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Transformer-based multitask assist
control from first-person view image and
user’s kinematic information for
exoskeleton robots
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Exoskeleton robots necessitate the capacity to promptly generate appropriate assistance for the
user’s needs across a range of motion scenarios. In this study, we developed a multitask assistance
control strategy using a transformer that generates control commands to the exoskeleton robot
according to the user’s status and the environment. Our approach captured the user’s joint and trunk
motion and a first-person view image as input to the control system. A series of motion tasks were
employed to validate the implemented AI with the proposed approach, including walking, squatting,
anda step-upmovement.Healthy subjects participated and theapplication ofAIwith ourmethod to an
exoskeleton robot reduced muscle loads. Moreover, the learned assist strategy was found to
generalize, reducingmuscle activity in another participant. These findings represent a first step toward
achieving exoskeleton robot control that assists diverse movements across individuals in various
environments using our transformer-based approach.

Exoskeleton robots attract considerable interest due to the aging of the
population and have been instrumental in assisting individuals with
movement disorders1,2. These robots are frequently utilized for the purpose
of rehabilitation training at locations that are equipped with additional
safety systems3,4. The controllers for these assistive robots are oftenmanually
designed, and the robot movements are pre-determined5. To overcome this
situation, human-in-the-loop optimization techniques are proposed to
customize the assist control strategy for each user6,7. These techniques
employ the user’s metabolic cost8,9, the user’s preference10, or muscle
activity11 as the objective function. This technology enables personalized
control. However, current methodologies have only been employed to
facilitate periodic movements such as walking. Furthermore, the optimi-
zationprocess often requires a significant investmentof timeandeffort from
the user to identify optimal parameters, and proposals to overcome these
problems are being tackled12.

On the other hand, when using exoskeleton robots in everyday life,
such as in non-medical applications, the ability to respond to a broader
range of movements in accordance with the user’s intentions and the sur-
rounding environment is of greater importance. To capture the user’s
motion intention, electromyography (EMG) is often used, and EMG-based

control approaches are proposed13 using either a finite state machine14,15,
event-based approach16, regression-based approach17,18 or data-driven
approaches19. These EMG-based approaches enable the user to control
the exoskeleton robot intuitively. However, they require time-consuming
sensor attachment and careful calibration for each user and each day. This
cumbersome prevents the daily use of assistive devices. Consequently, these
EMG-based conventional methods have only been employed in limited
situations, such as in rehabilitation sites. This paper examines the potential
of utilizing visual data to assess the surrounding environment, enabling the
exoskeleton robot to select appropriate assistive commands in response to
the environment without sensors, which are difficult to handle, such
as EMG.

To date, only a few studies employ vision sensors to control the
exoskeleton robot. For instance, it is proposed to detect an obstacle, suchas a
small box on the walking path, from depth images and to change the swing
leg height to provide sufficient foot clearance to overcome the obstacle20. On
the other hand, this study focuses on efficient assist generation for exos-
keleton robots using image information, which has a different purpose and
task from other vision-based approaches (e.g., obstacle detection and object
recognition). To the best of our knowledge, no assist algorithm has yet been
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developed that can generate assist actions to copewith the various situations
by utilizing the visual input.

In this study, we seek to leverage recent advancements in computer
vision technology, namely deep neural networks, to capture a human
movement sequence over a specified period rather than at a single point in
time21. To this end, we employed a transformer22, which is capable of
accurately generating the output sequence from the input sensor informa-
tion history. The outputs of the transformer were then used to generate the
action sequence of the assistive devices. Specifically, we propose a
transformer-based motion generation method for controlling an exoskele-
ton robot with the objective of assisting user movements in daily life. The
sensor inputs to the transformer are composed of the visual information
captured by the first-person view camera and the kinematic information,
including the user’s joint angle and angular velocities. Recent studies have
also shown that RNN-basedmethods such as LSTM and GRU are effective
in predicting humanmotion23,24. These methods are effective for time series
information from a single sensor. On the other hand, this study integrates
different types of sensors, first-person view images, and kinematic infor-
mation. The transformer-based approach can effectively learn long-range
dependencies between different data elements using a self-attention
mechanism. It can consistently integrate complex kinematic information
and visual data, which is expected to demonstrate superior performance in
our assisted robot control task.

A motion sequence generation task was conducted to evaluate the
efficacy of our proposed method. The task involved squatting down to pick
up an object on the floor and climbing a step (Fig. 1a), which exemplifies
movement in everyday situations. The participant was instructed to gen-
erate a motion sequence freely, without the necessity of following a pre-
determined order of motions. For example, the subject could squat in front
of an object, then walk to a step and ascend it. The above procedure for
generatingmotion sequences was employed to collect labeled data from the
sensors attached to the participants (Fig. 1c). The data was labeled by the
participants themselves in amanner that involveddirect interactionwith the
system.Theparticipantswere instructed topress a buttonwhenever they felt
the need for assistance with the exoskeleton robot. Subsequently, the system
was trained with the labeled data to enable the prediction of the user’s
command sequences. Each element of the sequence was either a button

press or not, corresponding to the situation in which assistance was needed
or not.

