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Conventional natural-hazard risk-modelingapproachesdonot consider possible unintendednegative
socioeconomic consequences of designing infrastructure expansions in a risk-informed way. Here,
we propose a people-centered decision-making framework for urban infrastructure development that
addresses this issue. The framework integrates a bespoke agent-based model that accounts for
implications of variations in infrastructure expansion on dynamic land values and related residential
location decision making. This means that the model captures macro-scale socioeconomic effects
resulting from infrastructure development that are not explicitly related to natural-hazard events. The
underlying algorithmbalances these considerationswith the successful operation of the infrastructure
itself and the potential infrastructure performance losses that accompany a natural-hazard event. We
demonstrate the framework by optimizing the expansion of transportation in a virtual urban testbed
that imitates a typical expanding urban context in the Global South. This work can be used to guide
inclusive risk-sensitive infrastructure planning in hazardous, rapidly growing cities.

The economic and social well-being of communities depend on the suc-
cessful functionality of large-scale (typically intricately interdependent)
critical infrastructure systems, including transportation, water and power
supplies. However, the quality of critical infrastructure performance can be
hampered by the occurrence of natural-hazard events (including those
related to climate change), which can lead to notable societal impacts,
including casualties, food insecurity, population displacement, business
interruption, andunemployment1,2. These impacts are oftenmore severe for
individuals and communities in vulnerable and at-risk groups, e.g., those
with low income and/or with disabilities3, who typically have limited ability
to cope with disaster-induced consequences4. Thus, it is crucial for relevant
stakeholders to identify, assess, communicate, and appropriately manage
potential natural-hazard-induced degradation in critical infrastructure
performance1,5.

A number of previous studies have developed engineering tools to
quantify the impact of natural hazards on critical infrastructure in urban
environments. Some have focused on simulating direct damage con-
sequences to individual infrastructure components, like bridges, electric
substations, and water and gas pipelines6–8. Other work has further
translated component damage into changes in the functionality (i.e.,
indirect performance losses) of infrastructure systems, including trans-
portation, power, water, and gas supplies9–14. For instance, studies of

natural-hazard-induced functionality losses to transportation systems have
centered on travel delay, unmet demand, and loss of connectivity15–19,
which have been useful for informing their risk-sensitive design1,5,20,21.
Further work on these systems has focused on transforming functionality
losses into broader societal consequences of hazard-induced disruption,
including accessibility impacts to essential services/locations like hospitals,
schools, and shelters22–24 as well as effects on wellbeing experienced by
people across different socioeconomic groups25,26.

While these tools have helped to advance critical-infrastructure risk-
modeling and design efforts, they have some limitations. Firstly, they typi-
cally overlook the context-specific bottom-up infrastructure performance
needs of diverse users (including those from vulnerable communities) and
focus instead on the top-down perspectives of infrastructure owners and
operators27,28. This is a crucial shortcoming, given that people-centered
infrastructure risk management approaches are becoming progressively
more important in the context of climate change, rapid population growth,
and increasingly interconnected urbanization29,30. Furthermore, current
infrastructure risk-modeling approaches/models do not capture any unin-
tended, undesirable socioeconomic consequences of optimizing infra-
structure performance for hazard-induced impacts, such as gentrification or
population segregation31 that are not uncommon. For instance, improved
connectivity that accompanied the development of China’s expansive high-
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speed rail network resulted in rapid urbanization that unintentionally led to
the loss of agricultural land32 through haphazard urban sprawl33. Invest-
ments in bus and train systems within South Africa’s Gauteng province,
which aimed to create efficient and accessible urban transit, have reinforced
spatial segregation34. These examples underscore the critical need to address
and/or mitigate unintended socioeconomic consequences in infrastructure
planning and expansion.

Here, we propose a people-centered, risk-informed decision-making
framework for urban infrastructure development in growing cities that
addresses current limitations in infrastructure risk modeling. The frame-
work integrates an optimization procedure for expanding infrastructure
that (i) balances its performance (in terms of bespoke user needs) in usual
day-to-day conditions (i.e., before the occurrence of anatural-hazard event),
as well as in the immediate aftermath of, and during the long-termperiod of
recovery from, a (future) hazard event; while (ii) limiting (to an acceptable
end-user-identified level) additional unintended gentrification-related
socioeconomic consequences that may result from a purely performance-
oriented infrastructure expansion. Consideration of (ii) is facilitated
through the inclusion of an agent-based model (ABM) for residential
location decision making35–37 that quantifies both the benefit gained from
and the affordability of a residential unit, given its proximity to the devel-
oped infrastructure38–40.

We illustrate the proposed theoretical framework by designing an
expansion of the road infrastructure serving the current population of
Tomorrowville, a hypothetical community representing a Global South
urban setting in terms of its socioeconomic and physical aspects (see the
“Data description” section). The results of this work could be leveraged for
holistic decision making on future infrastructure planning in hazardous,
rapidly growing cities to ensure that infrastructure development is resilient
to natural hazards yet not unintentionally non-inclusive.

