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Contrary to the stunning feats observed in birds of prey, aerial manipulation and grasping with flying
robots still lack versatility and agility. Conventional approaches using rigid manipulators require
precise positioning and are subject to large reaction forces at grasp, which limit performance at high
speeds. The few reported examples of high-speed aerial grasping rely on motion capture systems, or
fail to generalize across environments and grasp targets. We describe the first example of a soft aerial
manipulator equipped with a fully onboard perception pipeline, capable of robustly localizing and
grasping visually and morphologically varied objects. The proposed system features a novel passively
closed tendon-actuated soft gripper that enables fast closure at grasp, while compensating for
position errors, complying to the target-object morphology, and dampening reaction forces. The
system includes an onboard perception pipeline that combines a neural-network-based semantic
keypoint detector, a state-of-the-art robust 3D object pose estimator, and a fixed-lag smoother to
estimate the pose of known objects. The resulting pose estimate is passed to a minimum-snap
trajectory planner, tracked by an adaptive controller that fully compensates for the added mass of the
grasped object. Finally, a finite-element-based controller determines optimal gripper configurations
for grasping. Experiments on three different targets confirm that our approach enables dynamic, high-
speed, and versatile grasping, all of which are necessary capabilities for tasks such as rapid package
delivery or emergency relief. We demonstrate fully onboard vision-based grasps of a variety of objects,
in both indoor and outdoor environments, and up to speeds of 2.0 m/s —the fastest vision-based grasp
reported in the literature. Finally, we take a major step in expanding the utility of our platform beyond
stationary targets, by demonstrating motion-capture-based grasps of targets moving up to 0.3 m/s,

with relative speeds up to 1.5 m/s.

Current quadrotor platforms can fly at high speeds, maneuver with great
agility, and carry a wide range of payloads, but their ability to interact with
the world remains limited. Most quadrotor platforms sense their environ-
ment for applications such as navigation, inspection, or videography'™.
However, many tasks require interacting with the environment, and
quadrotors built to accomplish such tasks must handle complicated time-
varying contact dynamics and have the ability to perceive task-relevant
features of the environment. Recent work has increasingly focused in this
direction, including a number of perching mechanisms™, and full systems
for applications such as contact-based inspection’, and tree eDNA
collection'’. These tasks require contact with the environment, but not
necessarily changing the environment. Our work enables quadrotors to take
a more active role in interacting with the world around them by picking up
and moving objects without the need for external motion capture

infrastructure, expanding the kinds of tasks that can be accomplished by
such platforms.

Building an aerial grasping system requires solving problems at the
intersection of mechanical design, perception, motion planning, control,
and manipulation. There is extensive prior work toward solving each of
these problems individually. Many works focus on gripping or grasping
mechanisms for attaching to conventional drones’”'"'"* or helicopters'.
Recent work has examined a closer coupling between the drone and gripper
design™". The control of aerial manipulators has been studied in'"*"*, and
recently for related tasks such as catching balls in flight'” and grabbing other
drones out of the air”’. Vision-based object pose estimation and tracking are
widely studied problems in robotics, and many existing methods are rele-
vant for estimating the target’s position for aerial manipulation; notable
examples applied to aerial grasping include”. While each of these works
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reports promising advances in the subsystems that aerial grasping platforms
are built upon, they do not directly seek to achieve high-speed vision-based
aerial manipulation.

Combining perception, control, and manipulation to achieve high-
speed and versatile aerial manipulation presents several challenges. First,
conventional approaches using rigid manipulators require precise posi-
tioning and are subject to large reaction forces at grasp, which limit per-
formance at high speeds. Second, in contrast to systems that passively sense
the environment, a quadrotor manipulating objects in the environment
must adapt to changing dynamics, in particular since the added mass of the
grasped object might be non-negligible compared to the mass of the drone
itself. Third, if such systems are to be generally useful, they must also
function without perfect state information from external motion capture
systems; therefore they must rely on onboard perception and their per-
ception system has to be resilient to the manipulator partially occluding the
onboard camera. These problems must be solved in real-time, to enable
efficient operation, and with the limited onboard computation, to circum-
vent the need for an external infrastructure.

The few reported examples of high-speed aerial grasping rely on
motion capture systems, or fail to generalize across environments or grasp
targets. For instance, Thomas et al.”” demonstrate high-speed grasping of up
to 3 m/s. But, the system relies on a motion capture system for both the state
of the drone and target and the manipulator is specifically designed for
grasping a cylindrical object weighing only 27 g. They use a rigid manip-
ulator and ignore the risk of contact interaction with the ground by sus-
pending the target in the air. Fishman et al.”” demonstrate dynamic grasping
with a soft aerial gripper, but the system requires external localization for the
quadrotor and target. The system was only shown to grasp one type of object
and with a grasp speed of only 0.2 m/s. Several works take strides towards
vision-based aerial manipulation but reduce errors by using motion-capture
for drone localization, flying at slow speeds, and/or making strong
assumptions that limit the types of objects that can be grasped. Bauer et al.””
use a segmentation network and point clouds to determine the pose of
arbitrary targets, but perform the computations using an offboard com-
puter. Furthermore, the state of the drone relies on a motion capture system.
Ramon-Soria et al.”* employ a multi-link rigid gripper and a CAD model of
the object to precisely identify grasp points. As a result, the system can only
execute very careful, stationary grasps. Lin et al.”” are capable of performing
onboard vision-based grasps in outdoor environments, but also employs a
rigid gripper which requires careful gripper positioning and is limited to
stationary grasps. Other works make strong assumptions that the target
must be cylindrical, rely on motion capture for the drone state, and are
unable to grasp with any notable speed**”’. None of these works combines
vision-based drone localization and target pose estimation, the ability to pick
up targets with meaningful forward velocity, and fully onboard
computation.

We posit that aerial grasping can be improved by focusing on soft
grasping mechanisms rather than trying to achieve extremely precise
positioning with a rigid manipulator. We draw inspiration from biological
systems (e.g., birds), which utilize a combination of rigid and soft tissues to
achieve unparalleled agility and robustness™. Soft robotic grippers can
passively conform to the grasped object, reduce the need for explicit grasp
analysis, and weaken the coupling of flight and manipulation dynamics; this
is an example of morphological computation, i.e., the exploitation of passive
mechanical elements to supplement explicit control”. In this work, we
combine a rigid quadrotor platform with a soft robotic gripper (Fig. 1A, B).
Rigid and soft robots can operate together synergistically * as hybrid systems
that get the best of worlds: our system combines the speed and agility of a
rigid quadcopter with the natural compliance and robustness of a soft
robotic gripper, and harnesses control methodologies that enable its rigid
and soft components to work together.

Contribution. Our first contribution is to develop a soft, quadrotor-
mounted gripper with passively closed and tendon-actuated foam fingers.
Our design enables fast closure at grasp, while compensating for positions
errors, complying to the target-object morphology, and dampening reaction

forces. Our second contribution is to develop a real-time and fully onboard
perception pipeline for drone and target state estimation, using two cameras
and an onboard GPU (Fig. 1C, D). Our pipeline requires prior knowledge of
the target’s geometry and visual features. The pipeline combines a neural-
network-based semantic keypoint detector with a state-of-the-art method
for robust 3D object pose estimation and a fixed-lag smoother. Finally, we
integrate a minimum-snap grasp trajectory planner with an adaptive con-
troller for the drone and a finite-element-based approach for the soft gripper
control. The adaptive controller is able to adjust to quickly changing
dynamics, caused by the grasped object and related aerodynamic effects
(e.g., ground effect and down-wash resulting from the grasped object); the
finite-element-based approach computes optimal configurations for the soft
gripper that are key for high-speed grasping.

