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Cement production exceeds 4.1 billion tonnes annually, emitting 2.4 billion tonnes of CO, annually,
necessitating improved process control. Traditional models, limited to steady-state conditions, lack
predictive accuracy for clinker mineralogical phases. Here, using a comprehensive two-year industrial
dataset, we develop machine learning models that outperform conventional Bogue equations with
mean absolute percentage errors of 1.24%, 6.77%, and 2.53% for alite, belite, and ferrite prediction
respectively, compared to 7.79%, 22.68%, and 24.54% for Bogue calculations. Our models remain
robust under varying operations and are evaluated for uncertainty and rare-event scenarios. Through
post hoc explainable algorithms, we interpret the hierarchical relationships between clinker oxides and
phase formation, providing insights into the functioning of an otherwise black-box model. The
framework can potentially enable real-time optimization of cement production, thereby providing a
route toward reducing material waste and ensuring quality while reducing the associated emissions

under real-world conditions.

Global cement production reached more than 4.1 billion tons/year in 2023,
more than doubling from 2005 levels'?, with projections indicating a further
increase by 2050°. Moreover, each tonne of cement releases ~0.66 tonnes of
CO,’, contributing to more than 8% of global carbon emissions. This
increasing cement demand’, along with high emissions, necessitates
enhanced production efficiency while maintaining stringent quality stan-
dards. The performance of cement, particularly its 28-day compressive
strength, is primarily governed by the clinker’s mineralogical phases-alite,
belite, aluminate, and ferrite. Alite drives early strength development, belite
contributes to long-term strength’, and ferrite influences color and provides
minor early-age strength®. However, while alite-rich cements enhance early
strength, alite content greater than 65%’can lead to increased heat of
hydration and increased CO, emissions due to higher limestone require-
ments in the raw feed. Conversely, belite-rich cements exhibit improved
long-term durability but may delay early strength gain due to lower reac-
tivity. Therefore, controlling the relative composition of these phases is
critical in determining the cement quality”.

Quality assessment of clinker mineralogy traditionally relies on X-ray
diffraction (XRD), performed either online with 15-30 minute delays or
offline with up to 4-hour measurement cycles’. These delays result in
considerable material waste when out-of-specification clinker is produced.
Real-time prediction of clinker phases would not only eliminate this waste
but also allow engineers to proactively adjust process parameters, ensuring
the desired clinker composition is met before production, rather than
reacting to delayed XRD results.

Several studies have applied first-principles methods (FPM) to model
various aspects of cement manufacturing, including calciner dynamics'’,
NO, formation via computational fluid dynamics (CFD)", ab-initio
modeling of the electronic structure of C5S”, and density functional
theory (DFT) based calculations of enthalpy and lattice parameters for
clinker phases”. However, first-principles approaches for predicting
clinker mineralogy remain limited and lack exploratory depth. For
instance, Mastorakos et al."* modeled clinker formation using a 1D CFD-
based dynamic kiln simulation without validation against plant data.
Instead, the authors emphasize the model’s qualitative correctness,
showing that predicted clinker phases align with expected industrial
ranges based on experience while omitting quantitative error metrics
based on plant data.

While physics-based modeling has successfully addressed various
aspects of cement production, including calciner operations'*'®, waste heat
recovery'”'®, alternative fuel assessment”, and CO, capture®, accurate
prediction of clinker mineralogy remains challenging. Hékfors et al.”
proposed a raw-meal-based model for clinker phases; however, it neglects
the influence of process parameters and is validated against only a single
plant data point, leaving its capability for capturing complex plant-wide
dynamics unexamined. A comprehensive physics-based approach would
require detailed knowledge of process interactions, intermediate reaction
mechanisms, and kinetic rate constants—factors difficult to determine in an
operational setting. Furthermore, the high computational cost of physics-
based models limits their feasibility for real-time phase estimation.
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In light of the challenges with physics-based models, Moses et al.”?
proposed a regression model for predicting alite composition. However, it
was developed solely on synthetic data—generated from literature
models'****~lacking real plant variability and uncertainties. Alternatively,
recent advances in machine learning (ML)*® demonstrate promising cap-
abilities in predicting cement and concrete properties . While these ML
approaches have been validated on limited laboratory-scale data” >, recent
study™ demonstrated plant-level prediction of CsS, C,S, and C,AF-idealized
compounds derived from Bogue calculations. However, these purely theo-
retical compounds omit real-phase complexities and impurities, making
them easier to model. In contrast, alite, belite, and ferrite are the actual
phases in clinker, influenced by impurities and process variations, making
their prediction more challenging and industrially relevant. Nonetheless, the
study highlights ML’s growing potential in the cement industry. Given the
limitations of FPM, physics-based approaches, and empirical models in
capturing clinker phase complexities, a fundamental question arises: can
ML, by leveraging industrial-scale data, overcome these gaps and surpass
traditional modeling in accuracy and adaptability—ultimately enabling
real-time process optimization?