Methods
This section presents the proposed people-centered decision-making fra-
mework for future urban infrastructure expansion. The framework com-
prises two main calculation stages, as it couples infrastructure modeling
(first stage) with a bespoke ABM (second stage) that accounts for impli-
cationsof variations in infrastructure expansionondynamic landvalues and
related residential location decisionmaking. The “Infrastructuremodeling”
section reviews infrastructure performance modeling that underpins the
first stage (and the performance-oriented expansion as described in the
“Results” section). The “Agent-basedmodel for residential location decision
making” section describes the ABM that represents the second stage. The
“Holistic infrastructure development” section presents the end-to-end fra-
mework that integrates the two calculation stages and facilitates the holistic
expansion described in the “Results” section.

Infrastructure modeling
This section briefly reviews the mathematical formulation for modeling the
time-varying performance of infrastructure using graph theory12,14. Graphs
are mathematical structures representing the pairwise relations between
objects called nodes (points or vertices) via edges (arcs, lines, or links.) We
define a graph asG ¼ ðV; EÞ, whereV is the set of nodes and E is the set of
edges. Networks are graphs in which the nodes and edges also possess
additional attributes like names, types, and state variables14.

Infrastructure is represented as a collection of networks, where
each network captures a specific feature or function of the infrastructure14.
The collection of all networks is written as G ¼ fG½k� ¼
V ½k�; E½k�� �

: k ¼ 1; . . . ;Kg, where superscript ½k� is the feature or function
captured by G½k�. The state of each network is quantified at any given time
using a unique set of vectors ½C k½ �ðtÞ;D k½ �ðtÞ; S k½ �ðtÞ� that represent the basic
performance measures for G½k� - i.e., (i) capacity measures C k½ �ðtÞ, (ii)
demandmeasuresD k½ �ðtÞ, and (iii) supplymeasures S k½ �ðtÞ - and are used to
compute an overall performance measureQ k½ �ðtÞ ofG½k�. In general,C k½ �ðtÞ,
D k½ �ðtÞ, and S k½ �ðtÞ depend on a set of variables x k½ �ðtÞ that describe the

dynamic state of infrastructure accounting for deterioration41 or repair42, for
instance.

We derive an overall infrastructure performance measure QðtÞ as an
aggregate of the underlying network performances Q k½ �ðtÞ that can be
determined in various ways depending on the infrastructure of interest. For
example, QðtÞ could be estimated from a topology-based approach in the
case of road infrastructure43 or from a flow-based approach in the case of
potable water infrastructure44.

R Q tð Þ½ � denotes some specific societal implication of the infrastructure
performance, e.g., some measurement of distance between households to
locations of interest related to a specific road infrastructure. In addition,
R Q tð Þ½ � can be disaggregated based on socioeconomic factors (e.g., income,
age, gender) to capture higher resolution effects of infrastructure perfor-
mance (or non-performance) across different population segments.

Agent-based model for residential location decision making
This section describes theABM for residential location decisionmaking45,46,
which is structured following Gamal et al.47. The ABM includes agents
(buyers and sellers) that interact in a spatial context, where each agent
represents one household. Here, buyers correspond to renters of residential
units and sellers correspond to owners of residential units.

Following Alonso36, the benefit an agent gains from (or an agent’s
attractiveness to) a residential unit is quantified using a utility-based
approach, where utility is a function of residential unit attributes (e.g., dis-
tance from a specific location, access to water supply or sanitation infra-
structure) and the individual agent’s unique preferences towards such
attributes. Utility is expressed as

Ur;i ¼
Xn
j¼1

αi;j � uðλr;jÞ ð1Þ

Where Ur;i is the total utility of residential unit r for the i
th agent, λr;j is a

measurement of the jth attribute, uðλr;jÞ is an objective representation of the
benefit associated with the jth attribute, αi;j is the weight representing the
subjective preference of the ith agent towards attribute j, and n is the total
number of attributes considered. uðλr;jÞ is written as

uðλr;jÞ ¼
λr;j

maxr λr;jð Þ if λr;j 2 Λ

1� λr;j
maxr λr;jð Þ otherwise

8><
>: ð2Þ

where Λ is the set of desirable attributes.
Agents are distinguished between buyers, b and sellers, s, i.e., i 2 fb; sg.

Themaximumprice bwould pay for a residential unit is based onUr;i; units
with higher Ur;i values (therefore higher λr;j and/or αi;j) will yield a higher
willingness to pay. Accordingly, the bth buyer’s willingness to pay for the rth

residential unit, WTPr;b, is written as

WTPr;b ¼
Hr;b � U2

r;b

βr;b þ U2
r;b

ð3Þ

whereHr;b is the available budget of the b
th buyer, which can be expressed as

a raw monetary value or a relative purchase capacity48, and βr;b is a para-
meter controlling the convexity of WTPr;b that reflects the risk appetite of
the buyer. The range of βr;b is the same as that ofUr;b, where high values of
βr;b indicate risk-averse behavior and low values indicate risk-taking
behavior.