We evaluate our soft drone with onboard perception when grasping
three different objects in both indoor and outdoor environments. We pre-
sent extensive experimental results on these objects across 180 flight tests. In
contrast to prior work, our system performs all computation on board, can
fly with or without a motion capture system, and can perform high-speed
grasping of static targets at up to 2.0 m/s. Moreover, we show that when
operating within a motion capture system the soft drone can also grasp
objects from moving platforms: a quadruped robot carrying a med-kit
moving forward at 0.3 m/s, and a rotating turntable with a relative grasp
speed of 1.5 m/s.

Results

In this section, we provide an overview of our system (Section “System
overview”) and then discuss the results of our flights with both static (Sec-
tion “Grasping static targets”) and moving targets (Section “Grasping
moving targets”). More technical details are postponed to the Materials and
methods section, and visualizations of the system and experiments are
shown in Movie 1.

System overview
A successful object grasp requires the drone to detect and estimate the
object’s pose, plan a feasible grasping trajectory, and track that trajectory
while facing complicated contact dynamics and other external disturbances.

Our system (Fig. 2) is designed to perform fully onboard perception,
using a RealSense D455 color and depth camera for object pose estimation
and a RealSense T265 stereo fisheye camera for visual-inertial odometry
(VIO) for drone state estimation’. After estimating the target’s and drone’s
pose in the global frame, (While some aerial grasping approaches based on
visual servoing avoid the need for an explicit world-frame target estimate®*”’,
we form a global estimate of the target’s pose to remove the constraint that
the target must always be visible in the camera’s field of view, which is a
restricting assumption in particular right before grasping.) the quadrotor
plans a minimum-snap polynomial trajectory ™ connecting its initial hover
point, a grasp point directly above the target, and a terminal hover point.
This reference trajectory is then tracked by an adaptive flight control law**
which learns to compensate for the additional mass after grasp and for
unmodeled aerodynamic effects. The gripper’s finger positions are con-
trolled along the trajectory using a finite-element-based approach™** gov-
erned by an objective functions that balances target object visibility and
grasp robustness. The object pose estimation and trajectory planning
algorithms run on a Jetson Xavier NX, the low-level flight control runs on a
Pixhawk micro-controller, and the visual-inertial odometry pipeline runs
on the RealSense T265 camera module.

Below, we provide an overview of our soft gripper design and the
onboard perception system, while we postpone the details to Materials and
methods.

Soft gripper design and modeling. Eliminating all estimation and
tracking errors from the perception and control systems is infeasible, so
the grasp mechanism must be robust to imprecise positioning to enable
reliable grasps. Collisions between the fingers and the ground present a
particular challenge. Small amounts of error in the planned or executed
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Fig. 1 | Overview of the Soft Drone. A, B The proposed Soft Drone platform flying outdoors. C Front view of the Soft Drone platform, with the soft gripper in the passively
closed state. D Exploded CAD view of the quadrotor and gripper, including onboard sensing and computation.

trajectory lead to the manipulator contacting the ground. With a tradi-
tional rigid manipulator, these unexpected contact forces induce a
moment on the quadrotor that results in it rapidly pitching forward,
leading to a crash or failed grasp™.

We propose to solve this issue with compliant fingers for picking up the
object (Fig. 3A). Such fingers weaken the coupling between ground contact

and drone dynamics, enabling steadier flight in the event of ground contact
(Movie 1). Soft fingers also provide robustness for grasping the object: they
conform to the object morphology and do not require precisely chosen
grasp points.

Our finger design is made of foam molded in a closed position. Soft
foams, especially castable expanding polyurethane, have been recently
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Fig. 2 | Grasping pipeline overview. An accurate estimate of the target and drone’s pose is first identified and used to plan the polynomial grasp trajectory. This trajectory is
tracked with an adaptive quadrotor controller, and the soft gripper states are dictated by an FEM-based optimization.

harnessed to produce highly-deformable soft robots with favorable strain-
stress ratios”. A cable connected via eyelets along the outside edge of the
finger controls its shape (Fig. 3B). As the motor at the base of the finger
turns, the cable shortens and pulls the finger into an open position. When
the motor turns in the opposite direction, the cable loosens and the foam’s
elasticity drives the finger back to the closed position. This passively closed
finger design has the advantage that the closing speed is limited only by the
stiffness of the finger and no-load speed of the motor, in addition to lower
power draw when the fingers are closed. The resulting finger design is
mechanically quite simple compared to more traditional rigid finger designs
that require actuation at each joint. In comparison to our previous soft finger
design™ that required two motors working in synchronization to open and
close each finger, our current design has half the number of motors and is
much easier to fabricate and control. Now each finger only has a single
degree of freedom, yet it can assume nontrivial shapes (Fig. 3C).

The positioning of the fingers is important for a successful grasp. We
model the body of the gripper as a finite element mesh, and the cables as
unilateral springs running through via points in the mesh. Given a feasible
choice of real-world control inputs, e.g., motor angles %, this approach to soft
robotic modeling can accurately predict the real finger’s deformed shape.
This is done by minimizing the total energy of the system, to find a statically
stable deformed mesh position, following the approach in***:

x(u) = arg mxin E(u,x). 1)

In addition to helping us predict the gripper’s motion, the FEM-based model
can be harnessed in a nested optimization to do control. In this work, we find
optimal control inputs by minimizing a suitable objective function:

u* = arg rnuin<(’)gmp(x(u)) + OFov(x(“)))7 2

where the objective is designed to produce control inputs that deform the
gripper into a shape x(#*) that maximizes the area enclosed by the fingertips
and the target’s centroid (as quantified by the term O, , (x(u)) in Eq. (2),
see Materials and methods for a complete mathematical expression) while
also not occluding the quadcopter’s field of view (as quantified by the term
Orov(x(1))). The exact choice of objective depends on the different phases
of the grasp, as discussed below.

When the drone is planning the grasp trajectory (Fig. 5A-1), the front
fingers should not be in the front camera’s field of view or they may obscure
the object (Fig. 3D, Fig. S7). The back fingers also need to stay out of the
navigation camera’s field of view, to avoid interfering with the drone loca-
lization system. We refer to this configuration as target observation state
(Fig. 5B-1), and set Opqy (x(#)) = Opoy (x(1)) + Oroy, (x(w)) as the sum
of the FOV constraints for the rear (T265) and front (D455) cameras.