To address this challenge, we leverage a comprehensive two-year
industrial dataset from an operating cement plant to develop predictive
models for clinker mineralogical phases. Our framework achieves at least
88% lower mean absolute error compared to previously reported models™
evaluated on real plant data. We rigorously evaluate the developed models
on variable industrial conditions at a scale not explored in the literature thus
far. The models consistently outperform traditional Bogue equations,
offering a practical pathway toward automated process control. Through
post-hoc explainability methods, we elucidate the quantitative relationships
between clinker oxides and phase formation dynamics. Finally, we
also develop plant-specific equations that considerably exceed conventional
Bogue calculations in prediction accuracy, providing a quick assessment
tool for plant-scale operations.

Results

Data for ML model development

A comprehensive two-year dataset from an operational cement plant pro-
vided the foundation for developing ML models in this study (details in Data
collection, Methods. Data quality assessment revealed notable variability in
clinker phase compositions. An exemplar variation in alite content for the
entire duration is shown in Fig. 1b, along with the respective distribution
(Fig. 1c, d). The two-year alite measurements exhibited a broad distribution
(45-70 wt.%) with distinct temporal patterns. Similar variations were
observed in belite (5-25 wt.%) and ferrite (11-17 wt.%) compositions
(Fig. le—g). The complete distributions of all the features in DB1 and DB2
are included in Figs. S1-S4, Supplementary A.

To ensure model robustness, A 3-tier preprocessing protocol was
implemented to address missing entries, duplicate values, and physically
inconsistent measurements, and data outliers removal resulting in a curated
dataset of 8654 clinker compositions. In the outlier removal values falling
outside the 0.01-99.99 percentile range were classified as outliers and
excluded from analysis, as illustrated by the shaded regions in Fig. 1b. This
filtering criterion was uniformly applied across all 59 input features and 3
output variables. Additionally, the dataset’s multi-scale temporal structure
necessitated synchronization, as process parameters were recorded at high
frequency (1-minute intervals), whereas material compositions had lower
sampling rates. A systematic temporal alignment protocol was imple-
mented, accounting for residence times across different production stages to
establish meaningful correlations between process conditions and clinker
composition. This rigorous preprocessing approach ensured a high-quality,
complete dataset for subsequent analysis. The final dataset was split into
training (80%) and test (20%) sets, maintaining the temporal distribution of
phase compositions (Fig. le—g, shown in green and yellow respectively).
Details on data collection, preprocessing, and synchronization are provided
in the Methods section.

The preprocessed dataset exhibit distribution for all major phases, with
alite centered at 4 = 60.3 wt.% (0= 3.2), belite at y = 14.9 wt.% (0= 3.2),and
ferrite at y = 14.3 wt.% (0 = 0.8) (see Fig le—g). These distributions confirm
that the data in the plant is indeed unbiased and is coming from a single
distribution, confirming that operating conditions did not undergo any
major change in the two-year period considered. Thus, this data could be
reliably used for developing predictive models while capturing the inherent
variability in industrial operations.

Performance of ML models for clinker phases

Input feature selection critically influences model performance and practical
utility in industrial settings. While comprehensive plant data theoretically
offers maximum information content, a parsimonious model utilizing
strategically selected input parameters may achieve comparable accuracy.
The design of data-driven models were governed by two key aspects:
accurate prediction of clinker mineralogy, and potential to implement
model predictive. While there are limitations no the input parameters while
considering the first aspect, the second requires the input to be directly
controllable during the plant operation so as to control the clinker miner-
alogy and hence quality.

We categorized potential input combinations into two distinct classes:
predictive control features (process parameters and raw materials) enabling
real-time process optimization and post-production analysis features
incorporating clinker oxide measurements. The latter, while potentially
offering superior accuracy due to enriched chemical and process informa-
tion, remains unsuitable for online process control due to inherent mea-
surement delays and availability of the features post-production. To
systematically evaluate these trade-offs, we constructed 15 distinct feature
sets (Fig. la), encompassing various combinations of kiln feed character-
istics, process parameters, hot meal properties, and clinker oxide compo-
sitions. This comprehensive approach enabled the identification of minimal
yet sufficient feature sets for accurate phase prediction while maintaining
practical applicability for process control.

We systematically evaluated nine machine learning architectures for
clinker phase prediction using the complete feature set of 59 features from
KF, HM, PP, and CO. Figure 2 compares the performance of linear models
(linear regression, lasso, ridge, elastic net) against non-linear approaches
(random forest, XGBoost, support vector regression (SVR), Gaussian pro-
cess regression (GPR), neural network (NN)”7°) across three primary
clinker phases (see Methods for details). Table 1 shows the performance of
all the models for alite, belite and ferrite. Each model underwent rigorous
cross-validation to ensure optimal hyperparameter selection and prevent
overfitting. Note that, in the study separate models have been used to predict
each clinker phase rather than multi-output models. This allows indepen-
dent hyper-parameter tuning of each model, optimizing its performance for
the specific target phase.

For all 3 phase predictions (Fig. 2a—c), linear models consistently
demonstrated higher mean absolute percentage errors (MAPE), clustering
near the radar plot periphery. This performance deficit persisted despite the
inclusion of comprehensive process parameters, suggesting inherently non-
linear relationships between input features and phase composition. This
observation challenges the industry-standard Bogue equation, which
assumes linear relationships between clinker oxides and phases. Non-
parametric models-particularly NN, GPR, and SVR-achieved superior
prediction accuracy across all three phases, with MAPEs of 1.24%, 6.77%,
and 2.53% for alite, belite, and ferrite, respectively (see Fig. 2a—c).