The rental price of the rth residential unit set by the sth seller, Pr;s is
based on the benefit of the unit to the seller Ur;s, and is expressed as

Pr;s ¼
Hr;s:U

2
r;s

βr;s þ U2
r;s

ð4Þ
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whereHr;s is the buyer’s budget as perceived by the seller, analogous toHr;b,
and βr;s is analogous to βr;b .

Modeling details. The ABM represents agents’ behaviors in the form of
relocations, which occur when a buyer can no longer afford to pay their
rent (i.e., Pr;s >WTPr;b). Relocations are triggered by changes in Pr;s and/
or WTPr;b, which are the result of changes in λr;j that ultimately stem
from the infrastructure development process. The number of triggered
relocations ε due to changes in (expansions of) the infrastructure (i.e., the
number of times Pr;s > WTPr;b) can be considered a proxy for gentrifi-
cation and represents the unintended socioeconomic consequences of
infrastructure development in this study.

Residential location decision making is modeled by assigning a
choice of θ�N vacant residential units to relocating renters in their current
neighborhood N . Relocating renters move to the closest (vacant) resi-
dential unit r� within θ�N that satisfies the following conditions: (i)
WTPr�;b ≥ Pr�;s and (ii) Ur�;b ≥U

�
b , where U

�
b is the average utility of the

θ�N residential units. If none of the θ�N residential units satisfy these
conditions, an alternative neighborhood within the urban area is ran-
domly selected and the same process of identifying a satisfactory resi-
dential unit (or another alternative neighborhood) is repeated. If no
satisfactory residential unit is found, the relocating renters emigrate from
the urban system and the affected household is no longer considered in
the analysis.

Holistic infrastructure development
This section presents the proposed end-to-end approach for achieving a
holistic infrastructure expansion that is both performance-oriented (risk-
informed) and accounts for unintended socioeconomic consequences of
infrastructure development. First, we leverage the theory of the “Infra-
structure modeling” section to formulate the performance-oriented
expansion as an optimization problem, where the objective function
accounts for infrastructure performance during day-to-day operations, in
the immediate aftermath of a disrupting event (i.e., response phase), and
during the long-term recovery phase. Then, we discuss the approach for
solving the optimization problem while accounting for unintended con-
sequences that are quantified using the utility-based residential location
ABM in the “Agent-based model for residential location decision making”
section.

Mathematical formulation. The objective function is expressed as

Z ¼ maxE γ1 � Z1 þ γ2 � Z2 þ γ3 � Z3

� �� � ð5Þ

where E �½ � is the expected value operator, γ1, γ2, and γ3 are weights that
respectively control the relative importance of infrastructure performance
on a day-to-day basis (Z1), during the immediate post-hazard response
period (Z2), and the longer term recovery phase (Z3). γ1, γ2, and γ3 values
are defined in consultation with relevant stakeholders, in a participatory,
people-centered approach to risk-informed decision making. Z1 is written
as

Z1 ¼
1
na

Xna
a ¼ 1

ωa
1
NH

XNH

i¼1

wiRi;a Q t0� ; g
� �� �

ð6Þ

where na is the number of considered infrastructure needs (types),ωa is the
weight (priority) placed on the ath infrastructure need,NH is the number of
household agents in the community, and wi is the weight (priority) placed
on meeting the ith household’s infrastructure needs. Ri;a Q t0� ; g

� �� �
describes a specific implication of infrastructure performance at household-
level during t0� (before the occurrence of the hazard event) andg is the set of
G k½ � to be added as part of the infrastructure expansion. For example, in the
case of a topology-based analysis of road infrastructure that is used for
accessing hospitals, schools, and workplaces, Ri;a Q t0� ; g

� �� �
for the ith

household is written as

Ri;a Q t0� ; g
� �� � ¼ η Hð Þ

i;a t0� ; g
� �

η�i;a t0� ; g
� � ¼ 1

N ið Þ
XN ið Þ

m¼1

d�i;aðmÞ
di;a mð Þ

ð7Þ

where NðiÞ is the number of individuals in household i that have infra-
structure need a (i.e., access to a hospital, school, orworkplace) and di;a mð Þ is
the distance from the residence of household agent i to the activity (location)
of interest of the mth individual in household i. η�i;a t0� ; g

