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Let’s DENSE: a novel protocol for
efficiently collecting dense and diverse
data for tactile slip detection in robotic
grasping
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Rodrigo Zenha1,2,7 , Brice Denoun3,7 , Andrea Cavallaro4 , Alexandre Bernardino5 &
Lorenzo Jamone1,6

There is a growing interest in leveraging tactile sensing and data-driven models to enable robust
robotic grasping; in this context, detecting object slip is a fundamental skill. However, the large
variability in gripper-object interactions (e.g. different graspposes, areaof contactwith the sensor, and
directionsof slip)makes thecollectionof suitable data to trainmodels costly in timeand resources, and
current data collection protocols are oversimplified to several repetitions on a small subset of gripper-
object interactions. To address this challenge, we propose DENSE, an efficient and highly
reproducible protocol which is designed to capture this large variability by exploring gripper-object
interactions across the object surface, and which automatically embeds straightforward labelling. We
show experimentally that, compared to baseline methods, the DENSE protocol can reduce time effort
by up to 50%, andmodels trained with the collected data improve up to 85% in their generalisation to
unseen gripper-object interactions.

Handling arbitrary objects in unstructured environments is an open chal-
lenge for autonomous robots1. While vision provides meaningful infor-
mation to generate a motion plan for grasping2, tactile sensing helps
maintaining accurate information on the contact interaction between the
gripper and the object3. For autonomous grasping, tactile sensing can enable
robots to cope with uncertainties. Currently, most state-of-the-art grasp
planning algorithms work in an open-loop manner4; i.e. after a grasp is
generated, the robot executes it withoutmodifying its behaviour, evenwhen
the object slips from the gripper. For this reason, we are interested in
detecting slips that occur right after a grasp when the robot lifts the object.

As autonomous robots now have the ability to grasp a wide range of
objects2,we argue that slip detectionmodels should alsobe capable of coping
with the same object variability range. First, the robot should detect slips
regardless of an object’s properties, such as geometry, weight distribution or
texture5. Second, due to real-world uncertainties, the robot should detect
slips regardless of thepose of thefingertipswith respect to the object6. In fact,
small errors in perception and robot control can lead to a variety of grasp
configurations, even without the whole sensor being in contact with the

object7. Although previous works used learning techniques, including Deep
Learning (DL), to detect slips on two-fingered grippers with some degree of
success, the formulation of the problem and methodology to collect and
label data donot account for the above variability5,8–10. In addition, collecting
and labelling large amounts of tactile data in less constrained scenarios (e.g.
autonomous grasping) is very challenging and greatly impacts the perfor-
mance of classifiers11.

Robotic slip detection requires two components: a sensor that captures
signals related to the physical interaction between a gripper and an object
(e.g. vibrations, region of contact, distributed forces)12,13, and a classifier (a
model) identifying if such data corresponds to a slip event 8. Recent works
have proposed data-driven approaches, which require collecting and
labelling tactile data for both slip and static contact events between objects
and a tactile sensor to train the slip classifier14–18.

A Support Vector Machine (SVM)19 can discriminate gross slip
events14 based on processed data captured with the TacTip sensor20.
Although the SVM is trained with data collected on five objects only, the
fitted model generalises well to six new objects. Similarly, Random Forests
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(RF)21 applied to the Fast Fourier Transform22 of the raw data can classify
object slips with 80% accuracy18.

Methods that rely on DL to learn features23 from raw or calibrated
data 15,16,24 avoid the need for data processing before classification. In 15,
a Convolutional Long Short-TermMemory is trained from the raw data
of a BioTac sensor25 to classify slips (and slip direction). Although the
model can generalise to different textures and slip velocities, themethod
requires collecting a large amount of data (~85k tactile samples) and is,
in practice, limited to a relatively small set of objects. This is an
underlying limitation of DL models that, despite better classification
performance, usually require more data to learn a given task compared
to more traditional Machine Learning (ML) techniques26,27. This
shortcoming becomes even more important when the task requires
neural networks to account for several sources of variability27 since it
can lead to a tedious and time-consuming data collection process on the
hardware.