Right before grasping the target (what we call the pre-grasp state,
Fig. 5B-2), we can remove the front camera FOV constraint because we
have global knowledge of the target’s location. Therefore,
Orov(*(#)) = Oroy, (%(u)), and the front fingers can reach the

unconstrained grasp configuration, which maximizes the area between the
gripper’s fingertips and the target’s centroid, greatly improving our position
error margins (Fig. 3E). We note that this objective function also results in
the rear fingers pointing downward; if the fingers are closed too late, the
target will still be caught up by the back fingers and a successful grasp may
still be possible (Fig. 3A). Our objective function depends on the position of
the target relative to the drone. However, computational constraints prevent
us from performing this optimization in real-time. Instead, we perform an
offline optimization that substitutes the true relative position between the
grasp target and the drone with a constant, tuned offset. The offset is tuned
to approximate the actual relative position as the drone enters the pre-grasp
state and is about to grasp. This is a reasonable simplification, as all tra-
jectory shapes are locally similar near the grasp target, and the soft gripper
compensates for any induced generalization inaccuracies.

To initiate the grasp closure, the tendons are simply commanded back
to their rest positions and the fingers return to the passively closed state, thus
enclosing the target (Figs. 3F, 5B-3).

Perception System Design. Our perception system enables global
position and orientation estimation of the target object (Fig. 4). It is
important to estimate the target’s orientation in addition to position, as
some objects are much more difficult to pick up along certain axes
(e.g., the two-liter bottle in Fig. 4B). The perception pipeline assumes
that the shape (more precisely, the CAD model) of the objects to be
picked up is known ahead of time, but the framework is generalizable to
arbitrary objects.

A deep-neural-network-based keypoint detector can be rapidly trained
with an automated data collection tool (Fig. 4A) and predicts a set of key-
points in each color image collected by the onboard Realsense 455 camera
(Fig. 4C); each semantic keypoint corresponds to a specific 3D point on the
object CAD model. The detected 2D points are mapped to 3D keypoints
based on the image’s depth channel. The object’s pose can be then estimated
by aligning the detected keypoints to the corresponding points in the known
object CAD model (Fig. 4B). As there may be outliers in the semantic
keypoint detection process, we employ a robust registration algorithm,
namely TEASER++", to find the target pose. Combining the camera-
relative object pose with the quadrotor’s own odometry estimate gives a
global pose estimate for the target object (Fig. 4C). In our implementation,
we use the visual-inertial odometry computed by the T265 RealSense
camera as the quadrotor’s state estimate.

Figure 4D-F shows the pixel-space, translation, and rotation errors for
the pose estimates produced by out perception pipeline for a med-kit on a
test dataset held out from training. As the distance to the target increases, the
translation estimate degrades while the keypoint and rotation errors remain
roughly constant, indicating that our range is mostly limited by the depth
camera’s accuracy. Following the analysis in Supplementary Text S1, we
note that the maximum error our pose detection can incur while still
planning successful grasps depends on the target’s geometry and speed at
grasp, and report an estimated maximum planning distance for each object
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Fig. 3 | FEM modeling and objective functions. A Still frames from a grasp with
over 2 m/s forward velocity. The compliance of the soft fingers mitigates the high
reaction forces faced at this speed (A3) and the gripper configuration reduces the
sensitivity of the gripper closing timing. B Soft finger in its passively closed state (left)
and partially open state (right). The finger opening is actuated by a motorized winch
contracting a tendon fixed to the tip of the finger and routed through guides. C The
finger shape predicted by the FEM model based on cable retraction length u (top)

F

matches the actual finger shape for the same cable length (bottom). D Target
observation state: the field-of-view objective, Oggy, drives the mesh nodes, including
the node with position x;, out of the half space bounded by the plane defined by point
p and normal n and corresponding to the cameras' frustum. E Pre-grasp state: the
grasp margin objective, Oy, maximizes the area enclosed by the grippers fin-
gertips y; and y, and the target point s. F Gripper closed configuration: the fingers
return to their passively closed state.

at 0.5 m/s in Fig. S8. In our flight tests, we select approximately 1.25 m as our
nominal planning distance for all experiments. Additionally, these raw
global pose estimates are refined using a fixed-lag smoother to further
improve accuracy; see Materials and methods for details.

Our system is capable of estimating the full 3D rotation of the target,
which is necessary to plan grasps for targets on inclines or for determining
the feasibility of a grasp. However, for most grasping applications, the target
can be assumed to rest on a flat horizontal plane. Thus, only the target’s yaw
is used to plan trajectories.

Grasping static targets
We conducted grasps of three distinct stationary objects (a med-kit, a
two-liter bottle, and a cardboard box, Fig. 5C-E) to demonstrate the

versatility of the proposed soft gripper and vision system and quantify
the effects of various sources of error. In our tests, upon takeoff, the
drone flies to a randomized starting point from which it can see the
target, as shown in Fig. 5A. Once the perception system has an estimate
of the target’s pose, it flies to a point such that the forward direction of
the drone is aligned with a predefined grasp direction for the target and
the drone is 0.9 m in front of and above the target. (Fig. 5A-1, B-1). From
that starting point, the quadrotor flies a trajectory through the grasp
point (Fig. 5A-2, B-2) that terminates at an arbitrary endpoint away
from the target (Fig. 5A-3, B-3). The drone stops updating its estimate of
the target pose once it has started the grasp trajectory, relying on its
initial estimate of target pose and updated estimate of its own state in the
global frame in order to fly to the grasp point.
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pose between the object and the camera. C The keypoint and pose detection system
generalizes across environments and targets. The red points are predicted keypoints,
the green points are ground-truth keypoints, the dark colored axes indicate the
estimated pose, and the light colored axes denote the ground-truth pose. D-F Error
characteristics for the proposed perception system, showing pixel-space, translation,
and rotation error depending on distance between the target object and the camera
for a med-kit object.

Grasp success rate. In this first set of tests, the reference trajectories
were chosen to have a forward velocity of 0.5 m/s at the grasp point. A
grasp is considered a success if the target remains grasped until the drone
lands. For all tests, the target is secured to a horizontal surface with weak
magnets to prevent the downdraft of the quadrotor displacing the target
pre-grasp. Under these conditions, the system achieves a success rate of 9/
10, 6/10, and 10/10 for the med-kit, cardboard box, and two-liter bottle,
respectively, and with fully onboard vision (Fig. 6A). To determine the
extent that our perception system affects grasp success, we repeated these
experiments with a motion capture system that provides accurate states
for both the drone and target. The motion capture baseline performs
similarly to the vision-based approach (Fig. 6A), slightly under-
performing for the med-kit, improving for the cardboard box, and per-
forming equally for the bottle. Our results show that our vision system is
able to consistently match the motion capture results at this speed,
indicating that the gripper mechanism is robust against the additional
error caused by the perception pipeline.

The biggest contributors to grasp performance difference among
objects are their mass and surface morphology. The two-liter bottle’s
cylindrical geometry and low mass (60 g) enable consistent enveloping
grasps. The uneven, roughly concave edges of the med-kit provide good
grasp surfaces, but the high mass (148 g) makes sustaining the grasp more
difficult. The cardboard box’s tall, straight walls combined with its relatively
high mass (115 g) force the gripper to rely on large pinching force to secure
the grasp, making it the most difficult target to grasp.

In isolated tests, our gripper can hold up to a 2 kg target when the grasp
is completely enveloping. For grasps relying on pinching force, the maximum
payload decreases significantly; we observe the gripper failing consistently to
hold the cardboard box when its mass is increased to 250 g. We note that the
material properties also play a role here, where it becomes harder to maintain
a secure, pinching grasp on targets with a low frictional coefficient.