In the experiments, we used our carbon-frame exoskeleton robot25 to
assist the knee jointmovements (Fig. 1b) of the participants. The assist forces
to the left and right knees of the exoskeleton robot were provided based on
the predicted assist action sequence generated by the trained transformer-
based assist controller. The derived control sequence was the pressure
command to the pneumatic air muscles (PAM) attached to the exoskeleton
robot, which drives the knee joints. The assist force command was either
“active”or “free.” In the event that the “active” command,which predicts the
button-press period by the user, was selected, a constant pressure command
was transmitted to the exoskeleton robot. Conversely, if the “free” command
was selected, the air pressure to the PAMwas not supplied, allowing the user
who is wearing the exoskeleton robot tomove their knee joint freely without
being disturbed by the force generated by the PAM.

The rest of this article is organized as follows. Section 2 shows our
experimental results. In Section 3, we describe the discussion. Finally, we
explained the methods in Section 4.

Results
Assist control performance
The efficacy of the assistive control performance of our proposedmethod is
demonstrated in the sequence of motion generation tasks, which comprise
squatting down to pick up an object on the floor and climbing a step
(Fig. 1a).

In this experiment, the movement sequence was set to last three
minutes, and the participants were asked to perform it at a rhythm of 40
beats per minute. Consequently, the number of squats and left and right
climbing stepswas identical in both conditions. The squatwas performed30
times, and the step-climb with the right and left leg was executed 15 times.
The first participant (P1) was tasked with labeling the data to train the
transformer model. Furthermore, a second participant (P2), who was not
involved in the data labeling for model training, was asked to perform the
movement task to assess the movement generalization performance of the
acquired transformermodelusing thedata fromthefirst participant (P1).At
the same time, EMG data from muscles involved in knee joint movements
(Fig. 1d) and heart rate data were collected during the experiments.

Fig. 1 | Lightweight knee exoskeletons andmotion
task and data collection. aMotion tasks composed
of squatting down to pick up an object on the floor
and climbing a step. Each motion was asked to be
conducted at a different place, and the participants
walked there. b Knee exoskeletons. This robot con-
sists of a carbon fiber structure and features a highly
responsive joint driven by a pneumatic artificial
muscle actuator. c Sensors for a model of assist
action sequence and their measurement locations.
d EMG locations for measuring muscle load around
the knee joint in a real-time exoskeleton robot
control experiment. These EMGs are also used for
the EMG-based methods.
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Subsequently, the assistive performance of the system was verified by
evaluating the EMG amplitudes and increased heart rate to ascertain
whether the muscle activities related to the knee movements and the heart
rate were reduced with the use of the proposed approach in the multitask
condition.

Table 1 shows themean EMG amplitude of the right and left legs from
three muscles and the increased heart rate ratio. The data were obtained
under two conditions: 1) wearing the exoskeleton controlled by our pro-
posed approach and 2) not wearing the exoskeleton. In each condition, the
participants performed the three-minute movements. The EMG signals
were extracted during the periods of rising from a crouched position in the
squatting movement or climbing up the step. A total of 45 EMG recording
trials, 30 for squat movements, and 15 for climb-upmotions were obtained
from the right leg, and the same number of recordings were also obtained
from the left leg.

As illustrated in Table 1, themuscle activity of the assist conditionwith
our approach is consistently lower than that of the condition without the
exoskeleton. Figure 2 depicts the mean integral EMG of all the measured
muscles under the two conditions. In this study, we set up the null
hypothesis that there is no difference in physical burden between the con-
ditionof assistance by the exoskeleton robot using theproposedmethodand
the normal condition of not wearing the exoskeleton robot for the same
motion task. The Wilcoxon signed-rank test was applied to verify this, and
significant differences were found between the proposed approach and the
conditionwithout the exoskeleton (p<0.01) for bothP1andP2participants.
This comparison of muscle activity resulted in rejecting the null hypothesis
and supporting the alternative hypothesis.

Table 1 also shows the results of theheart rate ratio,whichwas averaged
over the period from 0 to 1.5 min and from 1.5 to 3 min. It can be observed
that the increased heart rate ratio with our approach is lower than without
the exoskeleton, apart from the P2 data observed from 0 to 1.5 min. These
findings demonstrate that our system is capable of effectively assisting users
in multitasking by observing the surrounding environment.

Assist sequence generation
Here,wepresent the predictive performance of the desired action command
sequence. In this analysis, we limited our investigation to data from a single
participant, as the other participant was only engaged in the assessment of
assist control performance. The participant (P1) completed the set com-
pound motion task nine times, with each trial lasting one minute. Eight of
the nine trials were utilized for model training, with the remaining trial
serving as the test.

The proposed method incorporates an approach to extracting image
features for input, which are combined with kinematic information. In the
experimental setup, there were two control commands: “active” and “free”.
Therefore, the estimation problem of the user’s motion intention can be
treated here as a binary classification problem. Figure 3a shows the assist
action sequences generated by our proposed method and the joint torques.
The joint torques are the output of the exoskeleton robot calculated from
Eqs. (1) and (2) when using the predicted commands. The blue dashed line
shows the ground truth sequences annotated by the participant for each leg.
From these results, our approach can accurately generate the assist action
sequence.

