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Robotic systems often struggle to adapt to dynamic, unstructured environments due to top-down
design constraints based on human assumptions. Inspired by biological morphogenesis, this study
introduces a cellular plasticity model based on Turing patterns, enabling multi-cellular robots to self-
organize their cell phenotypes in response to environmental stimuli. The model leverages reaction-
diffusion dynamics to capture key cellular plasticity phenomena observed in muscle cells, neurons,
and stem cells. Analytical analysis explores equilibrium points, stability, and conditions for emergent
Turing patterns, while simulations examine parametric influences on system behavior. Physical
experiments with the Loopy platform demonstrate that its cells dynamically self-organize mechanical
properties in response to behavioral and environmental demands. This response enables Loopy to
achieve similar performance to empirically optimized static parameters in obstacle-free environments
and outperform the static configuration in an environment with limited space. This work advances
morphogenetic robotics, presenting a scalable framework for decentralized, dynamic adaptation in
unmodeled environments.

Robotic design often involves navigating an infinite-dimensional design
space,wherefinding a satisfactory solution is inherently challengingwithout
imposing severe constraints1,2. Traditionally, this problem is addressed
through top-down design approaches, relying on human creativity to nar-
row the design space3–5. However, these approaches often result in robots
that fail to adapt to complex, unstructured, and dynamic environments6.

In contrast to this top-down design framework, biological systems are
remarkably adaptable and develop through morphogenesis, a bottom-up
process inwhich cells independently self-organize their spatial arrangement
andphenotypic properties into complex functional structures in response to
internal and external stimuli7–9. This research draws inspiration from this
biological process, exploring how robots can similarly self-organize their
form and function from the decentralized interactions of their components
and the environment. While this framework applies broadly to self-
organized phenotypes, this study focuses on mechanical properties—such
as stiffness and damping—as a specific example of emergent capabilities.
Potential applications of this approach include high degree-of-freedom
(DoF) robots operating in dynamic, unstructured environments with lim-
ited prior information, such as extra-planetary exploration or chemical spill
containment.

A common framework for describing morphogenesis is Turing pat-
terns, which rely on reaction–diffusion equations to model self-organized
pattern formation10. This framework has been utilized to describe the
spontaneous formation of limbs, feathers, seashells, and amultitude of other
patterns and structures found in the beauty of the naturalworld11–13. Robotic

systems like Kilobot swarms and Loopy (Fig. 1)14,15 have leveraged
morphogenesis-inspired mechanisms to self-organize the spatial arrange-
ment of decentralized agents. Kilobots, for instance, aggregate in response to
chemical gradients, while Loopy’s motor cells respond to chemical con-
centrations to form a collective cohesive shape. Beyond geometric organi-
zation, these systems also demonstrate resilience: Loopy maintains
homeostatic stability and corrects self-intersections, while Kilobots reform
after damage without explicit programming14,15. However, despite these
advances, both systems primarily focus on static geometric formations and
overlook the self-organization of functional properties-such as stiffness,
damping, or inertia-and their interactions with the environment14,15.

At themacroscopic scale of thewhole robot, environmental adaptation
has been widely studied by evolutionary algorithms, which develop robot
populations over generations by selecting high-performing individuals
according to predefined fitness functions16–19. These methods have been
extended to support phenotypic plasticity by allowing robots to switch
among multiple phenotypes based on environmental cues, using mechan-
isms such as gene regulatory networks and evolvedmappings between body
and controller topologies20,21. Some approaches also evolve controllers
during simulation runtime by randomly updating Boolean network con-
nections and preserving the best-performing configurations22. However,
these algorithms requiremultiple generations of development, limiting their
use to simulations andoften ignoring the complexities of thenaturalworld23.
Additionally, these algorithms rely on simulating entire populations of
robots, which becomes computationally intractable in this work due to the
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high number of decentralized agents within each robot. Moreover, random
mutations could result in catastrophic failures, unsuitable for real-time
adaptation in physical robots. Finally, a human designer must specify a
fitness function, limiting the self-organization creativity to optimize the
human’s limited understanding of the problem16–19. This work instead
focuses on decentralized, online adaptation within a robot’s lifetime, driven
purely by local interactions with real-world environments.

Cellular plasticity, an aspect of morphogenesis, describes how indivi-
dual cells dynamically adapt their phenotypic properties in response to
environmental changes and interactions with neighboring cells24. This
adaptive process enables cells to self-organize their functional distributions,
collectively supporting the organism’s development andbehavior.Observed
across diverse cell types—such as muscle cells25–27, neurons28–30, and stem
cells31–33—cellular plasticity drives specialization, role adjustment, and
cooperative behaviors for collective functionality.However, these responses’
inherent complexity and variability have posed challenges to developing a
simplified general model applicable to any phenotype. This has, in turn,
complicated the integration of cellular plasticity into bottom-up robotic
design frameworks, even though intricatemodels exist for specific biological
processes34–36.

Recognizing this challenge, our work does not aim to develop a uni-
versal model that applies to all facets of cellular plasticity. Instead, we focus
on distilling core adaptation phenomena from muscle cell hypertrophy,
neuron synaptic plasticity, and stem cell differentiation into a simplified
model tailored for morphogenetic robots.

Muscle cell hypertrophy describes how muscle cells adapt to various
stimuli through several mechanisms. One key mechanism is mechanical
load signaling25.Whenmuscle cells experiencemechanical stress or damage,
they are signaled to enhance their strength and endurance in response.
Another crucial factor inmuscle cell development is the response to oxygen
deprivation26. When muscle cells detect a reduction in oxygen levels, they
initiate adaptations to improve oxygen uptake. Furthermore, muscle cells
respond to metabolic stress27. For example, when ATP (adenosine tripho-
sphate) levels are low, indicating a high energy demand, muscle cells are
triggered to increase mitochondrial production, thus increasing their
energy-generating capacity27. These phenomena ofmuscle cell hypertrophy
demonstrate that the growth of functional capacity (oxygen uptake, mito-
chondria) is stimulated by product (oxygen, ATP) scarcity.

Long-term potentiation (LTP) and long-term depression (LTD) are
key processes that enable neurons to adapt their synaptic strength based on
signal activity. LTP strengthens the connection between two neurons when
presynaptic signals are closely followed by sufficient postsynaptic activation,
a process mediated by NMDA receptors and calcium influx28. However,
LTP does not occur instantly; it often develops gradually29. Strong, repeated
stimuli can sustain LTP for extended periods, lasting days or weeks,

although evidence for permanent changes remains limited30. In contrast,
weak or brief stimuli produce only transient LTP, whereas prolonged low-
frequency signals can lead to LTD, weakening the strength of the synaptic
connection. Overall, LTP and LTD reflect a neuron’s ability to adjust its
synaptic strength temporarily, depending on the type and duration of
stimuli29. These mechanisms demonstrate how neurons dynamically adjust
their functional capacity in response to sustained stimuli, strengthening
connections through LTP under high stimuli environments and weakening
them through LTD under low stimuli environments.

Stem cells, particularly embryonic stem cells, serve as the foundational
units for cell development, possessing the unique ability to differentiate into
various cell types to increase their functional capacity31–33. Environmental
factors, such as the oxygen concentration, temperature, and mechanical
stiffness of the extracellular matrix, are examples that guide the differ-
entiation process32. In addition, stem cells inherit intrinsic factors from their
parent cells, including epigenetic elements such as histone modifications33.
These factors significantly influence the differentiation pathway of a stem
cell, affecting how it develops into amore specialized cell type. As stem cells
specialize, they gradually lose their ability to differentiate into multiple cell
types31. Despite this specialization, these cells retain a degree of adaptability,
which allows them to respond to changes and perform specific functions
within their designated cell type33. These phenomena highlight two key
aspects of cellular plasticity: that specialization can enhance functional
capacity, and that differentiation is shaped by intrinsic (epigenetic) and
environmental factors.

Integrating cellular plasticity phenomena from muscle cells, neurons,
and stem cells with Turing patterns may provide a scalable, decentralized
approach for agents to dynamically adapt their functional capabilities in
response to environmental and behavioral demands. Enabling self-
organized phenotypes extends morphogenetic robotics beyond spatial for-
mations to the emergence of functional structures in response to environ-
mental and behavioral changes.