The target’s dimensions are another key factor in the success rate. We
provide a detailed analysis on how the target’s geometry affects grasp success
rate in Supplementary Text S1.

Given a secure grasp connection with a target, there is still the possi-
bility the drone cannot exert enough thrust to successfully carry the target.
The target’s mass is a key factor here, but the target’s surface area about the
top face is also an important consideration. Targets with high surface area
occlude more of the drone’s thrust envelope, leading to reduced efficiency.
In our experiments, we determined a target with mass 250 g (13% of the
drone’s total weight) and a top plane surface area of 546 cm” was the limit of
our system. For reference, the surface areas of the two-liter bottle, med-kit,
and cardboard box are 310, 411, and 319 cm?, respectively.

Error analysis. We collected ground-truth pose data for the drone and
target with a motion-capture system in order to understand the relative
contribution of errors from the target estimation pipeline, the VIO
estimate, and the trajectory tracking to the system’s performance.

The refined pose estimate for each target (Fig. 6B) at the start point of
the trajectory has at most 5 cm translation error and less than 10 degrees of
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Fig. 5 | Overview and timelapses of experiments with static targets.

A Experimental setup for the vision-based experiments. The red curve depicts the
distribution of random start points, the green line the grasp trajectory; the numbers
denote the grasp planning point @, the grasp point @, and the terminal point ®.

B Configurations of the gripper states through the course of the grasp trajectory: ©®
target observation state, @ pre-grasp state, and @ post-grasp state. C-E Static vision-
based grasps at 0.5 m/s for med-Kkit, two-liter bottle, and cardboard box, respectively.
F Outdoor vision-based grasped of the med-kit at 0.5 m/s.

rotation error. Furthermore, only the target’s yaw is needed for grasp
planning and at most has roughly 6 degrees of error.

The average error between the quadrotor’s actual position and VIO-
based estimate (Fig. 6C) up until the grasp point is about 2 cm, for a forward
speed of 0.5 m/s.

Finally, the trajectory tracking performance (Fig. 6D, E) before the
grasp point is comparable for all three objects, with approximately 5 cm
position error, and 0.05 m/s velocity error. One cause of tracking error
before the grasp time is the presence of the ground effect, where the drone
experiences greater thrust efficiency when approaching a horizontal
surface”, thus raising the drone vertically above its desired setpoint
(Fig. S1). This is partially compensated by the adaptive controller, and
the ability of the soft fingers to safely contact the ground reduces the risk
from overcompensation. Apart from specific aerodynamic effects, our
platform has a low thrust-to-weight ratio, which limits its control
authority and invokes slight tracking errors even in normal flight
conditions.

After the grasp, the higher mass of the med-kit and cardboard box lead
to increased tracking errors primarily in the vertical direction (Fig. S1),
which reduce over time as the adaptive controller learns to compensate. It is
important that both pre- and post-grasp errors are minimal for a successful
grasp: high pre-grasp errors may cause the drone to be misaligned and miss
the target, while high post-grasp errors could cause unintended collisions
with the environment (e.g., floor) and destabilize the drone.

Further breakdown of errors across separate axes is presented in
Fig. S1, Tables S1-3, and Supplementary Text S1, and information on how
these error metrics are measured is provided in Section “Measuring sources
of error”. A discussion on the maximum error bound that can be tolerated
for successful grasps is included in Supplementary Text S1.

Grasp speed analysis. We further evaluate the performance of our
system by increasing the desired forward grasp velocity to 1.25, 2, and
3 m/s for the two-liter bottle. We conducted ten flights for each speed
with the full vision-based system, and repeated another ten flights for
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Fig. 6 | Static grasp experiments results. A Success rate for each experiment,
comparing motion-capture-based performance (when available) with onboard-
vision-based performance. Ten flights were conducted for each experiment, as
indicated by the horizontal dashed line. B Refined target pose estimation errors for
each object at the time of trajectory planning, averaged across all runs. C Actual
forward velocity as measured by motion capture and VIO drift for varying

commanded speeds, averaged across runs. D, E Position and velocity tracking errors
over the grasp trajectory for the three objects. F, G Position and velocity errors for
four different speeds. The vertical dashed line denotes the time of grasp and the

shaded regions represent one standard deviation from the mean. The errors here are
computed as the mismatch between the vision-based estimate and desired setpoint.

each speed in motion capture as a baseline. Our system is capable of
grasping the bottle with full vision at over 2 m/s with a success rate of 3/10
(Fig. 6A). To our knowledge, this is the fastest fully vision-based aerial
grasp reported in the literature.

The increases in speed are accompanied by larger tracking errors in
both position and velocity (Fig. 6F, G). Because there exists a large dis-
crepancy between the desired and actual speeds at grasp, we report the
drone’s average actual grasp speed as measured by the motion capture
system in (Fig. 6C). This error can be attributed to lower control authority at
higher speeds; our platform operates near its maximum payload capacity
and struggles to accelerate quickly. However, the error is mostly along the
longitudinal direction (i.e., grasp or forward axis), with the lateral and
vertical errors remaining low regardless of speed. Longitudinal tracking
errors have little effect on our grasp success as the gripper control is
informed by the current position of the drone, not its desired position. As
long as the drone’s state estimate remains accurate up until the time of grasp,
the grasp will be triggered at the appropriate time. We validate this by
analyzing the VIO drift for the varying speeds (Fig. 6C). VIO drift does

increase with grasp speed, remaining manageable for desired speeds less
than 2 m/s, but reaching a substantial 7 cm for a desired speed of 3 m/s. As
reflected in Fig. 6A, this increase in VIO error proves to have a non-
negligible effect on grasp performance. Tables S1-S3 further break down
VIO error per axis for each speed.

Outdoor grasps. A central motivation for our onboard perception sys-
tem is the ability to operate in places where a localization infrastructure is
unavailable. To emphasize this capability, we demonstrate the quadrotor
picking up the med-kit in an outdoor field (Fig. 5F) at 0.5 m/s. Grasping
objects in outdoor environments presents several additional challenges,
including unpredictable wind disturbances, varying illumination con-
ditions, and visually diverse surroundings. Furthermore, the rough,
sustained ground plane introduces an additional challenge compared to
the indoor flights where the target was placed on a smooth, raised ped-
estal. Post-grasp, the delay in adapting to the target’s mass and thrust
occlusion causes the drone to loose altitude temporarily. The experi-
mental setup of our indoor environment allows the target to slide

npj Robotics| (2024)2:5



https://doi.org/10.1038/s44182-024-00012-1

Article

B

Fig. 7 | Timelapses of experiments with moving targets. A Moving grasps of med-
kit attached to a quadruped robot that has forward velocity of 0.3 m/s and with a
relative grasp speed of 0.1 m/s. B Moving grasps of two-liter bottle on a turntable

moving with a tangential speed of 0.08 m/s and with a relative grasp speed of 0.5 m/s;
see Movie 1 for more visualizations.

smoothly as it briefly drags against the platform. The duration of this
sliding contact is also limited by the platform’s length; this setup was
designed to accommodate a safety net which would protect the drone’s
components during crashes and landing. In the unconstrained, outdoor
environment, we noticed that the grass inflicts a much higher resistance
over a longer duration and induces a large disturbance that can desta-
bilize the drone or weaken the grasp connection (Movie 1). To combat
this, we introduce a feedforward acceleration impulse that counteracts
the immediate vertical disturbance post-grasp and briefly raises the drone
up from the ground plane. Afterwards, the drone continues tracking the
nominal trajectory. We implement this term by directly adding a con-
stant, positive vertical acceleration command to our controller slightly
after the drone grasps the target, for a duration of 0.6 seconds. We also
note that the starting point of the drone was left fixed, rather than ran-
domized as in the indoor experiments. We demonstrate a success rate of
8/10, and, to our knowledge, the first instance of dynamic manipulation
in an outdoor environment.