We compared our proposed approach with the widely used EMG-
based movement intention estimation methods. First, we prepared an
EMG-basedmodel using the same transformer architecture as the proposed
approach. This model does not use ResNet and was trained only on EMG
andkinematic information. In addition, as suggested in the previous studies,
we adopted a Support Vector Machine (SVM) with a radial basis function
kernel and a Linear Discriminant Analysis (LDA) to classify the muscle
activity as either “active” or “free” command. The SVM is often used in the
upper limb26,27 and lower limb28 motion recognition with EMG. Similarly,
the LDA is also often used in hand gesture recognition29,30 and handmuscle
recognition for impairment31 with EMG. Here, we refer to our proposed
model as VK-TR and the EMG-based model using the same transformer
architecture as the proposed model as EK-T. The EMG-based models are
referred to as EK-S when using SVM and EK-LD when using LDA. The
input variables to the three EMG-basedmodels were composed of the EMG
signals and kinematic information.

Figure 3b shows that our proposed method, even without using bio-
signals, was able to achieve comparable or better estimation performance
with EMG-based methods, where bio-signals can be used to monitor the
user’s action command directly. However, measuring these signals needs
careful preparation and calibration,whichprevents us fromadoptingEMGs
for assistive robot control for daily use. These results indicate that our
proposed method allows us to control assistive robots with an accurate
estimation of the user’s motion intention without cumbersome preparation
and calibration procedures.

Ablation testing for image features
We also conducted an ablation study to identify which part of our proposed
pipeline contributed to accurately estimating movement intention. In the
fully equipped pipeline, the VK-TR model, the image feature is extracted
usingResNet32 followedbyPrincipalComponentAnalysis (PCA), and these
features are plugged into the transformer along with kinematic information
to generate assist command sequences.

First, we evaluated the contribution of ResNet to the prediction per-
formance. To implement the model without ResNet, we use the same
transformer as the proposed approach, but the image features are extracted
in a straightforward way. Concretely, the normalized RGB data are con-
verted to a one-dimensional vector. Then, lower-dimensional image fea-
tures are extracted using only the PCA. Finally, these image features are
plugged into the transformer along with the kinematic information. We
refer to this model as VK-T.

Second, to evaluate the usefulness of the visual modality for the assist
command classification, we adopted widely used classification methods:
Support Vector Machine (SVM) with radial basis function kernel33 and
Logistic Regression (LR)34. The image features are extracted in the sameway
as the VK-T, and the image features are plugged into these classification

Table 1 | Average of EMG signals from three muscles and
increased heart rate ratio

Participant 1 Participant 2

Assist w/o Exo Assist w/o Exo

EMGs

Vastus lateralis (×10−2) [v] 4.31 5.88 6.39 6.50

Vastus medialis (×10−2) [v] 3.35 5.22 7.09 9.64

Vastus femoris (×10−2) [v] 0.854 1.38 1.69 3.92

Increased heart rate ratio

From 0 to 1.5 min [%] 11.0 20.4 16.1 15.3

From 1.5 to 3 min [%] 17.9 28.0 32.0 38.1

a b

Fig. 2 | Average of integral EMG. a Participant 1, (b) Participant 2. Blue bars show
the condition without an exoskeleton robot, and red bars show the assist condition
with our proposed approach.
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methods along with the kinematic information. Here, we refer to these
models as VK-S when using SVM and VK-LR when using logistic regres-
sion. These models, VK-T, VK-S, and VK-LR, are trained with the same
training dataset as the fully equipped pipeline, VK-TR, and the dimen-
sionality of the PCA is determined during model training. All trained
models are applied to the same test data.

Figure 4a shows the F-score of the fully equipped pipeline, VK-TR, and
other simplified implementations, VK-T, VK-S, and VK-LR. Here, for the
method using a transformer, we considered the output as “active”when the
predicted value was above the threshold of 0.5 and as “free”when below 0.5.
Figure 4b summarizes the components of eachmethod. VK-TR, composed
of Transformer and ResNet, showed the highest performance among the
four pipelines, while VK-T showed the lowest performance. This result
indicates that the object recognition performance of the network to extract
image features is an important factor for the proposed transformer-based
assist command prediction. Furthermore, VK-S and VK-LR showed
intermediate performance. This result suggests the effectiveness of using
visual input for the assist command classification, although VK-S and VK-
LR approaches cannot be used to predict continuous command trajectories,

and VK-TR showed much better prediction performance than these two
methods.

Generalization performance in novel situations
We conducted additional analyses to evaluate the performance of the pro-
posedmodel in situations it had not encountered during training. To create
unseen scenarios, we collected data on squatting behavior to pick up two
objects with novel colors and shapes, as well as climbing behavior using two
types of step platforms that also differed in color and shape. Each dataset
includes one minute of motion for each task.