� �
is a reference

value for normalizing η Hð Þ
i;a t0� ; g

� �
such that d�i;aðmÞ is a corresponding value

in termsof roaddistance, enabling eachcomponentof theobjective function
in Eq. (5) to be added together. In the limiting case when the distance
between origin and destination is infinity (i.e., the destination is unreach-
able), η Hð Þ

i;a ðt0� ; gÞ ¼ 0.
Z2 is expressed as

Z2 ¼
1
na0

Xna0
a0 ¼ 1

ωa0
1
NH

XNH

i ¼ 1;

p ið Þ � i 2 Ωa0

wiRi;a0 Q t0þ ; g
� �� �

ð8Þ

where ωa0 is the weight of the a
0th infrastructure need in the response phase

t0þ ,p ið Þ � i 2 Ωa0 identifies the individuals (inhousehold i) associatedwith
the a0th infrastructure need, andRi;a0 Q t0þ ; g

� �� �
describes some aspect of

infrastructure performance in t0þ . For example in the case of road infra-
structure, a0 may refer to accessing hospitals (for immediate treatment) or
shelters (if there is post-event dislocation) and p ið Þ � i 2 Ωa0 would define
the individuals in the ith household that are either injuredordisplaced. In the
context of using a topology-based approach to measure the performance of
road infrastructure,Ri;a0 Q t0þ ; g

� �� �
is defined as

Ri;a0 Q t0þ ; g
� �� � ¼ η Hð Þ

i;a0 ðt0þ ; gÞ
η Hð Þ
i;a0 ðt0� ; gÞ

ð9Þ

capturing the household’s increase in distance to each location of interest at
t0þ compared to t0� .

Z3 is expressed as

Z3 ¼
1
TR

XTR

τ¼t0þ

1
na

Xna
a ¼ 1

ωa
1
NH

XNH

i¼1

wiRi;a Q τ; g
� �� �

ð10Þ

whereTR represents the time atwhich recovery activities are completed, and
Ri;a Q τ; g

� �� �
is a dynamic measure of some aspect of infrastructure per-

formance related to the ith household during the recovery process. In the
case of a topology-based analysis of road infrastructure, Ri;a Q τ; g

� �� �
is

expressed as

Ri;a Q t; g
� �� � ¼ η Hð Þ

i;a ðt; gÞ
η Hð Þ
i;a ðt0� ; gÞ

ð11Þ

and is analogous toRi;a0 Q t0þ ; g
� �� �

, where the locations of interest are the
same as those captured by Ri;a Q t0� ; g

� �� �
in Eq. (7). Note that while

Ri;a� ½:� have been described in terms of a topology-based approach for
quantifying road infrastructure performance, the proposed formulation is
general enough for application to any infrastructure and performance
measurement approach44,49.

The constraints of the optimization are now presented. The first
constraint is

Cp ≤Mp ð12Þ
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whereCp is the cost of implementing a specific infrastructure expansion and
Mp is the budget allocated to the infrastructure development process. The
resulting G k½ � must be a connected network, i.e.,

8v1; v2 2 V k½ �; 9φðv1; v2Þ ð13Þ

where v1 and v2 are two generic nodes in V k½ �, and φðv1; v2Þ is a path
between them. The degree of nodes in the resultingG k½ � must be less than
a specified threshold to avoid impracticable infrastructure expansion
(e.g., an intersection created by more than four roads in the case of road
infrastructure), written as

Δ G k½ �� �
≤ δ G k½ �� � ð14Þ

whereΔ G k½ �� �
is themaximumdegreeofG k½ � and δ G k½ �� �

is a corresponding
specified threshold. Additional non-negative constraints are

ωa ≥ 0; 8a ð15Þ

wi ≥ 0; 8i ð16Þ

ωa0 ≥ 0; 8a0 ð17Þ

γ1; γ2; γ3 ≥ 0 ð18Þ
Weights ωa, wi, ωa0 , and γ1, γ2 and γ3 must sum to one, written as

Xna
a¼1

ωa ¼ 1 ð19Þ

XNH

i¼1

wi ¼ 1 ð20Þ

Xna0
a0¼1

ωa0 ¼ 1 ð21Þ

γ1 þ γ2 þ γ3 ¼ 1 ð22Þ
The final constraint of the optimization is

η Hð Þ
k;a ðτ�; gÞ

η Hð Þ
k;a ðt0� ; gÞ

≥ ξ τ�ð Þ; 8τ� ð23Þ

where ξ τ�ð Þ represents a lower threshold for infrastructure performance at
time τ�, facilitating a requirement for the infrastructure to be restored to
pre-hazard performance levels within a certain period from the occurrence
of the hazard event.

Obtaining thefinal holistic expansion. The formulation described in the
“Mathematical formulation” section can be classified as a combinatorial
optimization problem, where the optimal infrastructure layout (topology)
results from a finite set of possible infrastructure interventions, i.e., added
edges, such as new roads. Figure 1 summarizes the workflow that is used to
solve for the final holistic infrastructure expansion.