Grasping moving targets

In this section, we investigate grasping moving targets at high velocities, or
with high relative velocity between the drone and the target. These man-
euvers are common in biological systems, where birds of prey must quickly
capture their prey before it can escape. In robotics applications, this

capability can increase efficiency by removing the need to decelerate before
grasping as well as minimize the time the drone must spend near the ground
in dangerous environments.

Grasping moving targets presents additional challenges on top of the
ones observed with static targets. Because our trajectory optimization does
not directly consider camera FOV constraints, the target may not remain in
frame during the grasp. Additionally, motion blur and synchronization
issues further corrupt the target estimate during the grasp trajectory.
Because of this, we cannot rely on measurements to update the target’s state
and instead must predict its trajectory by rolling out the dynamics. However,
this would necessitate strong assumptions of the target’s dynamics. Our
system is unable to simultaneously handle these errors from perception and
dynamics, so we demonstrate the ability to grasp moving objects with the aid
of motion capture for drone and target localization.

Our first set of experiments with moving targets consists of the med-kit
mounted on top of a Unitree Al quadruped robot (Fig. 7A). A human
operator steers the quadruped in a roughly linear motion (Fig. 8B). Even
though the trajectory is nominally linear and constant velocity, there is
noticeable variation. We conducted 10 flights at a slow quadruped forward
velocity (roughly 0.15 m/s) and a fast forward velocity (roughly 0.3 m/s)
(Fig. 8C). The drone was commanded to grasp the med-kit with a relative
forward velocity of 0.1 m/s. The drone achieved 10/10 success for the slow
speed, and 6/10 for the fast (Fig. 8A). This difference can primarily be
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Fig. 8 | Moving grasp experiments results. A Success rates for each experiment,
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speeds. B, C Position and velocity of the target for the quadruped experiments.
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represent the axes in the inertial floor plane. F, G Position and velocity tracking
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errors for the quadruped experiments. H, I Position and velocity tracking errors for
the turntable experiments. For all plots, the solid black line denotes the start of the
grasp trajectory, and the dashed black line is the time of grasp (after which the target
pose is unavailable).

attributed to the increased tracking errors seen at grasp point for the higher
speed (Fig. 8F, G), with noticeable increases in lateral and vertical errors
(Fig. S2, Tables S2 and S3).

For our second set of dynamic experiments, the two-liter bottle sitson a
lever arm attached to a motorized turntable (Fig. 7B). With a fixed rotation
speed of the turntable, we perform 10 tests for each desired relative grasp
speeds of 0.5, 1.0, and 1.5 m/s. For all experiments, the two-liter bottle
follows a circular arc (Fig. 8D) with a tangential speed of approximately
0.08 m/s (Fig. 8E). Circular motion is challenging for our approach; because
the drone tracks the target at a lever arm, the angular velocity of the bottle
gets amplified into large translational velocities at the drone’s setpoint.
Despite this, the drone exhibited high success rates for the three speeds
(Fig. 8A). Similar to the the static speed analysis, the tracking errors increase
with relative speed (Fig. 8H, I). However, these errors remain mostly
concentrated in the longitudinal axis (Fig. S2, Tables S2 and S3), which has
little effect on the grasp success. The rotational motion does induce higher
lateral errors with speed (Table S2), which causes a misalignment that
contributes to failed grasps at high speeds.

Discussion

We advance the state of the art towards deployable, high-speed, and
versatile aerial manipulation. We accomplish this by combining the
desirable properties of a soft gripper with an advanced quadrotor
platform and a state-of-the-art perception system. The gripper’s
reliable performance—even with imperfect grasp placement—and its
ability to decouple the quadrotor dynamics from contact constraints
enable high speed grasps. The system’s ability to operate outside of a
controlled motion-capture room is vital in nearly every practical
application, enabling aerial vehicles to perform manipulation tasks
such as emergency supply distribution, package pickup and delivery,
and warehouse automation.

The compliant fingers of our soft gripper are key to enabling the full
system to grasp at high speeds. As the drone flies faster, its position estimate
suffers and tracking errors increase. Furthermore, the detections of the
target’s pose have several centimeters of error and VIO drift adds additional
error. In spite of these error sources, the system successfully picks up objects
at over 2 m/s, with full onboard vision.
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The gripper mechanism is mechanically simple, which we have found
to be a great advantage in manufacturability and repairability. Each finger
assembly requires only a handful of 3D-printed parts, fishing line, off-the-
shelf foam, and a small motor. The fingers themselves have been surpris-
ingly resilient when attached to the drone. Their most common failure
modes are tears that develop near the base, which we have been able to easily
repair with common super glue. They also provide cushion to the drone
during hard landings; during our development we have seen the drone fall
over six feet onto solid surfaces and not require any repair. Even in these
cases, the fingers did not break and were used successfully for subsequent
grasps.

Controlling soft fingers can be challenging, as they are difficult to
model. In comparison to rigid manipulators, which have a well-defined
finite dimensional state space, soft fingers are a continuum and have an
infinite-dimensional state space. This makes it difficult to relate control
input to finger state, which is necessary for our gripper to open its fingers for
object grasping while staying out of the cameras’ field of view when
necessary. We have demonstrated that FEM-based modeling and control
enable us to accurately approximate the continuum mechanics of our soft
fingers, enabling reliable grasp performance. Our approach is readily gen-
eralizable to different, task-specific gripper configurations, which could be
designed to exploit the morphology of a specific target, following the geo-
metric analysis in Supplementary Text S1.

We see several potential avenues for future work. One limitation of our
pose estimation pipeline is its assumption of prior knowledge of the target
object’s geometry and visual features. Leveraging recent advances in
category-level keypoint detection, e.g.,”, would enable the system’s per-
ception pipeline to generalize to other instances of the same semantic
category (e.g., multiple types of packages or soda bottles). Our drone is also
currently limited to picking up light objects. We expect that scaling up the
drone platform relative to the gripper would lead to a wider range of
graspable objects without having to change the rest of the system, as a larger
drone would have more control authority and more reliable trajectory
tracking both before and after grasp. Finally, full vision-based grasps of
moving targets is an immediate next step for our system. Grasping a moving
target using only vision-based inputs with our current system requires
predicting the object’s motion when it goes out of frame before the grasp
point, inevitably adding error to the object pose estimate. Timing offsets
between the drone’s pose estimate and the camera image frame also man-
ifest as error in the object pose estimate. These two additional sources of
error currently prevent our drone from performing vision-based grasps of
moving targets. More sophisticated trajectory prediction techniques or
constraints on the target’s possible motion might be needed to enable these
moving grasps.