To collect large datasets with minimal effort, an increasing number of
works leverage the recent progress in simulation28 to collect realistic tactile
data29,30. Several works demonstrate how some tasks that rely on tactile data
can be learned entirely in simulation and then be deployed on a physical
robot with minimum adaptation31–33. However, these approaches require
the underlying sensing mechanism to be simulable, which is currently
mostly restricted to optical sensing, i.e. tactile sensors embedding a
camera34,35.

As a result, training models for slip detection for non-vision-based
tactile sensors requires an exhaustive data collection and labelling process.
To address the challenges associated with the labelling of slip events -
characterised by short-lived and hard-to-isolate phenomena—some pre-
vious work has resorted to weak labelling techniques24, i.e. carefully
designing the grasping and data collection protocol so that all samples
recorded for each experiment can be assigned one particular label. This
process can result in noisy datasets—possibly mitigated by regulating the
data recording time and grasp forces. However, alternative automated
labelling processes (e.g., resorting to external vision14 or accelerometers36),
althoughmore accurate, are alsomore expensive and not easily deployed in
scenarios involving robotic motion.

The data collection process can be simplified in several ways. For
instance, authors tend to strategically place objects against the sensor to
maximise the area of contact9,37,38, which is not representative of how robots
can grasp objects in unconstrained environments. Other works only con-
sider data when the robot is already holding objects in the air14,36,39 or is
pushing them against a vertical support9,38. By keeping the gripper static, the
variability of the process is significantly simplified since object-gripper
physical dynamics, such as arm vibrations, stretches of the sensor material,
object load and/or unloading, are not accounted for. To partially solve this
lack of variability, James et al. have proposed inducing slips through step-
wise releases of the grasp forces14. However, this solution is not suitable for
all grippers as, for instance, cheaper grippers do not generally provide the
fine finger-position control required to induce slips in a controlled manner.
Similarly, other works have proposed diversifying the contacts between the
gripper and objects by collecting tactile data for different object poses24.
However, the authors mention that finding the grasp poses necessary to
collect the training data requires numerous empirical trials and errors,
generally leading to only a few grasp poses per object6,10,24—usually up to
four14,24 or six15,39—for which grasping experiments are repeated
several times.

In our previous work11, we proposed to train a RF model 21 based on
data collected in an automated (vision-based) pick-and-place task, includ-
ing object lifting. However, the model did not generalise well to new grasp
attempts or new object poses. We attributed these limitations to two main
reasons. First, accurately labelling each tactile sample corresponding to slip
events during the motion of the robotic arm is challenging. In addition,
collecting data in the wild hinders the control of the distribution and nature
of slips (e.g. intensity, position), leading to the trainedmodels being skewed
to specific object-gripper interactions, thus impeding generalisation40.

To address these limitations, in this work, we propose the DENSE
(Diverse Exploration of Natural Slip Events) protocol for collecting tactile
data to train slip detection models. Unlike previous data collection
approaches, grasp positions are generated according to the geometry of both
the sensor and the objects of interest, which (i) does not require any prior
experiments before starting to collect data and (ii) makes the process more
repeatable. Moreover, this strategy allows us to capture naturally occurring
slips (from less stable grasps) instead of artificially inducing themwith step-
wise releases of the grasp forces or human intervention39, thus making the
method suitable for a wider generality of grippers. In addition, using a uSkin
sensor41, we demonstrate that with fewer grasp experiments than standard
data collection processes, the DENSE protocol allows us to collect more
variability in the training data, improving the generalisation performance of
three popular classification methods when provided with new grasp data
related to new objects and new object poses.

The main contributions of this paper are summarised as follows:
• we propose DENSE, a new object-agnostic protocol to collect tactile

data for training robust slip detection models (Fig. 1), which relies on
few simple robot actions and a fast labelling procedure;

• we create and share a new tactile dataset (Dense-dataset) collectedwith
the proposed DENSE protocol, and show that our data captures more
variability than data collected with state-of-the-art approaches.

• we evaluate the generalisation performance of several slip detection
models trained with our Dense-dataset, and show their robustness to
new objects and grasp poses.