Benchmarking against Bogue equation

To benchmark against industry standards, we compared our models
against the plant-specific Bogue equation (Fig. 2d-i), obtained directly
from the domain experts in the specific plant. A two-month period,
comprising January and February in 2020, was considered for this eva-
luation, which was kept unseen by the model and was excluded from the
training data. Thus, this period is equivalent to an unseen operating period
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Fig. 1 | Dataset characteristics and temporal ot
variability in clinker phases. a Schematic repre- gas
sentation of a cement plant showing key measure-
ment locations: kiln feed (KF), process parameters
(PP), hot meal (HM), and clinker oxides (CO). The
Venn diagram illustrates the combinations of input
features used for model development. b Two-year
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of the plant and serves as a true test of the ML model. The best-performing
architectures corresponding to each of the phases as identified from
Fig. 2a-c were used. ML model robustness was evaluated through 20
independent training iterations using different random seeds. Figure 2
presents the mean predictions obtained from these 20 trained models. The
gray bands enveloping the mean predictions in Fig. 2e, g, i represent the
uncertainty in model predictions arising from variations across the 20
training runs. Performance of the best-performing models, along with
error bars representing uncertainty, is shown in Fig. S10, Supplemen-
tary C. The best-performing architectures, namely, NN for alite, GPR for
belite, SVR for ferrite, demonstrated remarkable improvements over
Bogue predictions. Parity plots (Fig. 2d, f, h) reveal tighter clustering
around the ideal prediction line, while temporal predictions over a two-
month test period (Fig. 2e, g, i) show that the models capture complex
compositional dynamics with high fidelity. Error distributions of the
models (inset histograms) confirm substantially reduced prediction var-
iance compared to Bogue calculations. Further, statistical analysis vali-
dated the superior performance of ML models over traditional Bogue

calculations. ML predictions demonstrated symmetric error distributions
(Fig. 2d), contrasting with Bogue’s systematic biases. ML predictions,
especially NN, SVR and GPR, showed exceptional consistency across
training and test sets, confirming robust generalization across the entire
compositional range.

Notably, the ML models accurately tracked rapid compositional fluc-
tuations while maintaining +* 3¢ prediction confidence intervals (grey
regions). Notably, some of the spikes in the alite, with compositional var-
iations of ~15wt.% in a day, were captured accurately by the ML model. In
contrast, the Bogue equation exhibited systematic biases: overestimating
alite content (MAPE: 7.79% vs 1.24%), underestimating belite composition
(MAPE: 22.68% vs 6.77%), and severely misrepresenting ferrite con-
centrations (MAPE: 24.54% vs 2.53%). These results underscore the lim-
itations of linear approximations in capturing complex clinker formation
dynamics. More importantly, the results conclusively demonstrate the
superior ability of ML models to predict the clinker compositions accurately
despite the huge fluctuations, making them a promising tool for online
model predictive control.
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Fig. 2 | Performance comparison of machine learning architectures for clinker
phase prediction. Mean Absolute Percentage Error (MAPE) across nine ML models
for predicting (a) alite, (b) belite, and (c) ferrite compositions using complete feature
sets (KF, PP, HM, CO), respectively. Values in parentheses indicate test-set MAPE.
The best-performing models are shown in bold. Quantitative performance metrics
(R*> and MAPE) for the best-performing model against traditional Bogue calcula-
tions represented as parity plot and temporal evolution, respectively, for (d, e), alite,
(f, g), belite, and (h, i), ferrite with inset histograms showing error distributions

(e = predicted - actual) for ML models (top) and Bogue calculations (bottom). Red-
shaded regions in histograms represent 95% confidence intervals ( + 20), with x-axis
limits set at 99.9% confidence ( + 40). The temporal evolution of predictions is over a
two-month test period showing plant data (red), ML predictions (black dashed), and
Bogue calculations (green dotted). Grey bands represent model uncertainty ( + 30),
while red bars (right axis) indicate absolute prediction errors. All error metrics are
reported in weight percentage (wt.%).
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Table 1| Comparing the performance of ML models on the test set using MAE, R? and MAPE

Models Alite Belite Ferrite
MAE(wt. %) R? MAPE (%) MAE(wt. %) R? MAPE (%) MAE(wt. %) R? MAPE (%)

Linear regression 1.11 0.79 1.86 1.23 0.76 8.70 0.40 0.63 2.85
Lasso 1.11 0.79 1.86 1.23 0.76 8.70 0.40 0.63 2.85
Ridge 1.13 0.78 1.89 1.24 0.75 8.78 0.41 0.63 2.86
Elastic net 1.12 0.78 1.87 1.23 0.76 8.73 0.40 0.63 2.85
Random forest 1.10 0.79 1.82 1.15 0.78 8.24 0.39 0.64 2.77
XGBoost 1.01 0.82 1.69 1.03 0.83 7.34 0.39 0.65 2.76
SVR 0.96 0.84 1.62 0.99 0.84 7.12 0.36 0.69 2.53
GPR 0.96 0.84 1.61 0.96 0.86 6.77 0.36 0.70 2.54
NN 0.75 0.90 1.24 0.98 0.84 6.96 0.40 0.65 2.80

The scores for the best, second best, and third best models are shown using bold, underlined, and italics, respectively.