This study investigates decentralized strategies for the online self-
organization of a robot’s functional capacities, focusing on mechanical
properties, through the lens of cellular plasticity and Turing patterns. In
doing so, the robot must balance functionality and adaptability to conform
to unknown and dynamic environments. This problem includes three
components: (1) developing a general cellular plasticitymodel, (2) analyzing
the model’s dynamics and parametric effects, and (3) deploying the model
on a robot platform to observe its self-organized mechanical properties in
response to diverse morphologies, environments, and behaviors.

In this work, the cellular plasticity model without central control must
capture key aspects of cellular plasticity observed in biological systems,
precisely: (1) growth spurred by product scarcity, exemplifiedbymuscle cell
hypertrophy25–27; (2) functional capacity modulation in response to sus-
tained stimuli, seen in LTP and depression of neuronal synaptic
strength28–30; (3) the enhancement of total capacity through specialization, as
demonstrated by stem cell differentiation31–33; and (4) the process is self-
regulating by adapting to immediate environmental stimuli in real time
without relying on fixed set points or a comprehensive environmental
model. Next, we utilize the Loopy robot and assume it is in a flat, obstacle-
laden environment that is unknown and unmodeled to the robot. Although
this study focuses on mechanical properties such as stiffness and damping,
the framework is designed to be generalizable to other functional cap-
abilities, with the potential for diverse applications requiring further
exploration.

This study builds on our previous work across three fronts. Swarm of
One15 introduced the Loopy platform and demonstrated the emergence of
diverse, stable robot morphologies through Turing patterns. Loopy
movements37 extended this by showing how decentralized morphogen
signaling could produce coordinated rotational behaviors on the same
platform. Separately, the cellular plasticity model38 proposed an initial
activator–inhibitor framework for phenotypic adaptation, but this was
limited to a single cell, without spatial context. In contrast, the present work
extends that model into a spatially organized Turing pattern, enabling the

Fig. 1 | This study develops a cellular plasticity model based on simulated cellular
interactions, incorporating reaction–diffusion dynamics and environmental
stimuli (left). These interactions drive the self-organization of Loopy’s cell phe-
notypes (right, blue vs. red). Specifically, this work focuses onmechanical properties
such as stiffness and damping, which adapt to support Loopy’s behavior in response
to its shape and environment. Notably, Loopy exhibits a cluster of red (flexible)
phenotypes in regions where environmental confinement induces deformation.
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self-organization of cell phenotypes—specifically mechanical properties—
across multiple cells. This is the first physical demonstration of the cellular
plasticitymodel in amulti-cellular robot, integratedwith Loopy’s previously
developed morphogenetic capabilities. This study contributes to the litera-
ture by:
• Creating a general cellular plasticity model based on Turing patterns

for the bottom-up design of robots.
• Providing analytical and simulation analysis of this model’s equili-

brium points, stability, and parametric effects on its transient response
and spatial patterning.

• Physical experiments demonstrate Loopy’s cells dynamically self-
organizing their mechanical properties to environmental and
behavioral demands, matching the performance of optimized static
properties in obstacle-free environments and outperforming them in a
confined environment.

The rest of this work is outlined as follows. Section “Results” provides
themodel analysis and experimental results. Section “Discussion” discusses
key aspects of the results and includes a comparison between the cellular
plasticity model and related computational frameworks to contextualize its
distinct capabilities. Finally, section “Methodology” describes Turning
patterns, the development of the model from singular cells with one ability
to multiple cells with many abilities, and the experimental setup.

Results
Utilizing the methodology from the section “Methodology,” this section
investigates the cellular plasticitymodel’s behavior across key scenarios. The
analysis beginswith the steady-state behavior, stability criteria, anddynamic
responses of a single phenotype (i.e., factory) cell to impulse, step, and
periodic changes in environmental stimuli (i.e., consumption rates). The
analysis then examines the effects of oppositionbetween factories in amulti-
factory cell, its emergent phenotype, and total factory capacity, followed by
exploring Turing pattern emergence in single andmulti-factory cells under
varying consumption rate distributions. Finally, the model’s applicability is
demonstratedon theLoopyplatform,highlighting its ability to generate self-
organized mechanical properties from environmental interactions.

Steady state and stability criteria
This experiment analyzes the dynamics of a single-cell system with a single
factory–product pair, focusing on steady-state values. The phase portrait of
the system, including factory and product nullclines, is shown in Fig. 2, with
the nullclines defined by (1) and (2).

dF
dt

¼ 0 : F ¼ D � C � P
G� K � P ð1Þ

dP
dt

¼ 0 : F ¼ C � P
R� I � P ð2Þ

The system’s equilibriumpoints are located at the intersections of these
nullclines. The phase portrait (Fig. 2) reveals two equilibrium points (red
stars): an unstable equilibrium at the origin (0, 0) and a stable equilibrium at
(P*, F*). The stable equilibrium is defined by (3) and (4).

P� ¼ G� D � R
K � D � I ð3Þ

F� ¼ A � C; where A ¼ G� D � R
K � R � G � I ð4Þ

From (3), the steady-state product level P* is independent of the
environmental stimulusC and is fully determined by system parameters. In
contrast, the steady-state factory level F* scales linearly with the environ-
mental stimulus, with the gain (A) defined by the system parameters (4).

Thus, the factory adjusts dynamically based on the external input. Further
analysis of the nullclines reveals that the factory nullcline approachesP =G/
K = P∞ as the factory approaches infinity, while the product nullcline
approaches P = R/I = Plim. Furthermore, for a non-zero equilibrium to exist,
it is required that P∞ < Plim. This ensures that the system stabilizes at a
meaningful level, with alternatives diverging or collapsing to zero. More-
over, G/R >D to ensure positive steady-state values for P* and F* from (3)
and (4).

The stability of the equilibrium points is evaluated by analyzing the
trace (δ) and determinant (Δ) of the Jacobian matrix at (0, 0) and (P*, F*).
Stability is achieved only when both δ < 0 and Δ > 0.

δð0;0Þ < 0 : G <C ð5Þ

Δð0;0Þ > 0 : D >G=R ð6Þ

δðF�;P�Þ > 0 :
G� KP�

AI þ 1
<C ð7Þ

ΔðF�;P�Þ > 0 : G=R >D ð8Þ
From(6), the originwill be unstable, independent of the environmental

stimulus (C), by selecting appropriate system parameters to violate (6). In
addition, making the origin unstable aids in stabilizing (P*, F*), as it is the
reverse condition (8). Furthermore, this condition is repeated from (3) for
positive steady states. However, the trace of (P*, F*)may become unstable if
C is minor (7), but if D<<, then (G−KP*) ≈ 0, thus stabilizing the system
for all C > 0.

Examining system behavior along the axes, from Fig. 2 and (23) and
(24), reveals that the product level P always remains positive if it starts
positive, as dPdt > 0 when P = 0. However, the factory quantity Fmay become
negative, as dF

dt < 0 when F = 0. Therefore, an artificial constraint must be
applied to enforce F > 0 to maintain physical significance.

In summary, this analysis highlights several essential observations. The
steady-state product level P* is determined by system parameters, while F*
scales linearly with the consumption rate C. In addition, to ensure that the

Fig. 2 | A representative phase portrait of a single factory cell’s response with the
product (orange) and factory (blue) nullclines, and a single non-zero equilibrium
(red star) with parameters of G= K= I= C= 1.0, D= 0.01, and R= 1.5. Plim
describes the limit product level as the product nullcline approaches infinity, while
P∞ describes the factory nullcline asymptote. The inward direction of the phase
portrait signifies a stable non-zero equilibrium.
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system is stable and maintains biological significance, the model (23) and
(24) must meet these additional conditions:

G
K
¼ P1 < Plim ¼ R

I
ð9Þ

D < <G=R ð10Þ

F > 0 ð11Þ

Furthermore, this model displays the fourth cellular plasticity phe-
nomenon, self-regulation, where adaptations rely on direct environmental
stimulus (e.g., consumption rate C) rather than an environment model. By
using real-world stimuli to influence product levels and factory capacities,
the robot could adapt to the complexities of unpredictable real-world
conditions that a human-specified model might neglect.