Figure 5 presents the F-scores, illustrating the novel scene recognition
performance across different datasets. For the original model trained using
our proposed approach, the results indicate high F-scores for squatting to
pick up new objects, demonstrating good generalization, whereas the per-
formance is lower for climbing steps with new stairs.

To further investigate the adaptation performance of the proposed
model in novel situations with limited additional experience, we fine-tuned
the originally proposedmodel using a small amount of data from the task of
climbing steps with new stairs, where the original model had exhibited low
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Fig. 3 | Assist action sequence fromour approach andperformance against EMG-
based methods. a The red solid line shows the predicted sequence, and the blue
dashed line shows the actual action sequence annotated by the user for each leg
motion. Act and Fr of the pressure command indicate “active" and “free," respec-
tively. The corresponding torque to the pressure command is calculated based on
Eqs. (1) and (2). b F-score of the average of right and left leg motions when the
estimations were treated as a binary classification. VK-TR refers to our approach.
EK-T uses the same transformer architecture as the proposed approach with EMG

and kinematic information, but does not use ResNet. EK-S and EK-LD use a Support
Vector Machine with a radial basis function kernel and Linear Discriminant Ana-
lysis with EMG and kinematic information, respectively. Our proposed method was
able to achieve comparable or better estimation performance with EMG-based
methods, even without using any bio-signals. Our method does not need careful
preparation and calibration, where these cumbersome procedures prevent us from
adopting bio-signals for assistive robot control for daily use.

Fig. 4 | Comparison of performance among dif-
ferent model components. a F-score of the average
of right and left leg motions when the estimations
were treated as a binary classification.
b Components of each model. VK-TR refers to our
approach. VK-T uses the same transformer archi-
tecture as the proposed approach but does not use
ResNet. VK-S and VK-LR use a Support Vector
Machine with a radial basis function kernel and
Logistic Regression, respectively. Image features
extracted from only PCA are combined with kine-
matic information and input to VK-T, VK-S, and
VK-LR.
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generalization performance; we refer to this as the finetuned model. As
shown in Fig. 5, the F-scores of the finetuned model are high across all
motions. Notably, when a separate model was trained from scratch using
only the same limited data from climbing steps with new stairs, the F-scores
for the two new stair types were 0.71 and 0.61, respectively, substantially
lower than the scores of 0.95 and 0.95 achieved by the finetuned model.
These results demonstrate that leveraging the pre-trained model sig-
nificantly improves performance compared to training from scratch.

These results indicate that the proposed method exhibits a certain
degree of generalization capability, even for actions and scenarios not
included in the training data. For example, the model showed relatively
strong generalization in the squatting task to pick up objects, despite having
no prior exposure to this behavior during training. This suggests that the
method holds promise for adapting to a broader range of unseen situations.
However, we observed a decline in performance under specific conditions,
particularly when the training data lacked diversity in colors or shapes. In
the step-climbing task, recognition performance deteriorated for previously
unseen colors and shapes, indicating that the model relies substantially on
visual information. Nevertheless, we found that even in cases of limited
generalization, fine-tuning with a small amount of additional data led to
significant improvements in accuracy. These findings highlight both the
adaptability of the proposed model and its potential for further refinement
in handling diverse behavioral scenarios.

Discussion
EMG is commonly used to control exoskeleton robots based on user
intentions.However, attachingEMGsensors and calibrating their interfaces
is time-consuming and labor-intensive,makingdaily use impractical. In this
study, we aim to generate assistive motions using a first-person camera and
motion data, such as the user’s joint angles and angular velocities. Achieving
high performance without relying on cumbersome sensors like EMG is
crucial for enhancing the practicality of the system.

Our developed multitask assistance control strategy, which uses a
transformer to generate control commands for the exoskeleton robot
according to the status of the user and the environment, was demonstrated
on movement tasks consisting of squatting to pick up an object from the
floor and climbing a step. This systemwas trained with labeled data, during
which a participant freely labeled the period when he felt he needed assis-
tance in a human-in-the-loop fashion. The assist performance of our pro-
posed approach was evaluated in real-time control of the exoskeleton by
measuring the EMGs of themuscles in the knee joint and the heart rate. The
evaluation showed that themovement load was reduced in two participants
compared to the condition without an exoskeleton robot.

One reason for reducing the physical loadwas the accuracy of the assist
sequence generation, which was achieved through the appropriate use of
human and environmental sensor data, as shown in Fig. 3a. This was also
supported by the assist sequence generation evaluation, which showed
comparable or higher performance than EMG-basedmethods, as shown in
Fig. 3b. In addition, the result of ablation testing for image features showed
that effectively combining visual image and kinematic information was
important for high performance. This result also showed that our approach
is highly capable of handling these sensors’ data.

Another reason was the feature of our hardware, which could use two
assist commands, “active” with high force and “free” with zero torque. We
considered multitasking, which consisted of squatting down to pick up an
object on the floor and climbing a step, and requiring participants towalk to
each location to do them. Our system substantially dealt with three types of
motions. No assistance is required when walking and moving toward
decreasing potential energy, so a “free” series was generated. In other words,
it is essential not only to provide assistance but also to turn off assistance so
as not to impede human movement. Most lower limb exoskeletons are
targeted to support single movements such as walking35,36. Some of them
deal with running, stair ascent, and walking37. What they all have in com-
mon is the maximization of the assist effect, which is made possible by
advances in the lightweight of the hardware. Therefore, their focus is on the
constant actuation of an exoskeleton robot. On the other hand, our
approachdiffers in thatweaddress the generationofnot only thepresenceof
assist actions but also their absence in a more general situation involving
several types of actions.