« Plant specific equations: To establish a fair comparison between
Bogue equation, we developed plant-specific linear regression models
(clinker equations) using identical input parameters as Bogue equations
(Fig. 3b-g).Clinker equations were developed for four cases (see Supple-
mentary D), and their performance in predicting clinker phases is shown in
Fig. 3(a). The MAPE across all four cases shows minimal variation.These
tailored equations demonstrated marked improvements over standard
Bogue calculations, particularly for alite (R2,, = 0.51 vs R%,, = 0.23) and
belite (R2,, = 0.33 vs R%, = 0.26) predictions. The temporal evolution
plots (Fig. 3¢, e, g) reveal substantially reduced mean absolute errors: 1.77
wt.%, 2.12 wt.%, and 0.49 wt.% for alite, belite, and ferrite respectively. This
analysis conclusively demonstrates that even simplified plant-specific
models offer substantially more reliable quality control metrics than tradi-
tional Bogue calculations. Thus, instead of relying on traditional Bogue
equations, having simplified plant-specific equations obtained purely in a
data-driven fashion can serve as a better performance indictor to be used for
quality control. Details of the equations and their derivations are presented
in Supplementary D.

« Input feature pruning: To identify the best combination of input
features that balance between clinker prediction accuracy and predictive
control, we systematically evaluated model performance across 15 distinct
feature combinations through a radial visualization (Fig. 4a). The full-
feature models (PP+KF+HM+CO) achieved optimal accuracy with
MAPE:s of 1.24%, 2.53%, and 6.77% for alite, ferrite, and belite, respectively.
However, these post-production predictions, while accurate, offer limited
utility for real-time process control. Specifically, any model with CO as input
features inhibit predictive control as CO measurements are obtained only
post-production. Thus, the remaining set of 7 models, with input features
excluding CO were analyzed.

We observed that models without CO exhibit reasonable performance,
albeit slightly poorer than those with CO as input feature. However, all the
models performed better than the Bogue equation. Notably, even reduced-
feature ML models using only process parameters outperformed Bogue
calculations: alite (MAPE: 3.14% vs 7.79%), ferrite (3.48% vs 24.54%), and
belite (7.18% vs 22.68%). This suggests that a predictive control imple-
mented purely based on PP can outperform those based Bogue, not to
mention that Bogue requires the clinker oxide compositions which can be
obtained only post-production. The gradual degradation in prediction
accuracy with feature reduction is clearly visualized in the radial plot, pro-
viding process engineers with a quantitative framework for feature selection
based on specific accuracy requirements.

o Sparse ML models: While maximal-information ML models lever-
aging all 59 input features- including process PP, KF, HM, and CO
—demonstrate exceptional predictive accuracy for clinker phase composi-
tion, their practical implementation could be challenging. Many process
parameters exhibit strong correlations (see Fig. S5, Supplementary A), and
obtaining a complete dataset with all 59 features in an industrial setting may

not always be feasible. To address this, we propose parsimonious ML models
which can predict alite, belite, and ferrite phases with MAPE of 2.91%,
11.41%, and 3.22%, respectively (Fig. 4b—d). The models rely on a minimal
number of inputs, utilizing only 10 independently controllable PP (marked
with * in Table S1, Supplementary A) along with KF composition. The
selected 10 PP are independent and exhibit low mutual correlation (see
Fig. S5, Supplementary A), while the remaining 24 process parameters are
dependent variables, determined as a consequence of plant operations
governed by these 10 controllable inputs. Despite using a reduced input set,
the parsimonious ML model maintains high predictive accuracy, making it
both practical and interpretable. While slightly less accurate than maximal-
information models, it substantially outperforms Bogue and the developed
clinker equations, demonstrating ML’s potential in data-limited industrial
settings.

Model limitations: rare event scenarios

While the ML models demonstrate remarkable accuracy in predicting
clinker phase compositions, it is crucial to assess their limitations, par-
ticularly their performance under extreme, rare plant operating condi-
tions with very low occurrence frequency. The models were trained on a
preprocessed dataset, free from anomalies and extreme values, as outliers
beyond the 0.01-99.99 percentile range were removed. As shown in
Fig. 5a-c, the number of phase composition data points outside this
filtering window is minimal (26 for alite, 104 for belite, and 58 for ferrite).
Figure 5d, e further illustrates that the probability of these rare compo-
sitions is below 1%, with the plant operating within the normal range for
over 99% of the time. However, when tested on these rare events, the
models exhibit notable deviations, leading to a high spike in prediction
errors, as shown in Fig. 5g, h. This highlights a fundamental limitation of
data-driven models—their inability to extrapolate beyond the training
range. Nonetheless, given that the plant operates within the normal range
for the vast majority of the time, the developed ML models remain highly
effective for quality control and process optimization in routine
operations.