System response to impulse and step changes in consumption
Next, to analyze the system response to an impulse and step changes in the
consumption rate of the environment, the system with parameter values of
G =K = I = 1.0, R = 1.1, andD = 0.01 was subjected to a significant increase
in the consumption rate (2 product/time unit) for a short duration (2-time
units) and long duration (50-time units) and plotted in Fig. 3 along with the
net production rate PR= R− I ⋅ P and steady-state factory (F*) andproduct
levels (P*).

The first observation of Fig. 3 is that the model exhibited distinct
behaviors on different time scales of resource fluctuation. For impulses (at
t = 50), the production rate increased rapidly with only a small increase in
factory capacity. However, the factory capacity increases significantly for
step changes (at t = 100). Furthermore, a higher quantity of the factory
persists after the removal of the heightened consumption rate until it

eventually decays and the factory capacity returns to the new steady state of
the environment.

This response illustrates the first targeted phenomenon: growth driven
by product scarcity. Factory growth is initiated only when product levels
drop below their steady-state value, as shown in Fig. 3. This behavior is
analogous to muscle hypertrophy, where cells increase mitochondrial
growth in response to ATP deprivation26,27. Additionally, the second phe-
nomenon, functional capacity modulation in response to sustained stimuli,
is evident as only the step change in environmental demand significantly
alters the factory quantity, while the impulse triggers only a temporary
production increase. This is similar to LTP/LTD, where sustained activity is
required to modulate synaptic strength28–30. Together, these adaptive
responses enable cells to effectively handle prolonged and dynamic demand
surges while avoiding excessive reactions to transient spikes.

System response to frequency of consumption
This experiment evaluates the model’s response to periodic stimuli by
subjecting it to a consumption rate (C) with a constant amplitude and
variable frequency. The consumption rate was defined as:

C ¼ Amp � 1þ sinð2πωtÞð Þ ð12Þ

The amplitude (Amp) was set to 1.0, and the frequency in Hz (ω) was
logarithmically spaced from 0.01 to 100Hz. The factory and product
responses’mean values and amplitudes were recorded and plotted in Fig. 4.

The results, illustrated in Fig. 4, reveal that the frequency of the con-
sumption rate had a small effect on the mean levels of the factory and
product. In addition, the amplitude of the product response remained very
small across all tested frequencies. However, the factory amplitudewas large
at low frequencies and diminished substantially at high frequencies, con-
sistent with the typical behavior of oscillatory systems, where amplitude
decreases as frequency increases. At low frequencies, the factory amplitude
increased because the factory had sufficient time to adapt to the periodic
input. This adaptation is less pronounced at higher frequencies, where the
rapid oscillations do not allow the factory to respond effectively. This
characteristic highlights the model’s potential to filter out high-frequency
noise, which often appears in dynamic systems, making it desirable for
enhancing resiliency to environmental perturbation.

Fig. 3 | Product (P) and factory (F) transient response to an impulse (at t= 50)
and step (at t= 100) in consumption (C). In addition to the net production rate,
PR = (R− IP). Furthermore, the steady-state factory, product, and production rate
are plotted with dotted lines. Parameter values are G = K = I = 1.0, D = 0.01
and R = 1.1.

Fig. 4 | Frequency response of a cell with a single factory. The factory and product
mean, and their amplitudes are plotted. The factory mean marginally changed with
frequency, while its amplitude decreased with higher frequencies. The product was
unaffected by changes in frequency. Parameter values are G = K = I = 1.0, D = 0.01
and R = 1.1.
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Parametric effects on system time constants
Now that the general behavior of the model has been analyzed, the para-
metric effects on the model dynamics are examined via simulations to
evaluate the time constants of the factory (τF) and product (τP) in response
to step changes in consumption rate. To simplify the analysis, The system is
reparameterized from (G, K, R, I, D) to the nullcline asymptotes (P∞ and
Plim) by dividing (23) byG and (24) by R and keepingD constant and small
for stability (D = 0.01). This parameter reduction simplifies analysis from
five parameters to two. In Fig. 5, P∞ and Plim were varied from [0.1] to [5]
with C = 1.0 with the time constant ratio (τF/τP) plotted as a heatmap.

Figure 5 shows that as P∞ and Plim approach the instability threshold,
the relative time constant between the factory and the product becomes very
large. As P∞ and Plim move away from instability, the factory time constant
eventually becomes smaller than the product time constant (the orange
region in Fig. 5). Furthermore, as Plim increases relative to P∞, the system
exhibits a damped oscillatory response (the white area in Fig. 5). This causes
the factory capacity (F) to overshoot its steady state, leading to an over-

response to stimuli, despite being stable when P∞ << Plim. Therefore, due to
the model constraint that the factory time constant is slower than the
product time constant (τF > τP), the valid parameter range is restricted to the
heat map region. Moreover, this figure can be utilized by a human designer
to select the adaption rate of the model, where the higher the time constant
ratio, the slower the adaptation.

Effects of opposition on multi-factory cell phenotype and total
capacity
To assess the impact of the opposition parameter on factory steady-state
levels, we analyzed a system with two factories, for simplicity and ease of
visualization. Each factory had identical parameters, and the system was
tested under varying consumption rates ([0.1–3.0]) across three scenarios:
low-symmetric opposition (O12 =O21 = 0.001), high-symmetric opposition
(O12 =O21 = 0.05), and asymmetric opposition (O12 = 0.05, O21 = 0.001).
Figure 6 displays the phenotype for each scenario. Blue represents a cell with
a greater quantity of the first factory (F1), and red represents a cell with a
greater quantity of the second factory (F2) for the given environmental
stimuli (C1 and C2).

The initial analysis of Fig. 6 reveals that when the opposition rates are
low (Fig. 6A), there is a smooth blend from red to blue phenotype as the
environment transitions from a high stimulus ofC1 to a high stimulus ofC2.
However, if the opposition is high (Fig. 6B) and both consumption rates are
high, we see a stark switch from bright red to bright blue. Thus, any subtle
shift in environmental stimulus fromperfectly equalwill switch the cell from
a blended purple to a red or blue phenotype. Furthermore, from Fig. 6C, by
applying asymmetric opposition, the cell can be pre-biased to producing
more of one factory than the other for a given pair of environmental stimuli,
where the cell more readily specializes to the lesser opposed factory, as
demonstrated by more prominent red than blue region.

Next, to analyze the effects of opposition on the total capacity of the
multifactory cell, the consumption rates for a cellwith two identical factories
with symmetric highopposition (O12 =O21 = 0.05)were varied from[0.1] to
[3.0], and the total capacitywas plotted as a heatmap alongwith contours of
total consumption (TotCon =C1+C2) and total capacity (Total
capacity = F1+ F2).

The results, displayed in Fig. 7, reveal that as the cell specializes—
shifting capacity predominantly toward one factory—the total capacity
increases. This is most evident along the total consumption line (Tot-
Con = 2.0), where tracing from the 45 deg line (equal consumption rate)
outward toward either factory F1 or F2 shows a significant rise in total
capacity. Specifically, total capacity increases from approximately 9 near the
center to over 20 as one factorydominates. This observationunderscores the
relationship between specialization and total capacity, highlighting how a

Fig. 5 | Parametric effects on the relative time constants of the product (τP) and
factory (τF), particularly as system parameters near instability τF becomes much
larger than τP. The orange region displays where the product time constant exceeds
the factory time constant. Damped oscillatorymodes emerge when Plim significantly
exceeds P∞, marked by the white region.

Fig. 6 | Parametric Effects of Opposition on Emergent Phenotypes. Effects of low
(A), high (B), and asymmetrical (C) opposition rates (Oij) on the steady-state factory
quantities of amulti-factory cell for the given environment stimuli (C1 andC2). Blue
phenotype indicates cells with a higher concentration of F1, while red indicates a

higher concentration of F2. Purple indicates a blended phenotype of red and blue.
Lower opposition increases the blended region, and asymmetric opposition can
favor one phenotype over another, by the increased red region in (C).
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multi-factory cell can enhance its overall functional capacity by favoring one
factory over balanced production.