However, through generalization testing, we found that while the
proposed method exhibits a certain level of adaptability to unknown
situations, it still faces challenges in specific environments and actions.
While improvements can be achieved by incorporating additional training
data, ourfindings confirm that datadiversity and trainingquality are equally
essential. Considering these factors,wewill explore further enhancements in
generalization ability and training data diversity in our future study. Con-
cretely, we plan to proceed with the following steps:
• Collect data for diverse scenarios: Expand the training dataset by

incorporating a wider range of environments and actions to enhance
the model’s generalization ability.

• Apply data augmentation techniques: Use simulations and generative
models to create diverse datasets from existing data and integrate them
into the training process.

• Enhance model architecture: Explore more adaptive architectures,
such as transfer learning and meta-learning, to further improve gen-
eralization performance.
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Fig. 5 | Comparison of F-scores between the original motion task and tasks
involving new environments across different models. The original motion refers
to the task set used when constructing the proposedmodel. The tasks of squatting to
pick up new objects (A andB) and climbing a step with new stairs (C andD) involve
novel colors and shapes for generalization testing. The originalmodel represents the
performance of our proposed model, which experienced only the original motion
during training. The finetuned model refers to the model obtained by fine-tuning

the original model with a small amount of data from the step-climbing tasks with
new stairs (C and D). Notably, when a separate model was trained from scratch
using only the same limited data from climbing steps with new stairs, the F-scores
for the two new stair types, (C andD), were 0.71 and 0.61, respectively, substantially
lower than the scores of 0.95 and 0.95 achieved by thefinetunedmodel. These results
demonstrate that leveraging the pre-trained model significantly improves perfor-
mance compared to training from scratch.
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• Broaden performance evaluation: Assess the generalization ability of
the proposed method under various conditions, including different
environments and a diverse set of users, including individuals with
movement disorders, to better understand its adaptability across dif-
ferent actions and settings. In addition, applications to uneven terrain
and sudden changes in movement intention are also important topics.

In recent years, vision-based approaches have attracted attention in
various fields and have demonstrated excellent performance, especially in
object recognition and obstacle detection. While a direct comparison with
other vision-basedmethodsmay not alignwith the primary objective of this
study,we are interested in understandinghowassistive control performance
varies with different vision models. In future research, we will explore
comparisons with state-of-the-art vision methods to further evaluate their
impact on our approach.

In addition, the proposed method may be affected by the degra-
dation of visual information accuracy, particularly under challenging
environmental conditions such as low light and visual obstructions. In
future work, we will assess the impact of these factors on control per-
formance. If performance deterioration is observed, we will explore
strategies to complement visual information and integrate additional
sensors (e.g., depth cameras and IMUs) to enhance adaptability to
environmental changes.

Furthermore, while the transformer-basedmodel demonstrates strong
performance, its ‘black box’ nature raises concerns about interpretability. In
future research, we will explore methods to visualize the model’s behavior
using attention maps to enhance the transparency of its decision-making
process. This approachwill help identify which aspects of the input data the
model prioritizes and how it makes decisions, ultimately improving both its
interpretability and reliability.

Methods
Participants
This study conducted the experimentswith twoparticipants (P1:male; age=
37 years; mass = 70 kg; height = 1.71m, P2: male; age = 60 years; mass = 54
kg; height = 1.60 m) with no prior history of movement disorders, after
obtaining informed consent from them. The human research ethics com-
mittee of RIKEN approved the experiment.

Motion task
To apply our approach in the concretemotion task, we considered blending
three motion types: squatting down to pick up an object on the floor,
climbing a step, and walking. The squatting and climbing are required to be
conducted at different places (Fig. 1a). Therefore, the participant squats at
one specific place, walks to another place, and climbs a step at another
specific place. A step lift platform (Reebok International Ltd.USA)was used
to raise and lower the steps, and the height was set to 25 cm. On the other
hand, a white box was used as an object to pick up by squatting down.

In this study, we measured compound motions nine times, each trial
lasting oneminute.Eight of thesenine trialswere used in themodel training,
and one remaining was used for the test. Inmodel training, 80% of the eight
trials were used as the training dataset and 20% as the evaluation dataset.
Subsequent data-dependent parameters, such as value normalization, are
calculated based on this training dataset. During each trial, the participant
was allowed to freely choose squats and climb a step, as well as the number
and order of these movements. In the real-time exoskeleton robot control
experiment, the compound motions were set to three minutes, and the
number of squatting and climbing was 30 times, respectively, for con-
sistencyacrossparticipants.The climbing stepwas also set to15 times for the
right leg and 15 times for the left leg. The participantswere asked to conduct
these motions at a rhythm of 40 beats per minute.

