, it may be possible to
achieve completely uncoupled shear and normal modes as discussed in the
remarks (refer to the normal-shear mode coupling section), and the
required spring stiffness can be designed commensurate to the extent of
normal-shear coupling. Note that the upper and lower boundary conditions
assume a vital role here, through which temporally programmed normal
deformation is applied for the locomotion. As illustrated in Fig. 1F, the
robotic metamaterial can move from the initial to the final position by
application of sequential vertical far-field stresses (or sequentially applied
voltage) as discussed above and exploiting the resulting shear deformation.
In each of the stages, after the application of vertical stresses (or voltage), one
of the horizontal edges needs to be restrained with the corresponding
support and the opposite edge should be free to move (refer to the sup-
plementary movie M1). This will enable the movement of the robotic
metamaterial in a particular direction depending on the polarity of applied
voltage and (/or) far-field vertical deformation (or stress). Interestingly, if
the applied voltage is zero, the proposed metamaterial would not have any
locomotion. Thus, it is possible to have a load-bearing stationary meta-
material working on a particular spot and then have locomotion to move it
to a different spot for performing further load-bearing operations in the new
location. Such on-demand robotic motion and load-bearing performance
are proposed for the first time in this work.

As the first-ever work in this field, we have confined our analytical
formulation to the linear small deformation regime. The aspect of active
mode coupling can be readily extended to the nonlinear large-deformation
regime by adopting nonlinear deformation mechanics at the beam level and
including incremental change in unit cell geometry*. However, it becomes
qualitatively clear that the active normal-shear mode coupling can also be
realized in the nonlinear regime, albeit the current formulation needs fur-
ther modification for a quantifiable measure. In such scenarios, relatively
more flexible versions of piezoelectric patches can be used (such as piezo
composites) following a similar metamaterial architecture. For the soft
robotic applications proposed here, the rate of motion would be smaller per
actuation cycle under the small deformation assumption. However, based
on the above discussion on active normal-shear mode coupling under large
deformation, the same metamaterial framework can be adopted for incor-
porating larger deformation per cycle to achieve improved robotic motion
based on the nonlinear analysis of the unit cells.

A direct derivative of normal-shear active mode coupling proposed
here is further coupling among normal-torsional-bending modes, as
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explained in Fig. 1E. We propose an axis-symmetric concentric cylindrical
shape with the piezo-embedded honeycombs as curved walls. Comparing
such architected cylindrical metastructure to typical solid circular beams,
when a torsional load is applied at the end of the beam, any small rectangular
element on the surface exhibits a shear strain along with normal strain, as
depicted in the figure. Conversely, under the application of normal axial
force to the metastructure, there will be shear and normal deformations.
Such mixed-mode strains would eventually result in a coupling among
normal and torsional modes of deformations (under externally applied axial
or torsional forces), along with the feature of active programmability due to
the presence of piezoelectric composite bi-level honeycomb-like archi-
tecture. Note that the bending deformation mode can also be coupled along
with normal and torsional deformation therein by introducing variable
application of voltage along the cross-section of the proposed beam. In
summary, we show that active and programmable normal-shear,
normal-torsion and normal-torsion-bending mode couplings are feasible
through the proposed bi-level metamaterial architecture, which can find
applications in a range of actuators, sensors, and controllers”. For example
in tunable mechanical filters, the programmable smart metamaterials can be
exploited for signal processing and noise reduction. By adjusting the shear-
axial coupling properties, these materials can selectively filter out specific
mechanical frequencies or vibrations. The coupling between different
modes can result in the conversion of twist or shear modes of wave pro-
pagation to longitudinal axial deformation modes, or vice-versa, depending
on the intended functionalities of waveguides. More interestingly, the range
of such filtration and conversion can be actively tuned based on functional
online demands.

In the proposed bi-level architected metamaterial, the converse
piezoelectric effect is exploited for obtaining programmable effective
stiffness and active coupling in the deformation fields. However, the same
metamaterial architecture can turn into a broadband energy harvesting
device if the direct piezoelectric effect is utilized. Multiple modes of
vibration including normal, shear, torsional, and bending modes can
simultaneously be exploited there for enhanced power generation, but
using just a single mode of piezoelectric deformation. Further, the effect of
electromechanical coupling™® could be incorporated into the compu-
tational framework for a more accurate and efficient design of the meta-
material architectures.

Conclusions

A bi-level multi-physically architected active class of lattice metamaterial is
proposed in this article to achieve on-demand property modulation in real-
time with greater external stimuli sensitivity. We break the traditional realm
of the material constitutive behavior of uncoupled normal and shear modes
through the concept of stimuli-responsive deformation physics. Shear strain
can be achieved under far-field normal stresses, and vice-versa, wherein
both shear and normal strains co-exist. It is further possible to achieve an
unprecedented mode-wise completely decoupled stress-strain constitutive
behavior, wherein only shear strain (and no normal strain) can be obtained
under far-field normal stresses, and vice-versa. More interestingly, this is
achieved in conventional symmetric lattice geometries through an intuitive
physics-informed mounting of electro-active elements. The notion of active
partial cloaking concerning the effect of far-field complex stresses is estab-
lished under specific conditions of applied voltage, leading to the prospect of
averting a range of failure and serviceability constraints.

The computational results demonstrate an unprecedented program-
mable voltage-dependent normal-shear mode coupling for critically
exploitable temporally periodic or aperiodic, on-demand, and tunable
mechanical responses. Further, the proposed active metamaterial archi-
tecture shows programmable elastic moduli (Young’s moduli and shear
modulus) and Poisson’s ratios as a function of applied external voltage,
wherein a single material can be made stiff or flexible depending on
application-specific operational demands by orders of magnitude along
with state transition. The manufacturing flexibility in terms of symmetric
lattice geometry, along with actively tunable normal-shear mode coupling

and programmable stiffness modulation capability in the new class of
metamaterials would lead to real-time control of mechanical responses for
temporal programming in a wide range of advanced mechanical applica-
tions, including morphing and transformable geometries, locomotion in
soft robotics, embedded actuators, enhanced multi-modal energy harvest-
ing, vibration, and wave propagation control.

Data availability

All data sets used to generate the results are available in the main paper and
the supplementary material. Further details could be obtained from the
corresponding author upon reasonable request.
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