From Fig. 6, asymmetric opposition rates can bias cell development
into a particular phenotype. This effect is similar to histone modifiers that

intrinsically bias stem cell development33. In addition, these parameters can
be utilized by the human designer to influence but not directly control the
emergent phenotype. Furthermore, Fig. 7 demonstrates that the model
captures the third core phenomenon: specialization increases total capacity
due to the total capacity of the cell being minimal when equally supporting
the environmental demands. This specialization mechanism underscores
the importance of adaptability and efficiency in robotics, indicating that
robots initially equipped with multiple functions can dynamically adjust
their functional capacity to prioritize higher-demand functions.

Criteria for the emergence of Turing patterns
Next, we will investigate the conditions in which the single factory model
will generate a Turing pattern. First, we utilize the conditions from ref. 39 to
determine analytically whenTuring patterns emerge from themodel. Then,
we perform a simulation analysis of a 100-cell system to verify the analytics
in Fig. 8.

The four conditions for aTuring pattern (19)–(22) applied to the single
factory model are listed in (13)–(16).

J11 > 0 : P1 > P� ð13Þ

J22 < 0 : �IA� 1 < 0 ð14Þ

J11 þ J22 < 0 :
G� KP�

AI þ 1
<C ð15Þ

γP
γF

J11 þ J22 > 0 :
γP
γF

� �
G� KP�

AI þ 1
>C ð16Þ

Fig. 8 | The emergence of a striping Turing pattern. A,D display the initial factory
quantities with consumption rates of 1.0 and 5.0, respectively. B, E display the
factory quantity in each cell over time. C, F display the final factory distribution. A
Turing pattern emerges when C is low (C), but when C is high, the pattern is

suppressed (F). When the Turing pattern emerges, the total capacity of the cells is
marginally greater (3%) than the single-cell scenario (F*). Parameter values:
P∞ = 1.0, Plim = 1.5, D = 0.1, γF = 0.01, and γP = 100).

Fig. 7 | Heatmap of the total capacity of a two factory cell relative to the con-
sumption rates of factory 1 (C1) and factory 2 (C2). Black lines are contour lines of
total factory capacity, while white lines are contours of constant total consumption
(TotCon). Total capacity isminimized when consumption rates are equal, i.e., on the
45-degree diagonal.
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From these conditions, (13) and (14) are always valid for the given
parametric constraints, while (15) is valid from the stability analysis if D is
small andC is sufficiently large. Furthermore, (16) is valid ifC is sufficiently
small or γP/γF is sufficiently large. Therefore, there exists a range of con-
sumption rates that is sufficiently large for system stability yet small enough
to allow a Turing pattern to emerge. Furthermore, this indicates that the
Turing pattern may be suppressed if the environmental stimulus is
substantial.

Next, to verify the analytical results, 100 identical single factory cells
with parameters (P∞ = 1.0, Plim = 1.5, D = 0.1, γF = 0.01, and γP = 100) are
uniformly subjected to a consumption rate (C) = 1.0. Each cell started with
its product level equal to its factory level at 1.0, except for the 50th cell, which
was initialized with a slight increase (1.001) to seed the pattern (Fig. 8A).
Next, in Fig. 8B, the emergence of the Turing pattern is shown from near
uniformity (pink, left) to striping of the cells (white, purple, right). Lastly,
Fig. 8Cdisplays the factory quantities at the end of the simulation, presented
in a striping pattern of HIGH–LOW three cells wide. Furthermore, in
Fig. 8D–F, the consumption rate is increased to 5.0, and a Turing pattern
does not emerge. This aligns with our analytical analysis, where if the
consumption rate is high enough, then the Turing pattern effect is sup-
pressed. Furthermore, when the Turing pattern occurred, the system’s total
capacity marginally increased by 3% compared to the single-cell case (F*).
Figure 8 highlights how cells self-organize their functional capacities into
distinct striped patterns of high and low functionality phenotypes when
environmental demand is low. Under such conditions, only a subset of cells
are recruited to specialize and meet the environmental demand, leaving
others free to potentially specialize in alternative functions. This striping
effect efficiently distributes functional capacities across the tissue without
reducing the total capacity of the collective robot compared to a scenario
where cells operate independentlywithout diffusive effects (F*). Conversely,
when environmental demand is high, the striped patterns are suppressed,
and all cells are uniformly recruited to maximize their functionality and
meet the immediate requirements. This dynamic responsedemonstrates the
system’s ability to allocate resources efficiently under low demand while
ensuring collective action under high demand, offering significant advan-
tages for self-organizing robots operating in dynamic environments.

Effects of consumption rate distribution on the turing patterns of
multi-factory cells
The following experiment assessed how the Turing patterns emerge in cells
with multiple factories and spatially varying environmental stimuli. In this
experiment, 100 identical cells consisting of two factories of symmetric
opposition were subjected to spatially uniform, in-phase, and anti-phase
consumption rates between the two factories. Figure9displays the results for
the simulation with the initial conditions (first column), transience (middle
column), and final factory quantities (right column). Furthermore, the self-
organized factory quantities are compared to the steady-state factory
quantity of a single cell without diffusion (FND) and without diffusion or
opposition (F*). The cells had parameter values of (P∞ = 1.0, Plim = 1.5,
D = 0.1, O12 =O21 = 0.02, γF = 0.01, and γP = 100).

Analyzing Fig. 9A–C, an anti-phasing turning pattern emerges when
both factories are subjected to the same uniform stimulus. This is due to the
opposition parameter, where when the natural turning pattern of a single
factory starts to emerge, some cells have a high concentration of Factory 1,
and others have a low concentration of Factory 1 (Fig. 8). The factories with
a high concentration of Factory 1 greatly oppose the growth of Factory 2 in
those cells but still require Factory 2’s products. Thus, cells with lower levels
of Factory 1 experience less opposition to producingFactory 2.Additionally,
they receive increased stimulation from neighboring cells that rely on
Factory 2’s product, further accelerating the growth of Factory 2. Therefore
inducing the anti-phasing of the factories. This additional reinforcement
induces theTuring pattern to emergemuchquicker (t = 400) than the single
factory case (t = 1500, Fig. 8).

Next, themagnitude of the emergent factory quantities corresponds to
the environmental stimuli, as seen in Fig. 9C, F, I. In Fig. 9F, Factory 1 and

Factory 2 self-organize into regions of high concentration where their
respective stimuli are strong and low concentration where stimuli are weak.
Similarly, in the anti-phasing case (Fig. 9I), Factory 1 reaches higher con-
centrations in regionswhere its stimulus is strongest, while Factory 2 follows
the same pattern. This demonstrates that the Turing pattern aligns with the
environmental demand, with the stimulus level directly influencing the
pattern’s amplitude.

Next, in terms of total capacity, the total capacity of the tissue with
diffusion and opposition is marginally greater (<2%) than that of the
unopposed systemwithout diffusion (F*) and significantly greater than that
of the opposed system without diffusion (FND), (17% for uniform, 24% in-
phase, 9% anti-phase). This is due to the anti-phasing of Turing patterns,
which minimize the opposition in each cell, allowing it to reach a high
factory concentration to support itself and its near neighbors. Therefore, in
terms of total capacity, the opposition is synergistic with diffusion, as it
allows cells to specialize entirely into theirmoredominant ability and receive
other products from neighboring cells.

Emergence of mechanical properties of the Loopy robot
This experiment evaluates Loopy’s ability to self-organize its mechanical
properties across two environments—contained and obstacle-free—and
three morphogenetic behaviors: formation, metamorphosis, and mor-
phology rotation. An external script sequentially modifies the underlying
reaction–diffusion system parameters to trigger transitions between these
behaviors. Loopy begins in a random initial configuration within the con-
tained environment, where it is directed to form a circular morphology,
metamorphose into a three-lobed shape, and then rotate its morphology.
The environment is then manually switched to obstacle-free, where Loopy
continues morphology rotation, stops rotation, and finally returns to a
circular morphology through another metamorphosis. Each phase
lasts 2min.