Results
The DENSE protocol
The DENSE protocol is split into three main stages, described in the next
three subsections: generation of a valid set of grasp poses for each object;
robotic object grasp execution and tactile data collection; and data labelling.
Finally, the last subsection describes the set of objects used to build training
tactile datasets. In this work, the grasps generated by the proposed protocol
are performed using the EZGripper (see Fig. 2), a low-cost and under-
actuated dual-fingered robotic gripper. To collect tactile data, a uSkin tactile
sensor, based onmagnetic technology42, is installed on a single finger, while
the other is coveredwith the same fabric layer as the sensor, but without any
sensing elements. As a result, it is slightly more rigid, but retains the same
texture, and therefore has the same (or very similar) friction coefficient.

Grasp pose sampling. Since grasp configurations executed by autono-
mous systems can result in a wide range of contact points between the
fingertips of the robot and the object, we believe that the training dataset
should be composed of different gripper-object interactions. For
instance, the position of the sensor with respect to the object centre of
masswill dictate the intensity (i.e. direction of rotation or translation, and
velocity) of the slip. This is especially true when the fingertips are only
partially contacting objects. To generate such variability in a repeatable
and controlled manner, we propose to discretise the object dimensions
with a resolution equal to half the smallest side of the bounding box of the
tactile sensor, d, which will be referred to as the object discretisation step.
The discretisation step was selected so that, during data collection, the
sensor is in contact with the entirety of the (reachable) object surface at
least twice across all generated grasp poses. Reducing the discretisation
step would result inmore grasp experiments, and therefore, more time to
collect the data, while increasing it would result in the generated data not
containing grasp information on some parts of the objects.

For an arbitrary object placed on a table, the corresponding object
discretisation step corresponds to defining a virtual 2-dimensional grid (see
Fig. 3)—contained within a vertical plane aligned with the major axis of the
object—with a spatial resolution d, and covering the whole space that the
fingertips of the robot can reach for a givenorientation of the gripper, which
is assumed to be always vertically aligned with gravity (as shown in Fig. 2).
As illustrated in Fig. 3, each vertex of this virtual grid corresponds to a
candidate position defining the centre of contact between the fingertips and
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the object. To avoid collecting data that is unrepresentative of the behaviour
we try to detect, grasp configurations should be kept if and only if the object
remains within the fingers of the gripper when the latter closes. Similarly, all
grasp configurations resulting in undesired contact between the table and
the end-effector should also be discarded. If thewidth of a given object is not
divisible by d, padding is applied on each side of the object to result in a
discrete number of contact points along this axis. Figure 3 shows examples
of the sampled grasp configuration for two objects using this strategy,
considering a uSkin sensor mounted on an EZGripper (d = 1.5 cm).

Fig. 1 | Schematic view of the proposed strategy for
data-efficient robotic slip detection based on tac-
tile information. Grasp poses are generated based
on the object and the tactile sensor geometric
properties. A robotic routine composed of grasping
and lifting is repeated for each grasp pose, resulting
in either Slip or No-slip events. The labelled tactile
data is then used to train slip-detection classifiers.
Finally, we evaluate the classifiers' ability to gen-
eralise to new grasp poses and objects.

Fig. 2 | Experimental robotic setup for the tactile data acquisition during each
object pick-and-lift. The uSkin tactile sensor is installed on an EZGripper two-
fingered gripper, which is attached to a UR5 robot arm.

Fig. 3 | The valid and discarded grasp poses (as described in II-A) are represented
as white and red circles, respectively. a The resulting grasp discretisation of a
cuboid-shapped wood block. b The resulting grasp discretisation of a brush.
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Grasp execution. As illustrated in Fig. 4, a grasp experiment for an
isolated object with a given pose on a table consists of the following pick-
and-lift procedure:

1. Move the robot arm to a given grasp configuration
2. Close the robot fingers (i.e. grasp the object)
3. Start collecting tactile data, tb
4. Raise the robot arm to a pre-defined pose, i.e. the robot lifts the object,

lasting some period of time Tr (in this paper, Tr ≈ 0.2s)
5. Once the robot arm is static, wait a period of 2 s, Ts (Ts = 2s)
6. Stop recording tactile data, te

For a given grasp pose, the above steps can be repeated R times. A
higher number of repetitionsR allows for recordingmore variability related
to experimental errors (e.g. hardware controller, object placement) but
requiresmore time to execute overall.While running each grasp experiment
for the different grasp configurations, some experiments will lead to the
object slipping (with rotational or translational momentum) from the
gripper as soon as the robot arm moves, while others will remain firmly
grasped. We believe that capturing both behaviours is crucial to train
classifiers that can cope with different interactions between a gripper and a
set of objects.