Interpreting the ML models
To bridge the gap between model performance and domain expertise, we
employed SHAP (SHapley Additive exPlanations) analysis to quantify
feature contributions and their directional impact on clinker phase pre-
dictions. We focused our analysis on clinker oxide (CO) features, excluding
process parameters (PP) due to their complex interdependencies, to enable
direct comparison with established mineralogical understanding.

The hierarchical influence of clinker oxides emerges distinctly in
Fig. 6a-c. For alite prediction, CaO and SiO, demonstrate dominant
influence, with mean absolute SHAP values of 1.6 and 0.8 wt.%, respectively.
The beeswarm visualization (Fig. 6d) reveals that increased CaO content
(63-67 wt.%) positively correlates with alite formation, while elevated SiO,
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Fig. 3 | Plant-specific clinker equations. a Comparison of clinker equations for-
mulated in 4 cases with Bogue’s equation for predicting clinker phases. The radial
direction shows the MAPE (%.) values. b-g Performance evaluation of plant-specific
clinker equations against standard Bogue calculations. Parity and temporal plots
comparing predicted versus measured compositions for (b, c) alite, (d, e) belite, and
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equations (top) and Bogue calculations (bottom). The temporal evolution of

2
train

) and test (R;
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predictions is over a two-month test period showing plant data (red), clinker
equation predictions (blue dashed), and Bogue calculations (green dotted).
Grey bands represent model uncertainty ( + 30), while red bars (right axis) indi-
cate absolute prediction errors. Training (R

) set performance

metrics demonstrate superior accuracy of plant-specific equations over traditional

Bogue calculations. All compositions and errors are reported in weight percen-

tage (wt.%).
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Fig. 4 | Sparse ML model development via input feature pruning for

clinker phase. a MAPE of optimal machine learning models (Neural Network for
alite, Gaussian Process Regression for belite, Support Vector Regression for ferrite)
across 15 combinations of input features: process parameters (PP), kiln feed (KF),
hot meal (HM), and clinker oxides (CO). Values in parentheses represent MAPE (%)
for alite (green), ferrite (blue), and belite (red) predictions. b Alite prediction using
NN, (c) Belite prediction using GPR, and (d) Ferrite prediction using SVR, utilizing

Measured belite (wt. %)

Measured ferrite (wt. %)

10 controllable PP and KF compositions. The top-right inset shows each phase’s
best-performing model--NN for alite, GPR for belite, and SVR for ferrite--when
trained with all 59 input features. Black circles represent the mean model-prediction,
while red error bars indicate model uncertainty ( + 30). The bottom-left inset pre-
sents a comparative analysis of MAPE for the sparse model against the best-
performing model, as well as the Bogue and clinker equations developed in

this study.

levels (20-22 wt.%) exhibit negative correlation, aligning with classical
clinker chemistry principles.

Belite predictions (Fig. 6b, e) show similar oxide dependencies, though
with distinct quantitative relationships. CaO maintains primary influence
(mean |[SHAP values| = 1.64 wt.%), followed by SiO, and Na,O. The ferrite
phase demonstrates unique sensitivity to Fe,O; content (mean |[SHAP
values| = 0.38 wt.%), with alkali oxides (Na,O, K,0O) exhibiting secondary
influence (Fig. 6¢, f), as Fe,O5 primarily governs and represents the ferrite
phase formation.

It is also worth noting that both the importance of the features and
the directionality of their influence (positive vs negative) are congruent
with the plant-specific and the Bogue equations. Thus, the SHAP-
derived relationships corroborate that the relationship learned by the
ML models is congruent with the established domain knowledge while

providing quantitative insights into feature interactions. The analysis
confirms that our ML models capture fundamental physicochemical
relationships governing clinker phase formation, enhancing their
credibility for industrial deployment.

Discussion

Given the limitations of existing studies (Table 2), this work establishes a
new paradigm in cement manufacturing by achieving remarkably high
accuracy in predicting clinker mineralogical phases at an industrial scale,
rigorously validated on large-scale plant data. Our computational frame-
work substantially outperforms conventional Bogue equations across all
metrics while maintaining predictive accuracy even with minimal input
parameters, facilitating both instantaneous monitoring and retrospective
analysis. Moreover, the present work can provide on-the-fly predictions of
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Fig. 5 | Extreme event model evaluation. Distribution of (a) alite, (b) belite, and (c)
ferrite over two years of plant operation. Data retained after preprocessing is shown
in green, while data removed during the three-tier outlier removal process is shown
in red. The red-marked events correspond to rare plant operations with very low

occurrence frequency, denoted as f for each phase. d—f illustrate the performance of

the best-performing models across normal operation ranges (green background)

and rare operation conditions (red background). The total probability of normal and
rare operations is also indicated for each phase. The prediction errors for (g) normal
operation and (h) extreme operation are shown using box plots of absolute errors.

the clinker compositions, while Bogue equation is a post-mortem analysis
based on the clinker oxides.