Materials and methods

Hardware design

Drone design. Our drone platform (Fig. 1C) is a quadrotor inspired by
the Intel Aero Ready to Fly (RTF) drone. It has a custom waterjet carbon
fiber frame, but uses the same Yuneec brushless DC motors and pro-
pellers as the RTF drone. A Pixhawk 4 Mini flight controller running
custom PX4 firmware handles the low-level adaptive controller. The
drone is powered by a four-cell Lithium Polymer battery, which provides
about three minutes of flight time (enough for three grasp trajectories).
The total weight of the drone (excluding the gripper) is 1442g.

The drone features two complementary Realsense cameras: a D455 for
estimating the target pose and a T265 for VIO estimation. The D455 cap-
tures RGB-D images at high resolution and with accurate depth informa-
tion. The RGB images are ideal for inference with our keypoint detector, as
the high resolution color images aid feature detection and the accurate depth
is necessary for transforming keypoints from 2D pixel locations to 3D
coordinates in meters. The T265 camera has wide FOV, fisheye lenses which
help strengthen the VIO estimate by significantly increasing the amount of
detected visual features. Furthermore, the T265 performs VIO on-chip,
which alleviates the computational demands on our onboard computer. We

note that using these cameras in tandem is necessary for the performance of
our system. Using a single T265 would have poor target estimation as the
images are grayscale, low resolution, and there is no direct depth estimation.
Using a single D455 would require running a VIO pipeline on the computer,
which would exceed our computational limits.

We position the D455 in the front, pitched down at 35 degrees to
provide a good viewing angle for detecting the target. The T265 is
positioned in the rear, where it can observe environmental features
without facing significant occlusions from raising the front fingers in
preparation for grasp. The T265 is also pitched down slightly, since we
expect it to detect many visual features on the ground. Because both
cameras are downward facing and, intuitively, the gripper must be
mounted on the bottom of the drone, the unconstrained movement of
the fingers will naturally cover parts of the camera frames. Finger
movement can cover up visibility of the target or corrupt our VIO
estimate. Because of the T265’s wide FOV, it is difficult to create a drone-
gripper geometry where the gripper does not occlude the cameras.
However, by adhering to the FOV constraints in Section “Soft gripper
design and modeling”, our design can be compact and durable without
sacrificing performance.

We observed the T265’s odometry estimation failing under high-
vibration conditions, so we added vibration damping silicone grommets
between the camera and drone. The camera required physical masking on
the bottom of the camera lens to match the field of view constraint used in
the gripper’s tendon length optimization, as the camera does not support
software-defined region masking. Ensuring that the fingers were not in the
camera frame was vital, as the visual odometry estimate when the fingers
entered the frame proved to be quite poor.

The visual target estimation pipeline and trajectory planner are run on
a Jetson Xavier NX. Both Realsense cameras are connected to the Xavier via
USB 3.0 and a powered USB hub. The Xavier communicates with the
Pixhawk over UART. When using motion-capture pose estimates instead of
visual navigation, the Xavier receives pose updates over Wifi from a base
station connected to the motion capture system. See Table S4 for detailed
component specifications.

Gripper design. The drone interfaces with the gripper through standoffs
connected to a 3D printed base plate, which houses the gripper compo-
nents (Fig. 1D). A custom-made, lightweight PCB embeds an ATMe-
ga32U4 microcontroller to handle logic control, 2 DRV8434 motor
controllers which actuate four 31:1 gear ratio 12V DC motors (49 g), and
a voltage regulator and connector to convert the Lipo battery’s voltage
into a stable 12V. Jumper cables are wired from GPIO pins on the Xavier
to the PCB to connect the gripper state machine with the low level gripper
controller.

The gripper features four passively closed, cable actuated fingers
(Fig. 3B). Each finger is molded using Smooth-On FlexFoam-iT! X’ and a
custom 3D-printed mold, which follows a circular arc (Fig. S4). The initial
state of the finger is then its closed position, which is maintained by the
elasticity of the mesh. A 3D-printed finger-base connector is super glued to
the top of the finger and can be slotted into the base plate for quick
replacement. The tendon guides are positioned between evenly placed foam
extrusions and adhered with super glue. Braided fishing line is fixed to the
last tendon guide and the motorized winch, passing through the interior
tendon guides. As the winch tightens, the tendon contracts, compressing the
outer edge of the finger and forcing it open. As the winch loosens, the elastic
force of the mesh returns the finger to its default closed position. Each finger
weighs 54 g and the total weight of the gripper is 544 g.

We position the four fingers in a symmetric, rectangular configuration.
The front two fingers are commanded identically, as are the rear two fingers.
The spacing between the fingers is designed to yield sufficient positioning
error leniency for the three grasp targets (Fig. S3). Using four fingers offers a
degree of redundancy; we have noticed several instances of successful grasps
with only three of the fingers making contact. Placing the fingers in this
orientation also enables us to exploit the pre-grasp state depicted in Section
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“Soft gripper design and modeling”, which is necessary for robust, high-
speed grasps.

We measure the power consumption of our gripper by measuring the
change in battery capacity over a set duration. The gripper uses 0.294 W of
power in the pre-grasp state, 0.104 W in the target observation state, and
0.01 W while closed. Over the course of a grasp, the gripper approximately
maintains the pre-grasp state for 2 s, the target observation state for 11 s, and
the closed state for 34 s. From this, we estimate the gripper consumes 2.072J
of energy over the course of one grasp. The energy consumption is com-
parable to other bi-stable grippers. Wang et al.*’ report a total energy con-
sumption of 0.1386 J for a similar grasp operation, but our gripper is capable
of grasping targets with over 10 times the mass.

Target object perception and pose estimation

We present a robust pose estimation system that combines a keypoint
detector with a state-of-the-art algorithm for keypoint-based 3D pose
estimation, namely Teaser++". Estimated poses are further refined
through a fixed-lag smoother (Fig. 2). We also developed a semi-automated

data annotation tool to rapidly train the keypoint detector.

Semi-automated keypoint annotation. Keypoint annotation can be a
costly process, requiring multiple points to be labeled in each image of a
large image dataset (e.g., with tens of thousands of images). We draw
inspiration from prior methods of speeding up keypoint labeling by using
known camera poses at training time'"*’, enabling a small number of
manually labeled keypoints to be projected into many images. Figure 4A
presents an overview of the annotation pipeline. The target object and
calibration board are positioned such that both are visible in the recorded
camera frames, and they are fixed for the entirety of the recording pro-
cess. We move the D455 camera at varying distances and angles from the
object and record all RGB and depth images. The pose of the camera with
respect to the calibration board for each image can be readily determined
by computing the camera extrinsics using the calibration board. Known
camera poses enable reasoning about the 3D position of each keypoint
across the whole trajectory sequence. First, pixel locations for the key-
points in user-selected images are manually annotated using the Matlab
tool GUI (Fig. S5). The 3D position for each keypoint relative to the
camera is determined by back-projecting the pixel coordinates using the
depth of each keypoint, given by the D455. The keypoint positions can be
further refined by minimizing the reprojection error in a small number of
manually labeled training images, and then reprojected into all other
images based on the camera model.