Data measurement
To obtain the user state, angles and angular velocities of the right and left
knee joints, and accelerations and velocities of the trunk in sagittal and

coronal planes were used. Using the potentiometer of the lower limb
exoskeleton robot system and IMU sensor (3DM-GX3-25, LOAD Micro-
Strain Inc., USA) attached to the user’s trunk, we simultaneously obtained
the knee joints and the trunkmotions. In addition to the user’s state, anRGB
camera mounted on the eyeglass (DITECT Co.Ltd, Japan) obtained a first-
person view image of the surrounding environment. A schematic diagram
showing themeasurement state is shown in Fig. 1c, and these sensor signals
were used as the input for our model.

In comparison with the proposed approach, we adopted the EMG-
basedmethod.Toobtain theEMGsignals,wemeasured sixmuscle activities
from the vastus lateralis, the vastus medialis, and the rectus femoris in the
right and left leg, respectively (Fig. 1d), simultaneouslywith the above sensor
signals. We used Ag/AgCl bipolar surface EMG electrodes with a sampling
rate of 1 kHz.

For learning the generative model of the action sequence, the log in
which the participant simultaneously recorded whether or not the necessity
of assistance was also obtained.We used a handy button interface to record
the log. This interface outputs the pressure value for the PAM control while
the button is pressed and zero when the button is not pressed.We prepared
two button interfaces, one for the right knee and one for the left knee, and
gave them to the right and left hands for operation. In this study, we set
movements that increase potential energy as areas that require assistance,
and other movements, including walking, as areas that do not need assis-
tance, and asked the participant to manipulate them. These records were
used as the output of the model.

In real-time exoskeleton robot control, we also measured six muscle
activities from the same muscle location mentioned above to evaluate
motion burden related to knee joints (Fig. 1d). The electrodes and sampling
rate are the same as above. Each EMG signal was subjected to full-wave
rectification and low-pass filtering at 10 Hz. This study measured sensor
data other than EMG at 50 Hz.

Exoskeleton hardware
We take advantage of the lightweight hardware characteristics of our
exoskeleton robots, instead of constant support. Our exoskeleton robot
focuses on assisting knee joints25 and is designed to be lightweight with a
carbonfiber structure.This robot is attachedbyfixing it to each thigh and leg
with a band. The skeleton is made of carbon resinmaterial: the thigh part is
about 604 g, the shank part is about 206 g, and the total of one leg is about
810 g. It features a highly responsive joint powered by a pneumatic artificial
muscle (PAM) actuator provided by FESTO38 (Fig. 6). Thus, our robot
allows the user’s movements to proceed smoothly without any hindrance,
even when the actuator is not in operation.

The joint torque of the exoskeleton is generated by the PAMas follows:

τ ¼ rF ð1Þ

where r is the pulley radius, and F is the PAM force generated by the path
contraction of the spiral fibers embedded in a pneumatic bladder. When a
constant pressure P is applied to PAM, the relationship between the force
and contraction rate of the PAM can be written as a 2nd-order polynomial.
On the other hand, pressure increase and force generation at the same
contraction rate have a linear relationship. From these, the quadratic model
of PAM force can be written as follows:

F ¼ ð f u � f lÞ P þ Puf l � Pl f u
Pu � Pl

ð2Þ

where P is the pressure of PAM. Pu and Pl are constant pressure of 0.7MPa
and 0.6 MPa. fu is a quadratic force model when pressure is set to 0.7 MPa
and fl is a quadratic force model when pressure is set to 0.6 MPa:

f u ¼ auα
2 þ buαþ cu

f l ¼ alα
2 þ blαþ cl;
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where α is the contraction rate of the PAM, which is varied according to the
joint angle. The contraction rate is calculated by joint angle θ andminimum
joint angle θmin: α ¼ rðθ�θminÞ

lpam
, where lpam is the effective length of the PAM.

Eachparameterau,bu, cu,al,bl and cl is calculatedby the calibrationusing the
contraction rate and load cell. Note that Eq. (2) indicates that when the
contraction rate of PAM is large, the force that can be generated decreases,
while when PAM is at its natural length, a large force can be generated. By
setting thepressureP tobe applied, the joint torque is generated according to
the above relational expression. In this study, the constant pressures P = 0.7
MPa and P = 0 were set and input for “active” with high force for the assist
and “free”with zero pressure for the no-assist state, respectively. This action
command is conducted independently in the right and left leg, and the 0.7
MPa is the maximum pressure that can be generated in our system. The
control frequency of this exoskeleton robot was set to 50 Hz.

Prediction of assist action sequence
To predict the assist action sequence for driving the exoskeleton robot, we
introduced a transformer framework22 and ResNet1832. Figure 7 shows the
architecture. We refer to our assist generative model from vision and
kinematic information as VK-TR when comparing it with other methods.
Thismodel is trained using input and output datasets obtained fromhuman
movement measurements described above. The input state is defined by
knee joint angle θ and angular velocity _θ and trunk acceleration €θ and
velocities in the sagittal and coronal plane and first-person view image
featuresC as x¼ θkr ;θkl ; _θkr ; _θkl ;€θts; _θts;€θtc ; _θtc ;C½ �>, where the subscripts kr, kl, ts, and tc
represent the right and left knee joint, and trunk motion in sagittal and
coronal plane, respectively. This x is normalized to a value between zero and

one before being put into themodel. The outputP formodel learning stores
the right and left leg values obtained by normalizing the 0 and 0.7 MPa
pressure value series for the PAMs control recorded by the participant using
the button interface to zero and one.