In practice, to simplify the experimental procedure, during the grasp
execution step, instead of generating individual robot joint states corre-
sponding to each sampled grasp of a given object, we predefine one robot
joint state for each height of the grasps to be explored (e.g. three grasp
heights for the cuboid wood bar object shown in Fig. 3 a)). Furthermore,
graphpaper is attached to the table top, so for each grasp height, the object is
moved by a step of d cm horizontally (along the major axis of each object)

until its pose matches the sampled robot grasp configuration, allowing for
efficient data collection with minimal overhead. We implemented this data
collection pipeline using the Grasping Robot Integration and Prototyping
(GRIP) software framework43.

Another important factor to consider during data collection is the
grasp force applied to each object. The force that can be applied varies
between grippers, and it also depends on the object properties (e.g. stiffness).
This work assumes rigid objects, and the grasp force to be the same for all
objects and to be kept constant during the data collection procedure. The
grasp forcewas chosenwith the following criteria: large enough so that grasp
poses near to the objects’ centre ofmasswould generally lead to stable grasps
(non-slips); small enough so that some of the grasp poses would generate
slips; small enough not to damage any of the objects. Based on these criteria,
the chosen grasp force was approximately 10N, which is within the sensing
range of the tactile sensor (0–14 N, as reported by the manufacturer).

Data labelling. Since data will be collected during the execution of grasps
that involve themovement of a robotic arm, automatic labellingmethods
of the individual tactile sample are unfeasible without somehow con-
trolling or limiting the grasping task11. Instead, to label slips for each
collected tactile sample, we follow an approach similar to refs. 24,14, i.e.
assuming that all samples from a grasping experiment correspond to the
same label (Slip or No-Slip). After each experiment, all individual tactile
samples recorded (sampled at 100 Hz) are labelled according to whether
the experimenter observed a slipping or a stable grasp during that
experiment. We believe, such an assumption to be reasonable since we
record data only for 2.2 s (from themoment the object is raised above the
table, Tr+ Ts), which does not allow objects to fall, but only to start
slipping or to remain stable. If objects were to fall within the first two
seconds after lifting them, we would advise experimenters to increase the
grasping strength while making sure not to damage the object. In other
words, we propose to rely on the observation of experimenters to label
whether all samples of the sequence correspond to slips (object moves
within the fingers of the robot) or a static contact. Although the resulting
labels will correspond to an approximation of the real events, this
approach saves labelling time and resources. Figure 5 exemplifies which
grasp poses would lead to slip or no-slip events for a cuboid wood bar.

Data collection. In this work, to validate the effectiveness of the pro-
posed protocol, data is collected with seven objects. These objects are an
empty cardboard can, an unopened soda can, three cuboid wood bars—
two of them wrapped in either baking paper or duct tape to change their
respective coefficients of friction—a metal bar, and a brush. As reported
in Table 1, this set of objects includes a variety of shapes (cuboid,
cylindrical, composite), weights (between 47 and 356 g), dimensions and
textures. The coefficient of friction of each object has been estimated by
executing the experiment described in44 with a 500 g weight. Given the
variety of object properties chosen (size, mass, and friction), it is observed
that both slips and stable grasps can occur either under partial contact or
full contact between the sensor and the objects, depending largely on the
distance between the centre of the grasp and the centre of mass of the
object.

For each sampled grasp pose of each object, R = 10 experiments are
collected and labelled, leading to a total of 2100 grasps across the seven
objects. This corresponds to 70min of tactile data, and approximately 420k
tactile samples,with 230k labelled as slip events, and190kasnon-slip events.
The resulting dataset has been made publicly available.