First, an augmented infrastructure layout is defined that includes the
existing infrastructure layout and the full set of potential (candidate) edges
for development. Several procedures can be used to obtain the augmented
layout, such as (i) identifying bespoke candidate edges on a context-specific
basis in consultation with relevant stakeholders and manually digitizing
them in a geographic information system, (ii) using digitized geospatial data
todefine a regular gridof points andfinding the least cost paths among them
or (iii) using a fully-automated interactive procedural modeling approach
based on tensor field theory50. Then, the subset of candidate edges to be

added to the existing infrastructure maximizes the value of Z in Eq. (5) and
satisfies the constraints outlined in the “Mathematical formulation” section.

However, there are computational complexities associated with this
optimization problem, including nonlinearity, nonconvexity, and non-
differentiability of Z in Eq. (5). Consequently, an exhaustive search is not
feasible, and a heuristic approach must be used to obtain a near-optimal
solution instead. Our proposed heuristic approach involves a simulated
annealing-based metaheuristic procedure. Other metaheuristics, like
genetic algorithms, ant colony systems, and tabu searches, could be used
instead, but they typically perform worse than simulated annealing for this
type of optimization problem51–53.

The search begins by randomly selecting a subset of candidate edges
that satisfy the constraints of the “Mathematical formulation” section and
using the corresponding value of Z as the initial optimization solution. The
simulated annealing-based metaheuristic procedure then maximizes Z by
applying small (random) changes to the decision variable g, i.e., the edges to
be added from the full candidate list. Each small perturbation involves
randomly selecting one of the following actions: add, remove, or replace. If
add is selected, a new edge candidate is randomly added to the current subset
from the full candidate list. If remove is selected, a random candidate is
removed from the current subset. If replace is selected, a candidate from the
current subset is randomly substituted with a new candidate selected from
the full set of candidates. If a neighboring solution (resulting from the per-
turbation) improves the value of Z, a further search starts in the neighbor-
hood of this point. If an improved solution cannot be found, the current
solution is accepted with a certain probability, i.e., expð�Z=TÞ where T is
one of the hyperparameters of the optimization search algorithm, typically
known as the temperature. Infeasible solutions that violate the constraints of
the “Mathematical formulation” section are avoided by adding a dynamic
penalty function to the solution of the objective function54, such that Eq. (5) is
rewritten as

Z0 ¼
Z ifg 2 Ωf

Z þ P g
� �

otherwise

(
ð24Þ

Fig. 1 | Workflow for obtaining the final infrastructure expansion. Z is the
objective function of the performance-oriented infrastructure expansion optimi-
zation problem. ε is the number of relocations triggered by infrastructure expansion.
εT is an end-user-specific acceptable level of triggered relocations.
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where Ωf represents the set of feasible solutions and the penalty function
P g
� �

is introduced when any constraint of the “Mathematical formulation”
section is violated.

At the end of the search, the optimization results are compiled in a list
of infrastructure development layouts (expansions) ranked in terms of Z
(equivalent to the optimized infrastructure set shown in Fig. 1). The
performance-oriented expansion is then the highest-ranked layout of the
set. Changes in the infrastructure expansion lead to variations in λr;j and
therefore uðλr;jÞ in Eq. (2), which ultimately produce changing values of ε.
The final holistic infrastructure expansion is the one with the highest value
ofZ that also satisfies ε≤ εT, where εT is a pre-determined, end-user-specific
acceptable level of unintended consequences (i.e., triggered relocations).

Data description
Case study.We use the proposed framework for designing an expansion
of the road infrastructure in the 500-ha virtual urban testbed of
Tomorrowville. Tomorrowville was designed to represent a typical
Global South urban setting based on Nairobi (Kenya) and Kathmandu
(Nepal) data55. The testbed is a geospatial database of urban features that
includes information on land use, building and infrastructure (physical)
characteristics, household (social) characteristics (such as income levels),
and individual (social) characteristics, as well as detailed data on each
person’s daily infrastructure needs, which include access (proximity) to
hospitals, schools, and workplaces. We use TV0 in this study, which
represents the current urban layout of Tomorrowville (more details can
be found in Menteşe et al.55). TV0 contains a total of 4810 buildings and
7809 households (all assumed to be renters), of which 4236 are low-
income, 1705 are mid-income, and 1868 are high-income. The network
representing the existing road infrastructure of TV0 contains 1128 edges
and 999 nodes.

Data for performance-oriented infrastructure expansion. The
hypothetical stakeholders are assumed to (i) consider infrastructure need
in terms of accessibility (proximity) to hospitals (h), schools (e), and
workplaces (l), (ii) regard each infrastructure need as being equally
important regardless of time, (iii) place equal importance on day-to-day
and immediate post-hazard infrastructure performance but to not con-
sider the long-term recovery process when making infrastructure
expansion decisions; and (iv) hold a pro-poor vision on future urban
expansion, in line with the latest thinking on disaster risk management
and assessment56,57 as well as the guiding principles of the Sendai Fra-
mework for Disaster Risk Reduction58. These views are reflected in the
following input parameter values used: (i) γ1 ¼ γ2 ¼ 0:5, (ii) γ3 ¼ 0, (iii)
ωa ¼ ωa0 ¼ ½1=3; 1=3; 1=3�, and (iv) wi ¼ ½0:7; 0:2; 0:1�, where the
vector entries respectively refer to low-income, mid-income, and high-
income households. We assume a road is impassible if it is exposed to a
flood water height of more than 0.3 m59, which leads to decreased values
of η Hð Þ