The results presented provide key insights for industrial cement pro-
duction in three critical dimensions. First, ML models can provide accurate
estimates for clinker phase prediction, a feat that has not been possible thus
far based on large-scale operational plant data with huge fluctuations.
Second, ML models utilizing solely operational parameters and raw material
compositions can provide pre-production estimations, enabling the devel-
opment of robust quality assurance protocols and potential for online
process control. Third, facility-specific equations derived from operational
measurements markedly exceed standard calculations, offering pragmatic
intermediate solutions during digital transformation initiatives.

While this study focuses on predictive modeling of clinker mineralogy,
deploying these models in industrial settings is crucial for realizing their
broader implications in advancing sustainability goals. However, plant
demonstration presents several challenges, outlined below as future research
directions.

» Latency due to Model fine-tuning: As plant operations can evolve
beyond the range of the training data used in the models, continuous
fine-tuning with new operational data would be necessary to ensure

efficient adaptation with evolving plant operations. Various
parallelization techniques can be evaluated on GPUs to accelerate
fine-tuning time. Also, to minimize cloud-based latency, models will be
deployed on local industrial PCs or edge devices near kiln control
systems.

¢ Integrating models with existing Control Systems requires: (a)
developing an API to enable real-time communication between the ML
model and control systems, ensuring structured model outputs
compatible with logic controllers managing kiln processes; (b)
implementing real-time dashboards for operators to monitor predic-
tions, receive alerts, and take corrective actions; and (c) establishing
fail-safe mechanisms with fallback logic that reverts to traditional
control methods if the ML model encounters issues, ensuring
uninterrupted plant operations.

* Handling Sensor Noise and Data Delays: Real-time outlier detection
and filtering pipelines will be implemented to manage noisy sensor
inputs. For temporary sensor failures, interpolation, last-known values,
or suitable imputation methods will be used. Time synchronization,
based on process delays, will ensure proper alignment of sensor data
collected from different process stages.
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Fig. 6 | Feature attribution analysis of clinker

phase predictions using SHAP. a—c Hierarchical T
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In addition to these technical concerns, industry readiness to adopt
data-driven solutions and cybersecurity concerns related to sensitive process
data are factors that will play a critical role in demonstrating the perfor-
mance of the digital twin we aim to develop for advancing the frontiers of
sustainability in cement manufacturing.”

Beyond clinker prediction, this work advances several key aspects of
sustainable cement manufacturing. Integrating ML-driven real-time
clinker predictions with plant supervisory systems can improve energy-
efficient process control. Traditional kiln temperatures are set with high
safety margins to ensure complete phase formation, often leading to
overburnt clinker, excessive fuel consumption, and unnecessary process
emissions. Using the developed models, the operators can precisely adjust
the kiln temperature and fuel dosage in real-time, minimizing fuel
wastage, reliance on high-temperature operations, and over-burning
related emissions, which is critical for an industry contributing ~10% of
global CO, emissions. Additionally, traditional clinker quality control is

based on periodic XRD lab measurements, which take hours to detect out-
of-spec clinker. ML-driven real-time predictions enable early detection,
allowing operators to adjust process parameters proactively and prevent
defective clinker production. This considerably reduces energy-intensive
reprocessing, material waste, and variability in clinker quality. Further-
more, the models developed in this work can play a crucial role in opti-
mizing alternative fuel utilization by predicting their impact on clinker
formation. By analyzing real-time fuel properties, they assess how alter-
native fuels influence clinker phase development, enabling operators to
make precise adjustments to air-to-fuel ratios and kiln temperatures. This
ensures efficient energy use while maintaining clinker quality, facilitating
the transition to alternative fuels, and reducing the dependence on fossil
fuels. Thus, moving towards data-driven digital twins for cement manu-
facturing holds the potential to improve existing industrial systems with
little changes, potentially accelerating progress toward carbon-neutral
manufacturing practices.
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Table 2 | Comparison of clinker composition studies described in Introduction

Study Methodology Limitation

Reported metrics for
alite, belite & ferrite

Contribution from present work

Mastorakos etal."  First principle modeling (1D

dynamic CFD simulation)

¢ Lacks model validation

NA ¢ High accuracy validated on large-
scale industrial data.

Hokfors et al.” Physics-based modeling
(process simulations

using Aspen)

plant

e Validated on just one data point from a

¢ Ignores influence of process parameters

MAE yjite: 0.75 wt. %
MAEpgjite: 0.96 Wt. %
MAE orite: 0.36 Wt.%

MAE zjite: 6.4 Wt.%
MAE peiite: 9 Wt. %
MAE femite: 9.7 Wt. %

* Considers impact of process
parameters & kiln feed

® Uncertainty & extreme value

Moses et al.”? Statistical modeling (quadratic ¢ Small dataset (154 data points) RZ e 1
regression) * Uses synthetic data; no plant validation
* Models only alite; excludes belite & ferrite
Ali et al.*® Machine Learning (purely data- ¢ Limited to predicting theoretical NA

driven neural network)
clinker phases

compounds (C3S, C,S, C4AF), not actual

testing
* Post hoc model explanation

 Plant-specific clinker equations

® Lacks model interpretability

¢ Lacks uncertainty & rare event analysis
¢ No benchmarking across ML models

e Comprehensive ML
benchmarking

Table 3 | DB1 and DB2 details: data collection frequency, measurement points, measurement techniques, and the data size