The cellular plasticity model parameters used in this experiment are
P∞ = 1.0,Plim = 1.5,D = 0.1,γF = 0.01, and γP = 100.Asymmetric opposition
favoring speed (Ods = 0.001, Osd = 0.05) is employed to account for the
shorter duration of speed stimuli relative to position error, supporting
motor speed. To align with the motor’s operating range, position error and
speed were scaled by factors of 10 and 20, respectively, while the spring
constant (Ks) and damping constant (Kd) were scaled by 100. Each cell was
initializedwith a quantity of 0.5 for both factories and 1.0 for both products.
Furthermore, since the factory quantity may drop below zero, it was arti-
ficially limited to 0.1. The morphogenetic behavior parameters are from
refs. 15,37 and displayed in Table 1. To seed the three-lobed formation
during the contained metamorphosis phase, consistent with the approach
used in section “Results—Criteria for the emergence of turing patterns,” a
small activator increase of 0.01 was applied at the start of the phase. This
increase was introduced in the motor cell with the highest position error as
an ideal case to reduce the error.

The proposed cellular plasticity model CP is compared to constant
stiffness (Ks = 200) and damping (Kd = 200) parameters, PT, empirically
tuned for performance (i.e., low position error) in the obstacle-free envir-
onment, similar to previous studies15,37. The CP model is also compared to
the PT configuration in an exclusively obstacle-free scenario, PTfree, where
the same morphogenetic behaviors are applied. The PT and PTfree config-
urations were chosen to reflect the human design assumption that Loopy
will only be in an obstacle-free environment as made in refs. 15,37. The
PTfree case represents Loopy’s performance under the assumed condition,
while PT allows us to examine the performance when the assumption is
violated. In contrast, CP showcases the benefits of adaptability in scenarios
the designer did not foresee, dynamically adjusting to both expected and
unexpected environmental demands.

Each configuration (CP, PT, PTfree) underwent ten trials, and the
motor-cell performance: position error,motor speed, andmotor failures are
displayed in Fig. 12. To accommodate the skewed data distributions
introduced by motor failures while still being sensitive to these failures,
results are reported using themean and upper/lower semi-variance40 across
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all cells and trials. Additionally, the data is smoothed temporally with a
rectangular kernel of 10 s. An example image of Loopy in each experimental
phase is shown in Fig. 11. Furthermore, Fig. 10 illustrates each motor cell’s
phenotypes and total capacity (Fs+ Fd) from an example CP trial. The
following phase-by-phase analysis examines how Loopy’s mechanical
properties emerge and adapt under different environments and behaviors,
beginning with the contained formation phase.

Contained formation phase t = (0, 120). Initially, as Loopy transitions
from random initial conditions to a circular morphology, all cells exhibit
a low-damping phenotype (Fd; blue in Fig. 10A) during the rapid

Fig. 9 | Environmental stimulation distribution effects on a two-factory Turing
pattern. A,D,G display the initial conditions for uniform, in-phase, and anti-phase
distributions. In addition, the steady state without diffusion FND

i and steady state
without diffusion or opposition F* for each factory are plotted. B, E, H display the
cell phenotype and factory quantities over time. C, F, I display the final factory
distributions. In each scenario, the two factory turning patterns self-organize into an

alternating striping pattern, where the amplitude of the stripe matches the envir-
onment stimulation. The total capacity of the two-factory Turing pattern was
marginally greater (<2%) than the unopposed non-diffusive case (F*). However, the
total capacity was significantly greater than the opposed non-diffusive case FND,
(17% for uniform, 24% in-phase, 9% anti-phase). Parameter values: P∞ = 1.0,
Plim = 1.5, D = 0.1, O12 =O21 = 0.02, γF = 0.01, and γP = 100.

Table 1 | Morphogenetic behavior parameters

γact γinh γpas α β λ

Contained formation 50.0 50.0 10.0 1.0e−5 1.0 0.0

Contained metamorphosis 1.0 50.0 10.0 1.0e−5 1.0 0.0

Contained rotation 1.0 50.0 10.0 1.0e−5 1.0 1.0

Obstacle-free rotation 1.0 50.0 10.0 1.0e−5 1.0 1.0

Obstacle-free rotation stop 1.0 50.0 10.0 1.0e−5 1.0 0.0

Obstacle-free metamorphosis 50.0 50.0 10.0 1.0e−5 1.0 0.0

Bold values indicate parameter changes between experimental phases.
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formation stage (t = (0, 5)), where motor speed dominates. Once the
robot stabilizes and interacts with the container boundaries, when
deformations are dominant, phenotypes shift to include low stiffness (Fs,
red) and high damping and stiffness (purple) (t = (5, 120)). These low-
stiffness phenotypes arise as the robot deforms in the confined envir-
onment. The total capacity plot (Fig. 10B) shows that cells 3–10 exhibit
increased Fs with further reduced stiffness, corresponding to regions
most affected by the container boundaries as shown in Fig. 11.

Figure 12 reveals that the cellular plasticity (CP) method achieves a
comparable mean position error to the PT configuration but with sig-
nificantly lower upper semi-variance. This indicates that, under PT, a small
subset of motors experienced disproportionately high errors, while most
remained near nominal. In contrast, CP distributed error more evenly
across motors, resulting in moderate, consistent performance. This trend
aligns with Fig.12C, where an average of three PTmotors experienced over-
torque failures and became nonfunctional for the remainder of the
experiment, compared to less than one motor under CP. These results
suggest that PT concentratedmechanical stress on fewermotors, increasing
failures, whereas CP mitigated this by distributing stress across the system.

Contained metamorphosis phase t = (120, 240). During the
contained-metamorphosis phase, the phenotype patterns remain similar
to those observed during the contained-formation phase. However, the
reduced stiffness exhibited by cells 3–10 diminishes as the morphology
transitions within the contained environment, resulting in a decreased
total capacity (Fig. 10B). This likely occurred because the three-lobed
shape was seeded at the cell with the highest position error (cells 3–10);
thus, their position errors were reduced, decreasing Fs, and increasing
their stiffness.

Like the contained formation phase, the average position error of CP
and PT during the contained metamorphosis phase was similar, with CP
having amuch smaller upper semi-variance (Fig. 12A). However, the upper
semi-variance of PT increased during this phase. This was likely due to the
cumulative motor failures increasing to an average of 4.5 compared to CP’s
<1 averagemotor failures (Fig. 12C). This further highlights the resilience of

Fig. 10 | An example of Loopy’s cell phenotypes and total capacities across the six
phases of the emergence of mechanical properties experiment. A Red cells exhibit
a high concentration of Fs, resulting in low stiffness and high damping, while blue
cells have a high concentration of Fd, leading to low damping and high stiffness.
Purple cells remain unspecialized, lacking total factory capacity (B), and thus exhibit
high stiffness and damping. The red, low-stiffness phenotype dominates during
stationary and confined phases, whereas the blue, low-damping phenotype prevails
during the rotation phases. In contrast, the purple, high stiffness and damping,
phenotype is most prevalent in the obstacle-free stationary phases. These trends
demonstrate Loopy’s ability to dynamically adapt its mechanical properties in
response to changing morphologies, environments, and behaviors.

Fig. 11 | Each Loopy configuration during all experiment phases. The red circle encompasses cells 3–10 with low stiffness. Yellow jagged are motors that experienced an
over-torque failure during that phase.
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the proposed CP method, which reduces such failures by more evenly
distributing position errors, aiding reliable operation even under environ-
mental constraints.

Contained-morphology-rotation phase t = (240, 360). During this
phase, a notable shift in cell phenotypes occurs, with many cells

transitioning from low stiffness (red) to low damping (blue), as shown
in Fig. 10A, due to the persistent speed of the motor cells. Despite this
shift, four stripes of high flexibility remain present due to the confined
space deforming the shape. The total capacity increases significantly, as
seen in Fig. 10B, likely due to the simultaneous presence of speed and
position error stimuli during the morphology rotation, as well as the

Fig. 12 | Loopy’s average cell performance across
ten trials of the six phases of the emergence of
mechanical properties experiment. Each subplot
displays the mean and upper/lower semi-variance
for position error (A), motor speed (B), and
cumulative motor overtorque failures (C). The
proposed cellular plasticity method CP had less
position error than the performance-tuned config-
uration PT throughout the six phases due to PT
experiencing an average of 4.5 motor failures while
CP only experienced 1.1 failures. In addition, CP in
the obstacle-free environment performed similarly
to the performed-tuned configuration that only
experienced an obstacle-free environment PTfree.
The proposed method also had the greatest motor
speed during the rotation phases. These trends
highlight Loopy’s resiliency and ability to adapt to
support its behavior in changing environments.
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favorability of the inverse damping factory (Fd) resulting from asym-
metric opposition.