i;a0 ðt0þ ; gÞ and therefore Ri;a0 Q t0þ ; g
� �� �

in Eq. (9). We further
assume Cp is equal to £ 5000=m, Mp is £70M , and εT ¼ 750. The aug-
mented expansion of the road infrastructure is obtained throughmanual
digitization of the candidate edges, hypothetically reflecting the outcome
of a conversation with potential stakeholders. The resulting augmented
network contains 1740 edges and 1483 nodes.

ABM data for unintended consequence quantification. We assume
βr;b ¼ βr;s ¼ 1 for all agents, reflecting a risk-neutral outlook. λr;j
represent undesirable attributes, comprising the road distance from each
household’s residential unit to hospitals λr;1, schools λr;2, and workplaces
λr;3 (only for households with working individuals, such that n ¼ 2 or
u λr;3
� � ¼ 0 otherwise), in line with the infrastructure needs previously

identified. Note that these distances assume normal day-to-day infra-
structure performance, such that a household’s willingness to pay for a
residential unit does not account for natural-hazard-induced travel dis-
ruptions. No desirable attributes are considered. We further assume
αb;1 � Uniform 0; 1ð Þ, αb;2 � Uniform 0; 1ð Þ, αb;3 � Uniform 0; 1ð Þ,

αs;1 � Uniform 0; 1ð Þ, αs;2 � Uniform 0; 1ð Þ and αs;3 ¼ 0, i.e., there are
generally hetereogenous, independent preferences towards the various
considered locations, except owners of residential units do not value the
distance of their property (that they do not live in) towork. In the absence
ofmore relevant data,Hr;i values are based on information collected from
Greater Cairo, Egypt47, which is deemed acceptable in this case given that
Tomorrowville is designed to represent a general Global South urban
setting. These values are quantified in terms of relative purchasing
capacity that is measured over a continuum scale based on (i) the relative
proportion of wealth/income across households in low-, mid-, and high-
income groups47,60 and (ii) the absolute accumulated wealth/income
associated with each income group61,62. This means that Hr;b �
Uniformðab; bbÞ - where ab; bb

� � ¼ f0; 0:9g for low-income households,
ab; bb

� � ¼ f0:9; 1:96g for mid-income households, and ab; bb
� � ¼

f1:96; 4:1g for high-income households - and Hr;s � Uniformðas; bsÞ -
where as; bs

� � ¼ f0; 0:93g for low-income households, as; bs
� � ¼

f0:93; 1:8 g for mid-income households, and as; bs
� � ¼ f1:8; 2:5g for

high-income households - such that ai and bi represent a scaled ratio
between the minimum/maximum income of a given income and agent
group and themaximum income of the richest corresponding group.We
perfomMonte Carlo sampling of the probability distributions to produce
100 sets of each uncertain input variable per household and compute an
expected value of ε, EðεÞ, which is then used to determine the final holistic
solution (replacing ε).

Flood hazard model. The hazard event considered is similar to the 25-
year mean return period pluvial fluvial flooding event presented in Jen-
kins et al.63. The flood simulations are generated usingCAESAR-Lisflood,
a model that combines the Lisflood-FP hydrological and surface flow
model64 with the CAESAR landscape evolution model65. The discharge
and rainfall time series are generated using moderate to peak daily data
based on the Department of Hydrology andMeteorology, Nepal records,
such that simulations are consistent with the Tomorrowville topography.
More details on flood modeling for Tomorrowville can be found in
Jenkins et al.63.

Results
The Tomorroville road infrastructure expansion is designed considering a
25-year mean return period pluvial fluvial flooding event and the urban
development vision of a hypothetical set of Tomorrowville stakeholders.
The design involves selecting an optimal finite set of roads from an aug-
mented list of regularly laid out candidate edges, based on various con-
straints (see the “Methods” section and Fig. 2) that include a stakeholder-
defined acceptable limit of εT ¼ 750 Tomorrowville households (less than
10%) evicted due to rent price increases triggered by the developed infra-
structure. Higher priority is placed on satisfying the road infrastructure
requirements of low-incomehouseholds, in linewith thepro-poor vision for
urban development held by the hypothetical stakeholders. We first present
the road expansion that results if only the performance of the infrastructure
is accounted for (i.e., unintended consequences related to εT are ignored),
which is herein described as the performance-oriented expansion. We then
present the final holistic expansion that also complies with εT.