Tactile slip detection
Previous works demonstrated the benefits of data-driven approaches to
detect instances of slips from tactile data captured on a physical platform
(see Section “Introduction”). To validate the effectiveness of the proposed
DENSE protocol, we compare the performance of three commonly used
classifiers—Random Forest 21, Support Vector Machine19 and Multilayer
Perceptron45—to detect slip or stable grasp events from the individual tactile

Fig. 4 | The proposed grasp execution stages 1). a-c Object grasp execution stage,
exemplified for three different grasp poses. 2) a-c Object lift execution stage, illus-
trating the resulting stability of the same grasps.

15 cm

1.5 cm

1.5 cm

5 cm

No-Slip Grasps

Slip Grasps

Fig. 5 | Generated grasp configurations for the wood bar, containing Slip events (in
blue) and No-Slip events (in white).
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datapoints. Each classifier is trained with three different training sets
extracted from the dataset introduced in Section “The DENSE protocol”.
Specifically, we are interested in inspecting the extent to which datasets
generated with fewer grasp experimental repetitions following the DENSE
protocol enable us to capture more variability than the data collection
processes presented in previousworks (described throughout the remainder
of this paper as baseline approaches).

Training sets. This subsection defines three training datasets—all
extracted from the dataset described in Section “The DENSE protocol”—
for which the variability of tactile samples will be quantified and com-
pared. Two of these datasets correspond to the training sets that would
result from collecting data following the same approach as previous
works (baseline datasets). The last one is a training set collected using the
DENSE protocol for R = 1 (Dense-dataset).

Baseline datasets: Typically, data collection baseline approaches
involve selecting between four to six grasp poses—chosen by the experi-
menter through a trial and error approach6,10,24—for each object to generate
a trainingdatasetwith an equivalentnumber of slip andno-slip occurrences.
To better quantify the impact of varying the number of grasp poses used to
train the slip models (which will be evaluated for their generalisation cap-
abilities), we define two training sets composed of data collected from 4 or 6
grasp poses, for which R = 10 experiments are considered. Similarly to the
protocol described in ref. 24, we ensure that for each object, half of the
extracted poses correspond to slip events, and half of them correspond to
static contact between the gripper and theobject.However,we argue that, by
design, this approach to defining a training set for tactile slip detection is

prone to result in classifiers with varying performance depending on the
extracted grasp poses. In fact, a classifier trainedon 4or 6 grasp poses spread
all over the object ismore likely to generalise better tonewgraspposes than a
classifier trained with the same number of grasp poses but located only on
one side of an object. To validate this assumption, and as illustrated in Fig.
6b, c, we create, for both approaches, three training datasets for which the
grasp poses resulting in slips and no-slips are randomly selected for each
object. When selecting four grasp poses, the three resulting datasets will be
referred to as Baseline-4.1, Baseline-4.2 and Baseline-4.3. A similar naming
convention is used with datasets composed of six grasp poses. Note that for
the seven objects, the resulting Baseline-4 training sets contain 280 grasp
experiments (4 poses × 7 objects × 10 repetitions), while Baseline-6 training
sets contain 420 grasps.

OurDense-dataset:The last set is designed so that slip detectionmodels
are trained with data collected across the whole surface of each object.
However, instead of using the 10 repetitions of each grasp pose (which
would result in a dataset composed of 2100 grasps), we select only one
repetition (R = 1), as illustrated in Fig. 6a for the wood bar object. This set,
composed of 210 grasps (across all objects), will be referred to as Dense-
Dataset. Unlike the two previous baseline sets, the number of sampled
grasps differs for each object (between 14 and 51 grasps, see Table 1) but
results in fewer experiments in total. As a result, for each object, the number
of grasp experiments leading to slip and static events is likely to be uneven,
which would lead to an unbalanced set comprising more labels of one class
than another. To remediate this, we propose that, for each object, a number
of samples—corresponding to the difference between the total number of
slip and no-slip samples—should be randomly and evenly discarded across

Table 1 | Geometrical and physical properties of the objects used for the tactile dataset collection

Object Brush Soda Can Metal Bar Carboard Can Wood Bar Wood Bar - paper Wood Bar -
duct tape

Object picture

Dimensions (mm)a 95 × 151 × 76b 63 × 92 × 63 41 × 101 × 41 74 × 251 × 74 50 × 150 × 40 50 × 150 × 40 50 × 150 × 40

Weight (g) 165 356 159 47 124 124 124

Total Number of Grasp Poses 32 14 14 51 33 33 33

Shape Composite Cylindrical Cuboid (with
ridges)

Cylindrical Cuboid Cuboid Cuboid

Estimated Coefficient of
Friction44

0.061–0.224 0.082 0.102 0.163 0.204 0.245 0.306

a Height × Length ×Width.
bBrush handle width is 25 mm.