Regarding performance, the proposed CP approach’s mean position
error and upper semi-variance are similar to PT for this phase. This is likely
due toCPoften experiencing amotor failureby this stage (Fig. 12C) and self-
organizing a few motors to become highly flexible, like in Fig. 10A, which
had four flexible groups of cells (red stripes) similar to the average motor
failures (4.5) of PT. However, the motor speed of CP was higher than both
PT and the unconfined PTfree. These results demonstrate the proposed
system’s adaptability, where the cells can rapidly change phenotypes fromFs
(low stiffness, red) to Fd (low damping, blue) in response to behavioral
changes to exert a more dynamic response, indicated by the higher
motor speed.

Free-morphology-rotationphase (t = 360, 480). During this phase, two
of the four high-flexibility phenotypes (red) stripes transition to low-
damping phenotypes (blue), as illustrated in Fig. 10A. This transition
occurs while maintaining a total capacity comparable to that of the
contained-morphology-rotation phase. The shift is likely attributable to
the robot exiting the confined environment, which reduces movement
restrictions and, thus, deformations. In terms of performance, Fig. 12A
shows that the proposed approach (CP) exhibits rapid adaptation, with
the position error decreasing to levels comparable to PTfree despite its
average of one failed motor. In contrast, the performance-tuned system
(PT) fails to recover to the performance of PTfree after being removed
from confinement. This is likely due to the average 4.5motor over-torque
failures experienced during earlier phases. These results demonstrate the
proposed approach’s adaptability to environmental changes, rapidly
achieving performance comparable to the idealized PTfree once
unconfined.

Free-rotation-stop phase t = (480, 600). During this phase, the cell
phenotypes shift from low damping (blue) to a striping pattern of low
stiffness (red) and high stiffness and high damping (purple), as illustrated
in Fig. 10A. This transition corresponds to a notable decrease in total
capacity, as shown in Fig. 10B, reflecting the robot’s adaptation to the
cessation of rotational movement and small position error (Fig. 12A).
However, CP’s position error remains above PTfree due to its average of
1.1 motor failures, but CP has less mean and upper semi-variance posi-
tion error than PT with its average of 4.5 failed motors.

Free-metamorphosis phase t = (600, 720). In this phase, the cell phe-
notypes transition rapidly, initially exhibiting slightly lower damping
(blue) as the system responds to the metamorphosis into a circular
morphology (Fig. 10A, t = (600, 610)). Once the circular morphology is
established, the system settles into a slightly flexible (red) and high-
stiffness with high-damping (purple) phenotype-stripped pattern by
t = 720. This behavior arises from the sudden morphological shift, which
temporarily increases motor speed, leading to a drop in damping. As the
circle stabilizes, slight deformations persist, resulting in low position
error consumption rates that stabilize into the observed red-purple stripe
pattern, consistent with how Turing patterns emerge in Fig. 8.

In terms of performance, CP demonstrates slightly higher position
error than PTfree due to CP’s average of 1.1 failed motors. In comparison,
PT’s position error and upper semi-variance are significantly higher due to
its average of 4.5 motor failures. This highlights the proposed method’s
adaptability and resiliency to environmental,morphological, andbehavioral
changes, in addition to the permanency of failure in long-term autonomy
systems.

Discussion
This study introduced a cellular plasticity model to enable the self-
organization of phenotypes in multi-cellular robots to support their beha-
vior in dynamic environments. By incorporating reaction–diffusion
mechanisms and opposition-driven specialization, themodel demonstrated

general phenomena observed in various cell types: (1) growth stems from
product scarcity in muscle cells, (2) sustained stimuli modulate functional
capacity in neurons, (3) specialization increases total capacity in stem cells,
and (4) self-regulation occurs without an environmental model. Analytical
and simulation analyses highlighted the model’s stability, behavior, and
parametric effects, revealing that decentralized interactions can generate
phenotype patterns that increase overall capacity through specialization.

The proposed CP model conceptually overlaps with several well-
established computational frameworks. Like long short-term memory
(LSTM) networks41, CP maintains an internal state, through
factory–product dynamics, that allows it tomodulate behavior based on the
history of environmental stimuli. It also resembles graph neural networks
(GNNs)42 in its decentralized structure, where local communication via
diffusion enables one-hop neighbor interactions. CP shares conceptual
similarities with central pattern generators (CPGs)43, as both systems self-
organize from random initial conditions-CPGs producing synchronized
oscillations and CP generating spatially patterned functional properties.

Cellular plasticity differs from these frameworks in key ways. Unlike
LSTMs and GNNs, it is not trained offline through backpropagation or
data-driven optimization41,42. Also, unlike CPGs, cellular plasticity’s self-
organization is spatial rather than temporal43. Most importantly, cellular
plasticity is not based on neuron-specific dynamics41–43; instead, it is
grounded in fundamental biological principles—reaction–diffusion and
environmental stimulation—that generalize across cell types such asmuscle
cells, stem cells, and neurons. These distinctions position cellular plasticity
as a scalable, interpretable framework for decentralized online adaptation
that requires neither large datasets nor explicit environmental models. It
broadly applies tomorphology andbehavior and iswell suited for embodied
morphogenetic systems like Loopy, where form, function, and environ-
mental interaction are tightly coupled.

SinceLoopy’smorphology andbehavior emerge throughdecentralized
self-organization rather than centralized design, cellular plasticity may be
less suited for achieving precisely defined configurations or task-specific
specializations. In contrast to data-driven approaches that can be optimized
for narrowly defined objectives, cellular plasticity emphasizes general
adaptability, trading precision for flexibility in unstructured or unforeseen
environments.

Experimental validation on the Loopy robot further demonstrated the
practical applicability of this framework, highlighting its adaptability in
supporting diverse behaviors in dynamic and unmodeled environments.
Notably, the proposed method reduced over-torque failures and improved
performance consistency in confined settings compared to performance-
tuned parameters.

TheLoopy application experiment also revealed a compelling interplay
between stiffness and damping, driven by the opposition between the fac-
toriesFs (inverse spring constant) andFd (inverse damping constant). These
factories dynamically adjust in opposition to one another: as one increases,
the other decreases. Therefore, if a cell experiences deformation, Fs will
increase, making it more flexible to the deformation, but due to the oppo-
sition, Fd will decrease, making the robot more damped. This, in turn,
further reduces the robot’s ability to actively move, increasing the robot’s
compliance with the environment. However, the reverse is also true; if the
robot begins tomove, not only will the damping decrease to aidmovement,
but Fs will decrease, making the robot stiffer to further support its active
movement. This adaptive interplay showcases how cellular plasticity prin-
ciples enable the self-organization of functional mechanical properties.

This application also highlights the self-organizationof cell phenotypes
in response to the environment and the robot’s behavior. During the con-
tained formation and metamorphosis phases, the robot’s cells were pre-
dominantly red (Fig. 10A, indicating low stiffness and high damping. This
phenotype aligns with the robot’s restricted and stationary state, where
minimal resistance to deformation and high resistance to movement were
advantageous. In the confined and unconfined rotation phases, the domi-
nant phenotype shifted to blue, characterized by low damping and high
stiffness, supporting active movement by reducing motion resistance and
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enhancing structural support. As the robot transitioned from confined to
unconfined motion, the proportion of red cells decreased as it became less
restricted, further reinforcing that the emergent phenotype mirrored its
environment and function. Purple cells (high stiffness and damping)
became most prevalent in the free-rotation-stop and free-metamorphosis
phases, reflecting the robot’s stationary and unrestricted formation. These
results suggest that the proposed approach enables the robot to adjust its
mechanical properties to dynamicallymatch environmental and behavioral
demands, enhancing its adaptability and resilience in complex andchanging
conditions.