In our tests, we only annotate keypoints on the top face of the object
and assume that no keypoints are occluded in our training set; this is a valid
assumption considering the viewing angle of our drone. Proper annotation
of keypoint visibility is important to prevent the neural net from associating
features blocking the view of the keypoint with the true keypoint features.
The labeling method does support keypoints placed on all sides of the object,
but self-occlusions require visibility detection. This can be done by sampling
the depth of each keypoint using the depth image and comparing that
against the expected depth obtained by transforming the keypoint relative to
the camera. If there is a large discrepancy, the keypoint is assumed to be
occluded. This method requires a highly accurate depth sensor and the D455
proved to be inadequate.

We add variety in the training set to improve generalization of the
keypoint detector by collecting data in several environments: a motion
capture room, a cluttered workshop, a lounge space, a foyer, and an outdoor
field (Fig. S6). For each location, the data collection process was repeated
multiple times with different poses of the target object. A randomly selected
subset of the runs were added to the validation set. Across the three targets,
39,548 training images and 15,172 validation images were collected and
annotated, within only a few days of manual labor.

Keypoint detection. We use the architecture provided by a state-of-the-
art human keypoint detector, trt-pose”’, and train the entire model for our

tasks. The network is comprised of a ResNet-18 backbone, followed by a
keypoint prediction head. The training data is augmented using standard
techniques (perturbations of translation, rotation, scale, and contrast) to
further improve diversity of the training set. We present the full set of
parameters we used for trt-pose’s training pipeline in Table S5. Training
takes around seven hours on an Nvidia GeForce GTX 1080 Ti GPU, with
the loss converging after 75 epochs.

The original RGB images have size 1280 x 720 and are cropped by
removing the top half and resized into 912 x 256 images to improve infer-
ence speed. Due to the geometry of the camera mount, cropping the top half
of the images does not reduce performance as objects in that region are too
far away to detect reliably anyway. The trained network is compiled to
leverage the Jetson Xavier's hardware using TensorRT, and runs at
approximately 14 Hz on the Xavier.

Figure 4D shows the results of the keypoint detector on the med-kit test
set, along with visual representations in Fig. 4C. Keypoint error is defined as
the pixel distance between the estimated and ground-truth keypoints,
averaged across all keypoints, and only for keypoints that were valid
detections (an invalid detection occurs when the keypoint isn’t detected and
the network predicts (0, 0)). The error remains roughly constant with dis-
tance, but we note that pixel error is influenced by the scale of the target. At
far distances, the target’s perceived area is smaller and a unit of pixel error
translates to higher error in world coordinates than a unit of pixel error at
close distances.

Robust point cloud registration. From the depth image provided by the
D455 camera and the detected keypoint pixel coordinates, we create an
estimated point cloud of keypoints, denoted as A = {a;} . Further-
more, the corresponding keypoints are also annotated on the known
object CAD model through the data annotation tool, leading to a second
point cloud, namely B = {b,}} . Solving for the transformation between
these two point clouds allows us to estimate the pose of the target relative
to the camera. We seek to find the rotation R € SO(3) and translation
t € R? which minimize the following truncated nonlinear least squares
problem™:

N
min min(||b; — Ra; — t||?, & 3)
ReSO(3) teR? ; (Ite ' ©),

where ¢ represents the upper bound on the residual error for a measurement
to be considered an inlier, and is set to be 10 mm. In the truncated least
squares problem in Eq. (3), measurements with residual error smaller than ¢
are used to compute a least-squares estimate, while residuals greater than ¢
have no effect on the estimate and are discarded as outliers. In our
application, this is useful for filtering out outliers caused by spurious
keypoint or depth detections. In practice, we utilize Teaser++° to solve this
problem, which takes on average 2 ms to solve a single registration problem
on the Xavier NX. Fig. 4E, F demonstrate the results of our approach for the
med-kit object. Translation error is defined as the Euclidean distance
between the estimated and ground-truth translations, while rotation error is
computed as the geodesic distance between the estimated and ground-truth
rotations. Additionally, we only report data for detections that had at least
one inlier point. We nominally plan trajectories at a distance of 1.25 m from
the target, which equates to roughly 5 cm of translation error and 15 degrees
of rotation error. Our experiments have validated that this error is well
tolerated when combined with the fixed-lag smoother and the robustness of
the soft gripper.

Fixed-lag smoother. Estimates of the target’s relative pose from indi-
vidual images are fused together in a fixed-lag smoother to reduce noise in
the estimate and provide estimates for linear and angular velocity.
Knowledge of the target’s velocity is necessary for grasping moving tar-
gets at the desired relative speed. We rely on the estimation process
described below to infer velocity.
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We model the target’s motion as a nearly constant velocity model™,
with the target’s pose Ty € SE(3) and linear and angular velocity &, € R® at
time k:

Iy, = TH (fkdt) (4)
S = &t
where v, € R ~N(0,%) represents white-noise angular and linear
acceleration, and F} maps a vector in R® (on the right-hand-side of the
operator) to SE(3) (e.g, via an exponential map or, more generally, a
retraction”’) and then composes it with the pose on the left-hand-side of the
operator. Given observations of the target’s pose over the last 7 timesteps,
namely T'__.;, we estimate Tr_,.rand &7 as

T
. T 2
min > T BTyl
TT—HT‘ET—r.T k=T—7

(T, B (Ed) B Ty, 113, ©

HIIE — £y 1B, + TER,,

where H denotes a tangent space representation of the relative pose between
two poses. The first term encourages the estimate to match the target pose
observations, the second term constrains the estimated velocity to be con-
sistent with the poses, and the third term forces changes in velocity between
timesteps to be small. The final term provides regularization on the velocity
estimate. We found a small amount of velocity regularization to be necessary
for consistent initialization of the filter. Q;, (), Q3, Q4 are tunable weight
matrices to trade off among the four terms (see Table S6). The optimization
is implemented in C++ using the GTSAM library®. The incremental
iSAM2 algorithm"’ is used to optimize (5), as it enables reuse of computation
between timesteps.

Trajectory optimization and control

To enable our grasps, we compute a smooth polynomial trajectory for the
drone, passing at a set distance over the target (the grasp point). This
nominal trajectory is tracked with an adaptive controller which compen-
sates for the added mass after grasping and for other external disturbances.
Throughout the grasp procedure, the drone’s current position is fed into a
gripper state machine, which sets the finger winch angle based on the results
of an offline FEM-based optimization (Fig. 2). The trajectory optimization
and control are based on prior implementations for motion-capture based
grasping”’, with added functionality enabling trajectory planning during
flight and updating of the reference trajectory to account for moving targets.

Minimum-snap polynomial trajectory optimization. We compute a
fixed-time polynomial aligned with the target’s grasp axis and con-
strained to start at the drone’s initial position, pass through the grasp
point, and end at an arbitrary final position. The grasp point is defined as
the target’s position, plus a tunable offset to account for the length of the
fingers and any misalignment between the target frame center and the
geometric center. The end point can be selected arbitrarily and was
chosen to be 1 m above the target and 1.7 m behind the target. We seek to
find a polynomial that minimizes the 4th derivative of position, or snap,
of the drone. As shown in*, polynomials of this form enable smooth,
continuous motion which allows for stable, consistent grasps. The key
idea which enables grasping moving targets is that the polynomial is
planned with respect to the target’s frame, rather than the inertial frame.
As the target moves the polynomial moves with it, inducing a disturbance
which is compensated for by our low-level tracking controller. The
polynomial provides a series of position, velocity, and acceleration set-
points that are tracked by the drone’s flight controller. The drone’s yaw
setpoint is set to always point toward the estimated object position.
Supplementary Text S2 provides further exposition on our specific tra-
jectory optimization implementation.