Fig. 6 | Selected set of grasp configurations for theDense-Dataset, Baseline-4, and
Baseline-6 datasets. a Proposed set of grasp poses that compose the Dense-Dataset.
b Independent repetitions of the data collection process for Baseline-4.
c Independent repetitions of the data collection process for Baseline-6. The numbers

represent the number of repetitions, R, selected for each grasp configuration. Col-
ours green, orange and red represent the 4 or 6 grasp poses selected for each inde-
pendent repetition of the data collection process.
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all grasp poses whose generated samples correspond to the modal label.
Similarly to the baseline datasets, we created three versions of this dataset
(Dense-Dataset.1, Dense-Dataset.2, and Dense-Dataset.3) to quantify how
muchre-generating a dataset using our approach (i.e. re-collectingdatawith
a new repetition for each sampled grasp pose) can impact the performance
of classifiers.

Variability comparison. To quantify the variability of the tactile data
embedded into each dataset (Baseline-4, Baseline-6, and our Dense-
Dataset), we compute the percentage of maximum standard deviation,
p(ci), across each channel ci, ci ∈ {xi, yi, zi}, i ∈ {1, …, 24}. For instance,
considering the sensor’s channel xi, p(xi) becomes:

pðxiÞ ¼ σðxiÞ
αðxÞ × 100; i 2 f1; . . . ; 24g;

αðxÞ ¼ maxðσðx1Þ; . . . ; σðxN ÞÞ;N ¼ 24;

σðxiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðxi�μðxiÞÞ2
b

q
;

where μ(xi) is the mean value of all datapoints of channel xi in the corre-
sponding dataset. Figure 7 illustrates the p(ci) obtained for each channel of
the sensor, for each of the training datasets described above. It can be seen
that the Dense-Dataset (ours) contains a more uniform distribution of high
standard deviations across the sensor surface (represented by the lighter red,
blue and green colours) compared to the Baseline-4 and Baseline-6 training
sets, where some channels present very low standard deviations
(represented by darker colours).

Generalisation testing. In order to assess the generalisation of slip
detection models to new grasp poses, we collect—for all the seven
objects—two additional sets of grasping experiments containing
variabilities likely to be encountered in real-world scenarios. The first
set of experiments consists of randomly sampling and grasping each
object in 10 new positions outside of the proposed discretised space,
ensuring that half of them lead to slip events. For each position, the
tactile data from 10 repetitions is gathered and labelled. The resulting
dataset is referred to as Parallel-Test (PT). The second set consists of
grasping each object in an additional five randomly sampled posi-
tions, but in which the gripper is rotated with a yaw angle of ±35∘.
Again, for each gripper rotation, the tactile data from R = 10 repe-
titions are gathered. This subset will be referred to as Rotated-Test
(RT). Figure 8 illustrates the two additional sets of experiments
collected for the wood bar. In total, 200 new grasp experiments are
performed per object.

Since this study also aims at evaluating the impact of theDense-dataset
on the generalisation power of resulting ML models—which includes pre-
dicting slips of unknown objects—we propose to define four scenarios in
which the number of objectsO = {5, 4, 3, 2} used to train the classifiers vary.
Since the combination of properties associated with the objects used for
training is likely to drive the classifier performance, we define, for each
scenario, different unique training subsets. For instance, when training
classifiers withO= 5,we split the seven objects intofive subsets, S = 5, offive
objects each, and each subset is used to train themodels independently. The
performance of the models is evaluated through cross-validation across all
individual subsets, using the data of the remaining two objects (of each
subset) for generalisation testing. Following the same approach, when
training models with O = 4, the group of objects is split into eight subsets,
S = 8, sincemore combinations of objects andobject properties are available.
For O = 3, the objects are divided into S = 9, and finally, for O = 2, they are
divided into S = 12. The final number of subsets S considered for each O is
obtained fromcombiningobjectswith awide variety of distinct physical and
geometrical properties, shown in Table 1. The generalisation power of each
slip detectionmodel trained on a given subset is therefore evaluated on three
test sets:

Fig. 8 | Positions of the grasp configurations used to collect the test sets related to
thewoodbar. a 10 randomly sampled positions forwhich the gripper keeps the same
orientation as in the training data. b 5 grasp positions for which tactile data is
collected when the gripper is rotated with a yaw angle of ±35∘. Examples of tactile
imprints of each test set are illustrated, showing the variability observed in the data.