This study is limited by simplifying complex biological processes to
general phenomena and assuming that factories can grow indefinitely given
adequate time. Additionally, the lack of experimental validationwith robots
outside a laboratory environment restricts the empirical confirmation of the
model’s applicability. This model is also limited in that it does not eliminate
motor failures. Future endeavors aim to address these gaps by undertaking
experimental validations with physical robots in unstructured environ-
ments to examine the influence of cellular plasticity on the robot’s emergent
morphology and behavior. In addition, the model could be enhanced to
include a defined factory capacity limit per cell and incorporate a model for
cellular division and death. Furthermore, this future model will adjust the
parameters of the spawning cell (similar to evolutionary algorithms16 and
stem cell histones33) to bias specialization towards the additional capacity
neededby theparent cell, introducing another layer of adaptive response at a
longer time scale.

Methodology
This section describes the Turing pattern framework and the development
of the cellular plasticitymodel froma single cell with a single phenotype (i.e.,
function) to multiple cells with many phenotypes. Then, it describes the
Loopy platform and the application of the cellular plasticity model to self-
organize the mechanical properties of the Loopy robot.

Turing patterns
Turing patterns describe the formation of spatial distributions of simulated
chemicals or morphogens with a system of reaction–diffusion equations10.
The reaction–diffusion framework is defined by (17), where Q represents
morphogen quantities, Γ∇2Q is the diffusion term with Γ being a diagonal
matrix of diffusion coefficients, and R(Q) is the reaction function10.

dQ
dt

¼ Γ∇2Qþ RðQÞ ð17Þ

In this framework, the unique interactions within the reaction function
differentiate the formationof limbs, feathers, andother natural structures11–13.
The reaction function typically utilizes twomorphogens: an activator and an
inhibitor. The activator morphogen increases the production of both the
activator and the inhibitor, while the inhibitor reduces these production
abilities10. Utilizing the activator–inhibitor framework, the mathematical
conditions for aTuringpattern toexist aredescribed in (18)–(22) fromref. 39.

Jacobian : J ¼ J11 J12
J21 J22

� �
ð18Þ

with elements constrained by:

J11 > 0 ð19Þ

J22 < 0 ð20Þ

J11 þ J22 < 0 ð21Þ

γinh
γact

J11 þ J22 > 0 ð22Þ

where J is the Jacobian of the reaction function about its equilibrium point,
γact is the diffusion rate of the activator, and γinh is the diffusion rate of the
inhibitor. This mathematical framework enables synthetic structure for-
mation, the foundation for robotic morphogenesis.

Single-cell single-factory model
Utilizing the Turing pattern framework, the proposed cellular plasticity
model for the self-organization of cell phenotypes includes a factory, ana-
logous to an enzyme or organelle, that produces a product molecule con-
sumed by the environment. This factory–product pair represents a cell’s
functional capability (i.e., phenotype), where the factory’s size determines
the intensity at which the function is performed, and the product quantity
indicates its immediate readiness perform the function. This concept maps
directly to robotic systems; for example, amotor applying torque to a joint in
response to angular error can be modeled as a factory–product pair, where
the factory represents the torque gain, and the product represents the
available torque, which is consumed at a rate equal to the angular error.
Furthermore, the interactions of these components are regulated by the bio-
inspired phenomena from the section “Introduction” manifested as
feedback loops.

Referring to Fig. 13, at the heart of the cellular plasticity model is the
factory quantity (F), which functions as the activator and not only self-
replicates at rateG but also produces the inhibitory product quantity (P) at
rate R. This inhibitor modulates the factory by slowing product synthesis
and factory growth at respective rates I and K. Additionally, the environ-
ment consumes the product at a rate of C ⋅ P, where C is the environmental
stimulus and the product’s quantity (P), or availability, proportionally
affects how fast it can be consumed. Moreover, as the environment con-
sumes the product, the factory is degraded proportionally to the con-
sumption at a rate of (D). The environmental consumption of the product
represents a negative stimulus that reduces the product’s inhibitory effect on
the factory, allowing it to grow. Therefore, the equilibrium between the
factory (F) and product (P) quantities is modulated with the environmental
demand (C). This relationship for the cellular plasticity model is mathe-
matically described in (23) and (24).

dF
dt

¼ ðG� KPÞF � DCP ð23Þ

Fig. 13 | Cellular plasticitymodel for a single factory cell.Thismodel utilizes a self-
replicating factory that produces a product consumed by the environment. This
product also inhibits the production and growth rate of the factory. Moreover, the
factory is degraded by the intensity at which the product is consumed.
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dP
dt

¼ ðR� IPÞF � CP ð24Þ

This model, (23) and (24), describes the first two targeted phenomena
of cellular plasticity from the section “Introduction”—growth is spurred by
product scarcity, and sustained stimuli modulate functional capacity—via
two negative feedback loops depicted in Fig. 1. These loops increase the net
production rate (R− I ⋅ P) andnet factory growth (G−K ⋅ P) in response to
reduced product levels (P), capturing the first phenomenon. Next, suppose
the net factory growth feedback loop reacts slower than the net production
rate feedback loop. In that case, only prolonged consumption rate changes
will significantly modify factory capacity, capturing the second phenom-
enon. Furthermore, the fourth phenomenon from the section “Introduc-
tion,” self-regulation, is demonstrated by this model by not relying on an
external environment model to regulate functional capacity.

Single-cell multi-factory model
The cellular plasticity model is extended to include multiple factories
(Fig. 14) to reflect howcells and robots oftenperformdiverse functions, such
as molecular transport and reaction in cells, or data acquisition, computa-
tion, and actuation in robots. However, cells and robots have finite cap-
abilities; if a cell creates proteins to transportmolecule A, it reduces capacity
to transport molecule B. Similarly, if a robot is overloaded with processing,
its data acquisition and actuation capabilities diminish. This resource
constraint induces competition, as an increase in one functional capacity
reduces the capacity of others. This competition is modeled by introducing
an opposition rate Oij that reduces the net growth rate of the ith factory
proportionally to the quantity of the opposing jth factory; thus, (23) becomes
(25), where N is the total number of factories in the cell.

dFi

dt
¼ ðGi � KiPi �

XN
j≠i

OijFjÞFi � DiCiPi ð25Þ

This competition encourages specialization towards higher-demand
products, potentially capturing the phenomenon that specialization
improves total capacity.

Multi-cellular multi-factory model
Diffusion is crucial in enabling Turing patterns to form spatially organized
structures. To account for this, diffusive effects are incorporated into the
model, expanding it to include interactions amongmultiple cells.As a result,
(25) and (24) are modified into (26) and (27), where γF and γP are the
diffusion coefficients for the factory and product, respectively:

dFi

dt
¼ γF∇

2Fi þ ðGi � KiPi �
XN

j≠i
OijFjÞFi � DiCiPi ð26Þ

dPi

dt
¼ γP∇

2Pi þ ðRi � IiPiÞFi � CiPi ð27Þ

This model captures intracellular competition among factories from
opposition and the intercellular cooperation of resource sharing via diffu-
sion, demonstrating how internal interactions and diffusionmay contribute
to multi-cellular self-organization.

Model constraints
Multiple constraints must be specified to ensure the model captures the
cellular plasticity phenomena outlined in the section “Introduction.” The
first constraint is that G, K, R, I, D, Oij, γF, and γP parameter values are
positive constants. Secondly, to ensure that only sustained stimuli lead to
changes in functional capacity, themodel’s parametersmust be constrained
such that the factory’s net growth response (i.e., its time constant τF), is
slower than the production rate’s response, τP, to changes in the con-
sumption rate (τF > τP). Furthermore, the factory (F) and product (P)
quantities are also restricted to positive values, as negative values lack
physical meaning. The consumption rate stimulus (C) is limited to positive
values, thus restricting themodel from harvesting environmental resources.
Lastly, for Turing patterns to emerge, the diffusion coefficient of the acti-
vator must be much smaller than the inhibitor, thus γF << γP

39.