Adaptive quadrotor control. The drone is subject to various forms of
disturbances that could impede both grasp success and post-grasp flight
performance. After the target is grasped, the effective mass of the
quadrotor increases and the thrust efficiency decreases, as the grasped
object partially obstructs the propellers. Estimates of system model
parameters are also imperfect, and benefit from online adaptation.
Additionally, we observe that our system is also sensitive to variable
disturbances such as wind in outdoor environments or the ground effect.
To mitigate these disturbances, we adopt the geometric adaptive control
law presented in™, that we briefly review below.

The external disturbances in our system primarily affect the transla-
tional dynamics of the drone, with negligible impact on the rotational
dynamics. Hence, we model the quadrotor dynamics as:

mp = mg + fb, + 6;
R=RO (6)
JO=-0xJ0+7

where m is the drone’s mass, J is the moment of inertia, g is the gravity vector,
pe R3, pe R3, ReSO@3), 2 € R? are the position, velocity, rotation,
and angular velocity of the drone, respectively, f is the scalar thrust force
applied along the local vertical direction b,, 7 is the torque applied by the
quadrotor, and 0]« is the unknown translational disturbance. The hat
operator © maps a vector in R? to an element of the Lie algebra s50(3), i.e., a
3 x 3 skew symmetric matrix; see™.
We then compute the quadrotor’s thrust and moment as:

f= —bj(kpep + ke, + mg — mp, + @f) 7)

T = —ke —kqgeq +JR R, Q,

8
+@®R'R,2,)"JRTR,0, ®

where p;, R; Qg are the desired position, attitude, and angular velocity,
respectively, e, e,, e, eq are the position, velocity, rotation, and angular
velocity errors, 0; is the estimated disturbance on the translation dynamics,
and kp, k,, k;, kq are user-specified control gains. We refer the reader to® for
the definition of the errors and a more comprehensive discussion.

The estimated disturbance is adjusted online using the following law:

de

where y5 k,rare user-specified gains and IT is a suitable projection function.
This formulation ensures that the tracking errors asymptotically go to

zero even in the presence of unknown disturbances™.

FEM-based gripper control. To optimally actuate the gripper, the
controller must deform its fingers such that they effectively enclose the
target object, while simultaneously ensuring that they do not obstruct the
view of the onboard cameras. To balance these two goals, we employ an
optimization-based control method. At the core of our control method is
a finite element-based (FEM) model.

The gripper’s volume is discretized into a finite element mesh with
nodal positions x, and simulated cables are routed through this mesh. Given
cable contractions u, we can solve for a corresponding statically stable pose

x(u) = arg min E(u, x) (10)
by minimizing the total potential energy of the system E using Newton’s
method. This general approach can be elegantly extended to account for
dynamics, and is done in™***.

Our control optimization is a nested optimization. Its objective
O(u, x(u)) is written in terms of the physically valid pose x(u), found by
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solving Eq. (10). We minimize this objective using gradient descent to find
optimal control inputs for a desired configuration

(11

Computing the gradient of our control objective requires the Jacobian 4
relating changes in control inputs # to changes in the corresponding
physically-valid mesh shape x(u), which we solve for using direct sensitivity
analysis, as described in®.

Our specific control objective O is the weighted sum of two sub-
objectives, which are illustrated in Fig. 3D-E:

u* = argmin O(u, x(u)).

0= Ograsp + OFOV (12)
The first sub-objective, O, drives the gripper’s fingers toward a config-
uration where they can effectively grasp an object. The sub-objective
Opgrasp = lI(s =3, ()) X (s — y,))II? (13)
works by maximizing the area enclosed by the gripper’s fingertips and a
target points (Fig. 3E”). Here, s represents the centroid of the target shifted
from the drone by a nominal offset which approximates the relative position
between the drone and target at the moment the gripper begins to close. The
fingertip positions y;(#) and y,(u) are defined in terms of the physically-
valid mesh position x(u) using barycentric coordinates.
The second sub-objective, Orqy, ensures the the gripper’s fingers do
not obstruct the camera’s field of view. This is accomplished by defining a
plane with point p and normal n, analogous to the bottom face of a camera’s
view frustum (Fig. 3D). To prevent the finger from entering into the cam-
era’s field of view, the sub-objective

Okov = Zf((l’ — x(w)) - n) (14)

sums over the squared penetration depths of all nodes in the mesh. Here, the
function

zz—ez—|—§7 if e<z,
f@=1z, if 0<z<e, (15)
0, otherwise

is a smooth one-sided quadratic, driving the mesh outside the camera’s field
of view while ensuring the optimizer is well-behaved. Depending on the
grasp phase, Oy is added for both the front and the rear camera (to obtain
the target observation state) or only for the rear camera (to obtain the pre-
grasp state).

Measuring sources of error

The success of our vision system depends on three sources of error: target
estimation error, VIO drift, and trajectory tracking error. We collect motion
capture data alongside the vision flights to benchmark these errors, although
the quadrotor only uses vision-based data for its own control.

To quantify the amount of target estimation error (Fig. 6B), we placed
motion capture markers near the target, but far from the key visual features.
The target’s motion capture frame was manually adjusted until it visually
appeared aligned with the expected target’s vision frame. Estimation error is
then reported as the difference between our vision based estimate and the
motion capture ground truth. VIO drift (Fig. 6C) was measured by aligning
the grasp trajectory as reported by the vision system with the recorded
motion capture data. This alignment was done using evo™, which performs a
least squares optimization to find the optimal rigid transformation between
trajectories. Here, we are only concerned with aligning part of the trajectory
up until the grasp point, as post-grasp drift generally has little effect on grasp
success. Therefore, we align trajectories starting from 9 s before the grasp

time up until the grasp time. We found this range to be suitable to be sure
that the resulting alignment errors were due to trajectory drift and not
because of a lack of data points. Trajectory tracking errors (Fig. 6D-G) were
analyzed by extracting the setpoint and pose estimate from the flight
controller.

When generating the plots and tables for these metrics, we exclude runs
that resulted in catastrophic failures (i.e., the drone crashed after grasp). In
total, we discarded two runs: one vision-based run with the cardboard box
and one vision-based run with the two-liter bottle at 3 m/s desired speed.
These runs were counted as failures. Additionally, for each of the turntable
experiments, five trials were conducted with the turntable spinning clock-
wise and five were conducted counterclockwise. Because there is large
variation between these cases, the error plots only use the clockwise case.
The success rates use both cases.

Data availability

All data necessary for the conclusions of this paper are in the main text or
Supplementary Materials. The flight data, keypoint detector training data,
videos of each experiment, code for analyzing and plotting the data, the
automated keypoint annotator, the keypoint detector training pipeline,
CAD of our system, and our full flight stack can be found at: https:/
datadryad.org/stash/share/sf9Us4eZZiVLbog6iqXh4vpxVfcOXmI3ia_
7NtF96Hw.
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