Fig. 7 | Comparison of the variability captured by each channel of the sensor
(shown here in a top view) for the Baseline-4, Dense-Dataset, and Baseline-6
training sets. The lighter the colour of a channel, the closer it is to the maximum
standard deviation captured by the same channel across the three training sets. It can
be seen that the channels for theDense-Dataset are, generally, of a lighter colour than
the remaining datasets, meaning that it contains amore uniform distribution of high
standard deviations across the sensor surface.
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1. Tactile data corresponding to the Parallel-Test collected for all the
objects used for training (PT);

2. Tactile data corresponding to the Rotated-Test collected for all the
objects used for training (RT);

3. Complete tactile dataset of novel objects, i.e. not used during training,
also including their associated Parallel-Test and Rotated-Test sets.

As previously mentioned, the first two test sets are meant to evaluate the
generalisation power of a model to new grasps for known objects, while the
last test set aims at evaluating the generalisation power to unknown objects.

In summary, in this section, we described that nine datasets have been
generated from three repetitions of each of the three data collection
approaches to be evaluated (Fig. 6), on the objects reported in Table 1:
Dense-Dataset.{1,2,3}, Baseline-4.{1,2,3} and Baseline-6.{1,2,3}. The
resulting datasets captured different overall degrees of variability of the
sensor-object interactions, as reported in Fig. 7. Each dataset is divided into
training subsets containing a varying number of objects (between 2 and 5),
which are then used to train three ML classifiers. For each subset, the
remaining objects (not used in training) are used to test each classifier for

generalisation to new objects. Furthermore, for all objects, new PT and RT
test sets were collected (as illustrated in Fig. 8) and used to test the gen-
eralisation capabilities of the classifiers, both to objects seen during training
and new objects. The results are shown in Fig. 9a, b, respectively, andwill be
discussed in detail next.

For each test set, the performanceof the classifier is quantifiedusing the
Matthews Correlation Coefficient (MCC)46. The results will be reported as
the average and standard deviation of the test MCC scores of each classifier
computed over the three repetitions of each training set (e.g. Dense-
Dataset.{1,2,3}).Webelieve that such results better reflect the impact of each
data collection approach on the repeatability of the classification perfor-
mance. Next, we will discuss the generalisation performace of the resulting
ML models when tested on new grasp poses of the same objects used for
their training (Tables 2 and 3), and quantify and compare the generalisation
power of the same classifiers for objects (and grasp poses) not seen during
training (Tables 4 and 5). An overview of the results presented is illustrated
in Fig. 9, illustrating each classifier MCC generalisation test scores to new
object grasp poses (including both PT and RT) and to new objects, when

Fig. 9 | Generalisation test scores of the RF, SVM,
and MLP slip classifiers when trained with data
fromO= {5, 4, 3, 2} and collected following either
Baseline-4, Baseline-6 or the DENSE protocol.
a Generalisation results to new grasp poses (PT +
RT). b Generalisation results on unknown objects.
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trained with data from O = {5, 4, 3, 2} collected with each of the three
evaluated approaches.

Generalisation to new grasp poses. We start by presenting the clas-
sifiers generalisation results to new object grasp poses when considering
O = 5. The detailed generalisation performance of the three classifiers to
new grasp poses of known objects, for each training subset of 5 objects, is
reported in Table 2. In order to extract 5-object training data from
Baseline-4 and Baseline-6 datasets, a total of 200 and 300 grasp experi-
ments were required, respectively. On the other hand, generating each
5-object training data set from the Dense-dataset required only 149
grasps, on average.