Performance-oriented expansion
Figure 3 (left panel) displays the performance-oriented expansion of the
Tomorrowville road infrastructure. In this case, the final infrastructure
layout results in Z ¼ 0:288 (where Z is a performance measurement; see
Eq. 5 in the “Methods” section), which translates into a post-flood loss of
connectivity (caused by impassable roads creating a theoretical travel dis-
tance of infinity) to hospitals, schools, and workplaces for 1684, 1414, and
3722 households, respectively. These values respectively represent 78%,
20%, and 27% reductions compared to those obtained for the existing road
infrastructure in Tomorrowville. Figure 4 provides the number of house-
holds with no access to hospitals, schools, and workplaces after the con-
sidered flood event, disaggregated by income level. The expanded road
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infrastructure leads to a greater (absolute) reduction in post-flood accessi-
bility losses for low-incomehouseholds compared tomid- andhigh-income
groups, reflecting the pro-poor stakeholder vision. However, this infra-
structure layout would lead to EðεÞ ¼ 919 evicted households (all low-
income), which is more than 20% greater than εT.

Holistic expansion
Figure 3 (right panel) presents the holistic expansion of the Tomor-
rowville road infrastructure that ensures EðεÞ≤ εT. This infrastructure
layout results in Z ¼ 0:277 (see Eq. 5 in the “Methods” section), which
translates into a post-flood loss of accessibility to hospitals, schools,
and workplaces for 1769, 1499 and 4465 households, respectively.
These values represent 77%, 15%, and 13% reductions compared to
those obtained for the existing road infrastructure in Tomorrowville.

Figure 4 contrasts these results with those obtained for the
performance-oriented expansion. The holistic infrastructure expansion
reduces E(ε) and Z by 24.3% and 3.8%, respectively, compared to the
performance-oriented expansion. In other words, the framework can
produce an infrastructure expansion with tolerable unintended con-
sequences at the expense of only slightly sub-optimal performance.
The reduction in Z translates into a minor rise (~5%) in post-flood
accessibility losses for low-income households. A more substantial rise
in workplace accessibility losses is obtained for mid- (14.5%) and high-
income (47.8%) households. These observations specifically highlight
the value of adopting a well-rounded perspective in a deliberately pro-
poor development process, i.e., gaining a substantial reduction in the
number of evicted low-income households at the expense of accepting
noticeable lower infrastructure performance for those more well off.

Note that further investigation of the relationship between prices,
infrastructure performance, and triggered relocations across different
income groups can be found in the Supplementary Notes 1 and 2.

Discussion
This paper proposed a people-centered, risk-informed decision-making
framework for infrastructure development in growing cities. The frame-
work extends beyond conventional natural-hazard infrastructure impact
assessments by facilitating external participation in the design process and
holistically accounting for unintended consequences of risk-informed
infrastructure development (gentrification), recognizing that equitable
development may ultimately require a departure from a strictly
performance-driven outlook.

We formulated the infrastructure development process as a com-
binatorial optimization problem (see the “Methods” section), in which
the objective is to maximize the performance of the infrastructure
according to bespoke stakeholder (end-user) priorities and needs in three
distinct temporal phases, i.e., business-as-usual conditions, in the
immediate aftermath of a (future) hazard event, and during the long-
term post-event recovery process. The final infrastructure expansion is
one that also leads to an acceptable level of unintended socioeconomic
(gentrification-related) consequences, which are quantified using a
bespoke agent-based model that captures the implications of variations in
infrastructure development on land values and resulting dynamic resi-
dential location decision making. The holistic, inherently participatory
nature of the proposed framework can help to prioritize the needs of
lower-income populations and generally support a pro-poor approach in
future risk-informed urban development56. As such, the framework is
cross-cutting, addressing broad sustainable development goals (i.e.,
Sustainable Development Goal 10: Reduced inequalities) as well those
that are more specifically focused on engineered assets (i.e., Sustainable
Development Goal 9: Build resilient infrastructure, promote inclusive and
sustainable industrialization and foster innovation; Sustainable Devel-
opment Goal 11: Make cities and human settlements inclusive, safe,
resilient and sustainable).

The case study demonstrated that the framework could produce an
infrastructure expansion with tolerable unintended consequences (specifi-
cally benefitting low-incomehouseholds) at the expense of only slightly sub-
optimal performance (predominantly impacting mid- and high-income
households). Sensitivity analyses involving some of the case study para-
meters (see Supplementary Notes 1 and 2) confirmed a complicated rela-
tionship between infrastructure performance and gentrification; better
infrastructure performance does not necessarily entail an additional gen-
trification cost, underlining the importance of explicitly tracking both
variables for informed decision making. Furthermore, these analyses
revealed that low-income households would remain disproportionately
susceptible to triggered relocations (and therefore would still benefit the
most from a gentrification cap) even if rental prices increased somewhat
(without considering any infrastructure expansion). It is important to note
that these conclusions are based on one example involving the road infra-
structure of aGlobal South virtual testbed in the presence of flooding, where
there is a strong spatial correlation between income and level of hazard
exposure. If more higher income households resided in flood-prone areas,
the extent and pattern of gentrification would differ in line with the corre-
sponding offset in the (generally larger) prices and values of willingness to
pay; we do not investigate this hypothetical scenario in detail, because the
strong spatial relationship between income and hazard exposure that exists
within Tomorrowville has been deliberately designed to mirror real-world
contexts57. Further testing of the framework’s capabilities in real-world
settings is required; the proposed formulation is general enough for appli-
cation to any hazardscape and critical infrastructure challenge of interest
(e.g., from siting electric vehicle chargers to constructing seawalls) involving
a trade-off between enhancing the performance of the infrastructure and
limiting triggered relocations (i.e., gentrification) caused by resulting price
increases.