The feature of the first-person view RGB image C is extracted by
applying Principal Component Analysis (PCA) after obtaining a feature
map from the global average pooling layer of ResNet18. The PCA and
ResNet18 model was trained in advance using the training dataset. The
ResNet18 was learned by inputting 100 × 100 RGB data and having it solve
theproblemofdiscriminating between0and1 in theoutputdata.Regarding
the number of dimensions in PCA, we selected from the numbers that
explain a contribution rate between 95% and 99% during the transformer
model learning with the hyperparameter search described below. The
number of components was 10, and the contribution rate was 97%. In our
proposedmodel, ResNet18 and PCA are used to extract essential featuresC
from first-person view images. ResNet18, known for its strong performance
in image classification, was chosen for its robust feature extraction cap-
abilities. To further enhance computational efficiency and reduce noise,
PCA was applied to reduce the dimensionality of the extracted image fea-
tures. By using an orthogonal transformation thatmaximizes data variance,
PCA ensures effective feature compression. Directly inputting high-
dimensional features into the Transformer can lead to excessive computa-
tional costs and instability during training. Therefore, dimensionality
reduction promotes more efficient and stable learning.

To predict assist actions, we focus on two things. One is that human
movements, as seen at a particular moment, have been initiated several tens
to hundreds of milliseconds in the past39. Second, focusing on predicting

Fig. 6 | Exoskeleton robot system. a Carbon frame
knee exoskeleton robot. b Joint torque driving sys-
tem by pneumatic artificial muscle (PAM). Air valve

controller

Air 
compressor

Cable

Contraction
Pulley r

b  Drive system (Inside)

Pneumatic Artificial Muscle (PAM)

Load cell
Potentiometer

a  Knee exoskeleton

Fig. 7 | Architecture of assist action prediction.
Our approach to generating assist action sequences
mainly uses ResNet18 and transformermodels. This
model predicts sequences a few milliseconds ahead
of sensor inputs that contain historical information
from a few milliseconds before the current time.
Predicted assist action sequence is averaged by the
temporal ensemble and used for the final control
command.
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multiple steps, rather than one step at a time, reduces errors40. In other
words, we predict the k-step assist action sequencePt+k from xt−1, including
the l-step history,where t represents the current time. In this study,we set l=
10 and k = 5, and the predictions are generated at 50 Hz. The assist action
sequence predicted up to the k-step is averaged by the temporal ensemble
and used for the final control command in Eqs. (1) and (2), as shown in
Fig. 7.

The accuracy of the transformer model increases as the number of
layers increases, but the inference time also increases. Therefore, we deter-
mined thenumber of layers throughprior testing to strike a balance between
this and the robot’s real-time controllability, and we set two layers for both
the encoder and decoder.

The hyperparameters of the ResNet18 and transformermodels related
to the learning were determined using Optuna (Preferred Networks, Inc.,
Japan), an automatic hyperparameter optimization framework. In this
study, hyperparameter optimization was conducted over 170 trials using
Optuna. Fromthis optimization, the embeddingdimensionand thenumber
of attention heads are set to 64 and 8, respectively. The optimal number of
dimensions in the PCA mentioned above was also searched in this frame-
work. Here, the ResNet18 and the transformermodel ran on a PC equipped
with an Intel(R) Xeon(R) CPU at 3.6 GHz and a double RTX 3090 GPU.

EMG-based movement intention estimation methods
We prepared three EMG-based methods to estimate movement intention.
One is theEMG-basedmodel using the same transformer architecture as the
proposed model, and the others are traditional classification methods. To
estimate “active” or “free” commands in time series classification using
EMG signals, we adopted a support vectormachine (SVM)with radial basis
function kernel and linear discriminant analysis (LDA), which are widely
used in EMG-based classification studies. For example, the SVM is used in
the upper limb26,27 and lower limb28 motion recognition. Similarly, the LDA
is also used in hand gesture recognition29,30 and handmuscle recognition for
impairment31.

The input process for the EMG-based method is common to all three
methods and is as follows. The processed six EMGsignals e, knee joint angle
θ, and angular velocity _θ were used as the current state
xEK¼ e1;���;e6 ;θkr ;θkl ; _θkr ; _θkl½ �>2R10, where the subscripts kr and kl represent the right
and left knee joint. The EMG signals were measured from around the knee
joint muscles, as shown in Fig. 1d. The i-th processed EMG signal ei is
normalized as follows ei ¼ ϵi=ϵ

mvc
i , where the EMG signal ϵi is derived as

full-wave rectified and low-pass filtered value of raw EMG signals. The ϵmvc
i

indicates the maximum voluntary contraction (MVC) output.We used the
EMG signals, angles, and angular velocities collected simultaneously when
measuring the nine trials mentioned in the motion task section. The par-
ticipant’s MVC was observed before the actual data measurement. The
EMG signals were measured by Ag/AgCl bipolar surface EMG electrodes
with a sampling rate of 1 kHz, and the full-wave rectifying and low-pass
filtering were processed. Then, they were down-sampled to 50 Hz tomatch
the angular information.