Loopy platform
TheLoopy robot, shown inFig. 1, utilizes theTuringpattern framework and
consists of 36 homogeneous, 1-DoF physically linked cells, each constructed
from a Dynamixel XM430W210 rotary servo that provides actuation along
withposition andvelocity proprioception15. Thesemotors are daisy-chained
to share power and data communication. Loopy’smotors are controlled in a
decentralizedmanner, with each acting independently and communicating
only with its immediate neighbors, without knowing the robot’s overall
morphology or position. However, for the convenience ofmaintenance and
development, a central computer simulates the reaction–diffusion system
for all cells. The computer then utilizes U2D2 Dynamixel Communicators
to transmitmotor commands and receive sensor information.Utilizingonly
local information, Loopy’s cells self-organize into stable morphologies
consisting of lobed protrusions, as shown by the three lobes in Fig. 1. These
structures are formed using FitzHugh–Nagumo activator–inhibitor
dynamics (28) and (29) and a passive morphogen (30)44. In this system, qact
is the activator quantity, qinh is the inhibitor quantity, qpas is the non-reactive
passive morphogen quantity, γact γinh γpas are the diffusion constants, α is
the persistent stimulation rate and β is the inhibition rate.

dqact
dt

¼ γact∇
2qact þ qact �

1
3
q3act � qinh þ α ð28Þ

dqinh
dt

¼ γinh∇
2qinh þ βðqact � qinhÞ ð29Þ

Fig. 14 | Single Cell Multi-Factory Model Diagram. Expansion of the cellular
plasticity model to multiple unique functions within a single cell, via multiple
competing factories that oppose each other at a rate of Oij.
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dqpas
dt

¼ γpas∇
2qpas ð30Þ

The self-organized morphogen concentrations then guide each motor
cell’s desired joint angle, θdes, in (31), with the balance betweendiffusion and
reaction parameters directly influencing the morphology15.

θdes ¼ qact þ qpas ð31Þ

For instance, higher inhibition rates (β) reduce lobe size, while
increased activator diffusion (γact) spreads morphogens across more cells,
decreasing the number of lobes15.

Building on these static formations, Loopy’s morphology can also be
made to rotate by introducing simplified active transport through a first-
order wave term in the morphogen dynamics37. This allows morphogen
concentrations-and thus motor trajectories-to propagate along the robot’s
body, producing traveling waves and periodic rotation.

dQ
dt

¼ λ∇Q ð32Þ

This modifies the original FitzHugh–Nagumo equations to include active
transport between cells, as shown in (33) and (34), where λ sets the transport
speed.

dqact
dt

¼ γact∇
2qact

� �þ λ∇qact
� �þ qact �

1
3
q3act � qinh þ α ð33Þ

dqinh
dt

¼ γinh∇
2qinh

� �þ λ∇qinh
� �þ βðqact � qinhÞ ð34Þ

To solve and decentralize the continuous partial differential equations
(33), (34), and (30), they are discretized both temporally and spatially, with
eachmotor cell of size s serving as a control volume15,37. Thus, (33), (34), and
(30) become (35)–(37), respectively, for the mth cell in the loop. These
equations are expressed as a sum of diffusion, active transport, and reaction
terms, each enclosed in parentheses. The system is then propagated through
time (t) using (38), where Δt is the time step.

dqactm;t

dt ¼ γact
qactm�1;t

�2qactm;t
þqactmþ1;t

s2

� 	

þλ
qactm�1;t

�qactmþ1;t

2s

� 	

þ qactm;t
� 1

3 q
3
actm;t

� qinhm;t
þ α

� 	 ð35Þ

dqinhm;t

dt ¼ γinh
qinhm�1;t

�2qinhm;t
þqinhmþ1;t

s2

� 	

þλ
qinhm�1;t

�qinhmþ1;t

2s

� 	

þβ qactm;t
� qinhm;t

� 	 ð36Þ

dqpasm;t

dt
¼ γpas

qpasm�1;t
� 2qpasm;t

þ qpasmþ1;t

s2

� �
ð37Þ

Qm;tþ1 ¼
dQm;t

dt
Δt þ Qm;t

ð38Þ

From (35)–(38), each cell only depends on its current morphogen
concentrations and its immediate neighbor’s concentrations, highlighting
the scalability of this system.

Application of cellular plasticity to the mechanical properties of
the Loopy robot
To demonstrate the applicability of the proposed cellular plasticity model,
we implemented it on the Loopy robot. This system leverages the model to
modulate the robot’s mechanical properties-stiffness and damping-self-
organized in response to behavioral and environmental stimuli.

The model is applied by defining each cell’s abilities (factories) and
their modulation stimuli (consumption rates). In this study, stiffness and
damping are the targeted mechanical properties, controlled by the motor’s
spring constant (Ks) and damping constant (Kd). The position error
(∣θdes− θ∣) serves as the stimulus for stiffness, while motor speed (j dθdt j)
modulates damping. The inverse spring constant (1/Ks) and inverse
damping constant (1/Kd) are defined as the cell’s activator factories (Fs and
Fd). This configuration enables mechanical adaptation: increasing position
error reduces stiffness, allowing deformation under physical constraints;
increasing speed reduces damping, easing motion.

To evaluate how Loopy’s mechanical properties self-organize, it is
examined in two environments: obstacle-free and contained (Fig. 15). The
obstacle-free environment examines Loopy’s intrinsic ability to develop
spatially distributed phenotypes, while the contained environment intro-
duces additional external physical constraints. In addition, Loopy is sub-
jected to three behaviors: formation, metamorphosis, and morphology
rotation (Fig. 16). In the formation behavior, Loopy organizes a structured
morphology from random initial conditions. Metamorphosis refers to the
transition between different morphologies, such as from a circle to a three-
lobed shape. Morphology rotation involves propagating morphogens
through the robot’s body to produce periodic motor trajectories37.

The morphogenetic behaviors are not explicitly programmed but
instead emerge from specific parameter changes in the underlying
reaction–diffusion system, which modify Loopy’s internal chemical envir-
onment. For example, setting γpas > 0 enables formation, varying γact trig-
gers metamorphosis, and setting λ ≠ 0 induces morphology rotation15,37.
These parameter changes are applied sequentially by an external centralized
script that governs transitions between experimental phases. The physical
environment is adjusted manually by inserting or removing the bounding
frame shown in Fig. 15. Thus, while the robot autonomously self-organizes

Fig. 15 | The two environments Loopy was immersed in: obstacle-free (left) and
contained (right). The contained environment measures 60 × 80 cm.

Fig. 16 | Loopy performs three morphogenetic behaviors. (1) Formation: transi-
tioning from random initial conditions to an organized morphology; (2) meta-
morphosis: transitioning from one morphology to another; (3) morphology
rotation: propagating morphogens around Loopy to shift which cells constitute
different parts of the morphology.
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within each phase, initiating new environments or behaviors—such as
formation, metamorphosis, or rotation—is externally induced. The com-
plete cell dynamics are described in Eqs. (39)–(47), whereTapp is the applied
motor torque.

Inverse spring constant factory–product pair:

dFs

dt
¼ γF∇

2Fs

� �þ ðG� KPs � OsdFdÞFs � Djθdes � θjPs ð39Þ

dPs

dt
¼ γP∇

2Ps

� �þ ðR� IPsÞFs � jθdes � θjPs ð40Þ

Inverse damping constant factory–product pair:

dFd

dt
¼ γF∇

2Fd

� �þ ðG� KPd � OdsFsÞFd � Dj dθ
dt

jPd ð41Þ

dPd

dt
¼ γP∇

2Pd

� �þ ðR� IPdÞFd � j dθ
dt

jPd ð42Þ

FitzHugh–Nagumo with first-order wave equation:

dqact
dt

¼ γact∇
2qact

� �þ λ∇qact
� �þ qact �

1
3
q3act � qinh þ α ð43Þ

dqinh
dt

¼ γinh∇
2qinh

� �þ λ∇qinh
� �þ βðqact � qinhÞ ð44Þ

Passive morphogen:

dqpas
dt

¼ γpas∇
2qpas ð45Þ

Morphogen to formation:

θdes ¼ qact þ qpas ð46Þ

Actuator dynamics:

Tapp ¼ � 1
Fs

ðθ � θdesÞ �
1
Fd

dθ
dt

ð47Þ

Furthermore, this system is discretized and decentralized, similar
to (35)–(38).

Data availability
The raw data supporting the conclusions of this article are available at
https://github.com/TrevorSmith42/Cellular-Plasticity-Model-for-Self-
organized-phenotypes.git.
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