Fig. 2 | Tomorrowville road infrastructure (existing and candidate edges for
expansion) and considered flooding event. Adapted from Menteşe et al.55 pub-
lished under a CC BY 4.0 licence (https://creativecommons.org/licenses/by/4.0/).
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This study features some limitations and simplifying assumptions that
warrant comment. First, infrastructure performance is quantified using a
topology-based (connectivity-based) approach. While connectivity is gen-
erally a necessary condition for a fully operational infrastructure,flow-based
approaches24,49 - which track the transfer of specific quantities of interest
across infrastructure in space and time—more accurately capture the ability
of infrastructure to provide essential goods and services. However, the
proposed framework is flexible enough to accommodate flow-based
approaches in subsequent applications (through appropriate modification
of Eqs. (7), (9), and (11) in the “Methods” section).

Second, the case study application relies on hypothetical stakeholder
inputs, assuming that infrastructure needs are limited to accessing hospitals,
schools, and workplaces, and that a household’s willingness to pay is
exclusively determined by the travel distance to these critical infrastructure
under normal conditions (i.e., disruptions from hazards are not considered
to influence the perceived value of a given residence). While it is realistic to
assume that residences with greater connectivity to important locations are
valued higher66–68, such that infrastructure development in hazard-prone
areas could force local low-income households out of their homes, it may
not be reasonable to presume that the attractiveness of better connected
areas to higher income households is independent of exposure to natural

hazards. However, tracking household movements beyond triggered relo-
cations is outside the scope of this study.

Real-world stakeholder participation in the infrastructure develop-
ment process may involve a series of local engagement workshops that
leverage targeted surveys to determine infrastructure needs and their rele-
vant importance, balancing different perspectives across diverse groupings.
Potential participants include (future) residents within the urban setting of
interest, planners, government representatives, engineeringprofessionals, as
well as experts and researchers in urban disaster risk. These types of
workshops have been successfully used for similar real-life decision-making
processes. For instance, Tompkins et al.69 held workshops with various
stakeholders (e.g., local council representatives, coastal management
groups, coastal businesses, and residents) to inform long-term coastal
planning for climate change in Christchurch Bay, England, and the Orkney
Islands, Scotland. Similarly, Bostick et al.70 leveraged the results of a stake-
holder workshop (attended by members of city and county emergency
management, Gulf Coast and Mobile Bay environmental management
spokespeople, port industry representatives, andpublicworks employees) to
prioritize a set of risk management initiatives aimed at enhancing coastal
resilience in Mobile Bay, Alabama (USA). Other people-centered data
required (e.g., on residents’ socioeconomic characteristics and preferences

Fig. 4 | Number of households with no access to
hospitals, schools, and workplaces for the existing
road infrastructure in Tomorrowville (baseline), the
performance-oriented expansion, and the holistic
expansion, disaggregated by income level.

Fig. 3 | Different expansions of Tomorrowville
road infrastructure. Performance-oriented expan-
sion (left panel). Holistic expansion (right panel).
Adapted fromMenteşe et al.55 published under a CC
BY 4.0 licence (https://creativecommons.org/
licenses/by/4.0/).
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in terms of infrastructure attributes) could be collected following the
interview- and survey-based approach proposed in Gamal47.

The case-study application also neglects the long-term post-event
recovery phase. Precisely characterizing infrastructure recovery during this
period would involve knowledge of context-specific disaster recovery
priorities and infrastructure recovery scheduling details, such as typical
construction activity precedence and workforce availability over large
geographic areas71. Furthermore, the case study makes use of simplified
economic assumptions regarding the cost of road construction and the
available budget for infrastructure development, given its hypothetical
nature; this information should be readily accessible for any real-life
infrastructure expansion project, however.

In conclusion, the proposed framework represents a paradigm shift in
risk-sensitive decision support on urban infrastructure development. It
paves the way for the creation of resilient yet equitable future cities.

Data availability
Data underlying the results presented in this paper may be obtained from
the corresponding author upon request.

Code availability
Codes underlying the results presented in this paper are publically available
in the following repositories: https://github.com/YahyaGamal/
Infrastructure_optimisation_ABM and https://github.com/YahyaGamal/
Communications_paper_graphs.
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