In the EMG-based model using the transformer architecture, we pre-
dict the k-step assist action sequence Pt+k from xt−1, including the l-step
history, where t represents the current time. The parameters l and k are the
same as the proposed model, and the assist action sequence predicted up to
the k-step is also averaged by the temporal ensemble and used for the final
control command.

To estimate the current assist action sequence Pt in time series classi-
fication, the average value from the current state xEKt tommilliseconds past
xEKt�m was used as the input xEK since the EMG signals are activated before
the actual limb movements39. The m, which indicates how much past
information to include, and the regularization parameters of SVM were
determined with the hold-out using the same training and evaluation
dataset. The learnedmodels were applied to the same test dataset as we used
for our proposed approach. Here, we refer to these models by EMG and
kinematic information as EK-S when using SVM and EK-LD when
using LDA.

Ablation testing
We prepare a method that removes ResNet from our proposed pipeline to
examine the effect of image feature extraction methods on performance. In
this method, we use the same transformer architecture as the proposed
approach, but the image features are extracted without ResNet. We refer to
this model as VK-T.

In addition, we implemented two classification methods: Support
Vector Machine (SVM)33 with radial basis function kernel and Logistic
Regression34 with L2 penalty. Here, we refer to these baseline methods by
vision and kinematic information as VK-S when using SVM and VK-LR
when using logistic regression.

In these three methods, VK-T, VK-S, and VK-LR, we extracted image
features in a standard and straightforward manner: For the RGB data
obtained at 100 × 100, each pixel value is normalized by dividing it by 255,
and then, those values are made into a one-dimensional vector, after which
features are extracted using the PCA. Regarding the number of dimensions
in PCA, it was selected to have the same contribution rate of 97% as the
proposed approach. The image feature Cb extracted in this way is used. In
other words, the input state is xablation¼ θkr ;θkl ; _θkr ; _θkl ;€θts; _θts;€θtc ; _θtc;Cb½ �>, and the only
difference from our approach isCb. In the VK-T, the state x

ablation is input to
the transformer architecture. In the VK-S and VK-LR, the state is input to
the SVM and Logistic Regression, respectively. The regularization para-
meters of the SVM and Logistic Regression models were determined using
the hold-out method. These three models were learned using training and
evaluation datasets, and the learned models were applied to the same test
dataset.

Generalization testing
We collected data on the behavior of squatting to pick up two kinds of
objects, A and B, which are new in color and shape, and on climbing
behavior using two types of step platforms, C and D, which are also new in
color and shape, to see how the proposedmodel canwork in situations it has
not experienced during training, as shown in the image of Fig. 5. In each A
and B, squatting to pick up motions are conducted for one minute, and in
each C and D, climbing step motions are performed for one minute. These
data are used for generalization testing.

To further train theproposedmodel onnewstair-climbingdata,weuse
40 s of newly acquiredmovements. In other words, the 40 s of data includes
a climbing step motion with two kinds of stairs with different shapes and
colors. We refer to this as a finetuned model. On the other hand, we also
prepared a completely new model that was trained using only 40 s of data
from climbing a step with new stairs, in which the data is the same as the
additional training in the finetuned model. We refer to this as a separate
model. In thefinetunedmodel and the separatemodel, the hyperparameters
are fixed the same as the original model.

Data analysis
During the three-minute exercise, EMGs were segmented between the
participants’ lowest and highest body positions during squatting and
climbing a step. In other words, the state is from the lowest to the standing
position in the squat motion, and the state is from when the participants
place their one legon the step lift platform to the timeoffinishing climbing in
the step-up exercise. Therefore, 45 targetmovements that provide assistance
for each leg are extracted, including squats and step lifts. In other words,
same-name muscles (Vastus lateralis, Vastus medialis, and Rectus femoris)
have a total of 90 time series data, including the left and right leg. For the 90
extracted data, we calculated the average for each muscle. To see the overall
burden, we calculated the integral EMG (iEMG) in each squat and step-up
motion. The iEMG is calculated using a trapezoidal approximation in each
muscle of 90 time-series data. We then combined the iEMG of all muscles
and calculated the average and standard error from the 90 data.

Statistics
We reported the means and standard errors calculated within the partici-
pant for the muscle burden of EMGs. We compared the assist condition
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using our approach to the condition without an exoskeleton robot (normal
exercise). These EMG data were not normally distributed, and we applied
the Wilcoxon signed-rank, two-tailed test, and the significance level
was 0.05.

Data availability
The datasets used and analyzed during the current study are available from
the corresponding author on reasonable request.

Code availability
The underlying code for this study is not publicly available butmay bemade
available to qualified researchers on reasonable request from the corre-
sponding author.
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