DB Description Data collection frequency Measurement Point Measurement Technique  Number of datapoints
DB1 Process parameters 1 minute Sensor measurements at key process stages Online measurement 1,052,567
DB2  Composition database 1 hour (for clinker) Clinker cooler outlet (clinker) XRD/XRF 14,985
1 hour (for KF) Before PHT (KF) XRD/XRF 15,331
2 hours (for HM) Calciner outlet (HM) XRD/XRF 7621
Methods Data pre-processing

Data collection

A comprehensive two-year (01/01/2020 to 31/12/2021) operational dataset
collected from an industrial cement plant facilitated through the Innovandi
consortium formed the foundation for our ML framework. Figure la
illustrates the plant schematic and data collection points, with material
compositions determined through XRD and XRF analyses. PP comprised
34 features, while KF, HM, and clinker comprised 9, 7, and 12 features,
respectively. Thus, the total dataset consists of potentially 59 input features
with the three clinker phases as the output. Complete details of the features
in DB1 and DB2 are reported in Tables S1 and S2 in Supplementary A.

The database architecture comprised three distinct components:

* DBO: Plant configuration parameters including kiln specifications, pre-
calciner characteristics, preheater architecture (strings and stages), and
bypass systems.

* DBI: Process parameters including stage-wise temperature and
pressure profiles, O, content, kiln feed temperature, and calciner fuel
consumption rates. Complete specifications are provided in Table S1,
Supplementary A.

+ DB2: Compositional analyses of kiln feed (KF), hot meal (HM), and
clinker, including oxide distributions and phase compositions
(Table S2, Supplementary A). All compositions are reported as weight
percentages (wt.%). The temporal architecture of DB1 and DB2 is
detailed in Table 3

Mineral oxide compositions in KF, HM, and clinker were quantified
using X-ray fluorescence (XRF) spectroscopy. The percentage of clinker
phases was determined through X-ray diffraction (XRD) analysis. The list of
34 process parameters that were considered for this study are reported below
in Table S1, Supplementary A. The description of composition data
reported in DB2 is also shown in Table S2, Supplementary A. It is important
to mention that the XRD measurements for aluminate, freelime and other
minor phases were not available in the data collected from the plant. The
alite and belite compositions reported in Table S2, Supplementary A are the
sum of constituent polymorphs.

The two-year operational dataset presented unique challenges characteristic
of industrial-scale data collection. Measurement uncertainties stemming
from instrumental limitations and human factors necessitated rigorous
preprocessing to ensure data integrity. The raw dataset exhibited three
primary irregularities: duplicate entries, missing measurements, and phy-
sically inconsistent values (e.g., non-normalized XRD measurements, out-
of-range variables, XRF-XRD mismatches).The raw dataset reported a total
of 14,985 clinker compositions.
We implemented a systematic three-tier preprocessing protocol:

1. Data Completeness check: Initial screening eliminated 207 clinker
compositions lacking corresponding KF, HM, and process parameter
measurements.

2. Data Consistency check:

Consolidated duplicate entries

Removed incomplete feature sets: 3170 entries with duplicate mea-
surements or incomplete features were identified and removed.
Applied 0.01-99.99 percentile filtering to exclude non-representative
outliers and plant shutdown periods

3. Physical Validation: The raw dataset indicates 5857 negative compo-
sitions (see Table S2, Supplementary A for minimum kiln feed Cl, hot
meal SO;, and clinker Cl). Consequently, 44 rows were removed due to
either negative values or XRF-XRD mismatches to ensure thermo-
dynamic consistency.

The outlier threshold selection balanced data retention with statis-
tical significance. As evidenced in Fig. 1b-d, excluded data points ( <50
per variable) deviated notably from the two-year compositional dis-
tributions. This filtering methodology was consistently applied across all
variables to prevent spurious correlations during model training. The
final curated dataset comprised 8654 clinker measurements, representing
approximately 58% of the raw data. Detailed preprocessing statistics are
provided in Table 4. A comprehensive representation of the preprocessed
data in comparison to the raw data is included in Fig. S1 to S4,
Supplementary A.
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Table 4 | Data loss through subsequent stages of preprocessing

Operation Data rows removed Total data size
Before After
* Data completeness check: eliminating clinker compositions lacking corresponding KF, HM and/or PP measurements 207 (1.4%) 14,985 14,778
* Data consistency check: removing data rows with missing entries and consolidating duplicate entries 3,170 (21.2%) 14,779 11,608
* Physical validation: Enforced compositional constraints to ensure thermodynamic consistency 44 (0.3%) 11,608 11,564
¢ Outlier removal: eliminating data outside the range of 0.01-99.99 percentile 2,910 (19. 4%) 11,564 80,654

The percentage calculation for the data rows removed is relative to the size of the raw clinker composition database, i.e., 14,985.

Temporal synchronization protocol

The temporal resolution of collected parameters varied notably (Table 3),
necessitating careful preprocessing after outlier removal. Process para-
meters were recorded at high frequency (I-minute intervals), whereas
material compositions were measured less frequently: hourly for clinker and
kiln feed, and bi-hourly for hot meal (detailed distributions in Supple-
mentary A, Figures S1 to $4). This multi-scale temporal structure, coupled
with material transport dynamics through the kiln system, required a
sophisticated synchronization framework to establish causal relationships
between process conditions and clinker composition.

To address this challenge, we implemented a systematic temporal syn-
chronization protocol to account for varying sampling frequencies and
material transport dynamics. Identifying the process timeline and retention
times at different production stages is essential for accurately mapping the
relevant process parameters with corresponding clinker compositions. The
sequential timeline for clinker production in the examined plant is as follows:

1. KF measurement at preheater tower inlet (t,)

2. Preheater tower residence ( ~16 minutes; total time: (¢, + 17) minutes)

3. Clinker cooler retention ( ~20 minutes; total time: (f, + 37) minutes)

4. Post-production sampling delay ( ~20 minutes; total time: (f, + 57)
minutes)

Thus, the total duration from kiln feed introduction to clinker for-
mation was approximately 37 minutes. While clinker composition data was
timestamped based on production time, KF, hot meal (HM), and process
parameters were recorded based on their measurement times. To ensure
meaningful temporal correlation, all process data were standardized to
2-hour intervals using weighted temporal averaging, incorporating key
residence times: 1-minute buffer post-KF measurement, 16-minute pre-
heater residence, 20-minute clinker cooling, and 20-minute post-produc-
tion sampling delay. The alignment algorithm integrated timestamps from
process parameter database (DB1) and composition database (DB2) by
accounting for cumulative residence times (37 minutes total). This enabled
precise mapping of clinker compositions to their corresponding input
conditions, ensuring accurate temporal registration across the entire pro-
duction chain-from kiln feed introduction to final clinker formation.

ML models

Four primary feature categories - process parameters (PP), kiln feed (KF),
hot meal (HM), and clinker oxides (CO) - generated 15 unique input
combinations (Fig. la). Each combination underwent evaluation through
nine algorithmic architectures: linear regression, lasso, ridge, elastic net,
support vector regression, random forest, XGBoost, neural networks, and
Gaussian processes. Mathematical formulations of these modes are provided
in Supplementary B. All the models were trained using the sklearn package.

Performance metrics
Model assessment utilized three complementary metrics described below.
(i) Mean Absolute Percentage Error (MAPE).””:

waps = L3 0= 0

nZ 0 W

where n represents sample size, y,(i) and y,(i) denote predicted and true
values.
(ii) Mean Absolute Error (MAE):

1< . .
MAE == Iy, (i) =y, ()] @)
i1
(iii) Coefficient of Determination (R?)**:
RSS
R=1-——1 3
TSS 3

where,

RSS = 0,0 =1 TS =Y 0,0 =9 3= 0,0~ )

Model optimization protocol
Hyperparameter optimization followed a systematic protocol™:
1. Data partitioning: 80:20 train-test split maintaining statistical
equivalence via sklearn®.

2. Parameter ~ optimization: 4-fold  cross-validation” utilizing
GridSearchCV*.

3. Model selection: Optimization based on validation scores (Table S3,
Supplementary C).

4. Validation: Final assessment on holdout test set.

Detailed optimization protocols appear in Supplementary C. The
hyperparametric optimization was performed using the GridSearchCV in
the sklearn package.

Shapley Additive Explanations (SHAP)

To interpret the learned black-box functions within complex ML archi-
tectures, we implemented SHAP analysis”, a post-hoc interpretation fra-
mework derived from game-theoretic Shapley values*. This methodology
quantifies individual feature contributions to model predictions through
systematic feature importance allocation. The SHAP value (xi) for feature k
represents its average marginal contribution across all possible feature
subsets®:

|Z|(n — |2] — D!

X(va) = Z 7l

zcX'

fx = Fx@Wl )

where, f: Original model architecture, X: Complete feature set, |Z|: Car-
dinality of feature combinations within non-zero feature power set, #:
Simplified input feature count, Z C X’: Vectors with non-zero entries subset
to X, fy(%): Model prediction for given data point, f x(Z\x): Model
prediction excluding feature k*.

SHAP values correlate directly with prediction error magnitude - larger
errors indicate greater feature importance. The framework accommodates
various model-specific approximations (kernel, Deep, Linear, Tree-based
explainers), reducing complex architectures to tractable polynomial
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forms™*. Comprehensive theoretical foundations can be found in*’. SHAP
library was employed to perform the SHAP computations.

Data availability

The raw data used in this study was obtained from an industry partner under
a confidentiality agreement with the Global Cement and Concrete Research
Network (GCCRN). The identity of the industry partner and the raw dataset
cannot be disclosed due to proprietary restrictions. Consequently, the data is
not publicly available. Any inquiries regarding the data can be directed to the
corresponding author, subject to approval from the industry partner
and GCCRN.

Code availability
All the source codes developed as part of this work are publicly available at

the following repository: [https://doi.org/10.5281/zenodo.15302727]*.
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