The results show that classifiers trained with data extracted from
Baseline-6 datasets tend to show better generalisation results than when
trained on Baseline-4 datasets. This was expected since, as seen in Section
“Tactile Slip Detection”, incorporating more grasp poses leads to training
data with higher variability. However, the best performance is obtained for
classifiers trained with Dense-datasets, collected via the proposed protocol
—again, the results are supported by the findings in Section “Tactile Slip
Detection”. Note that this observation is true for all tested subsets of five
objects for both the Random Forest and MLP classifiers. For the SVM, the
Dense-dataset leads to better generalisation on three subsets and remains
very close to the best performance, especiallywhen considering the standard
deviation associated with those experiments, which is lower for Dense-
datasets. In other words, we can conclude from these experiments that the
variability of tactile data generated by our data collection protocol leads to
slip detectors that can better generalise to novel grasp poses of known
objects, while also requiring fewer grasping experiments. In addition,we can
observe that the standard deviations computed across three repetitions of
each subset are overall higher for both Baseline datasets than for Dense-
datasets. This is evidence that, for independent repetitions of the different
data collection approaches, the specific grasping poses considered when
collecting data with Baseline-4 and Baseline-6 have a higher impact on the
performance of the classifiers than repeating our data collection protocol
multiple times. In other words, the results suggest that our data collection
protocol leads toMLmodels that are more repeatable and less experiment-
dependent, regardless of the subset of objects for which new grasp poses are
tested.

Next, we discuss the results obtained when considering a varying
number of training objects, O = {5, 4, 3, 2}. Since the number of
training/testing subsets increases when fewer objects are considered
for training, and due to space constraints, in Table 3 we provide a
summary of the generalisation performance of each classifier to new
grasp poses, for each number of objects considered during training.
The results are reported as the mean MCC and associated standard
deviation computed across all training and testing subsets for each
given number of objects used for training, including the three
repetitions of each data collection approach.

The same observations made forO = 5 objects can be made regardless
of the number of objects (and therefore combinations of properties) present
in the training set. In fact, even when considering fewer training objects,
classifiers trained with Dense-datasets show a higher and more consistent
generalisation performance to new grasp poses (i.e. higher meanMCC and
lower standard deviation) than those trained with datasets resulting
from baseline approaches. It is also important to note that the dif-
ference between the average MCC scores obtained with Dense-
datasets and Baseline datasets is more prominent the fewer objects
are used for training (see Fig. 9a). We argue that such results show
the benefits of our approach, especially for use cases in which
training data is limited. Finally, computing the average of the gen-
eralisation results to new grasp poses (PT + RT datasets), across the
different numbers of objects used for training, O = {5, 4, 3, 2}, we
note that models trained using the Dense-dataset improve up to 90%
and 41% (best results obtained for the MLP classifier) compared to
the Baseline-4 and Baseline-6 datasets, respectively.T
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Generalisation to unknown objects. Next, we are interested in quan-
tifying the generalisation power to detect slips on new objects. Once
again, classifiers are trained with data obtained using the same three data
collection processes. However, in this case, the testing sets consist of all
the test data collected for all objects that are not part of the training
subsets. This includes the experiments of the Parallel-Test and Rotated-
Test. Table 4 reports the performance of the three classifiers when trained
on each subset of O = 5 objects, for each dataset.

We can observe thatwhen the classifiers are tested on data collected for
unknown objects, classifiers trained with datasets related to the Baseline-4
and Baseline-6 approaches suffer from worse generalisation power than
those trained with Dense-datasets. In fact, except for a single tested subset
forwhich the SVMclassifier shows the best performancewith theBaseline-4
datasets, all three classifiers demonstrate their best classification perfor-
mance on new objects when trained with the Dense-Datasets. It is also
apparent that across repetitions of the same experiments, and for most
subsets of 5 training objects, data collected with theDENSE protocol lead to
slip classifiers exhibiting less variability in their respective performances, as
supported by the lower standard deviation values obtained across tested
subsets.

Similarly to the previous section, a summary of the generalisation
power of each classifier to new objects computed across all subsets and
repetitions for each O = {5, 4, 3, 2} is reported in Table 5. The conclusions
drawn in the previous section (Table 3) also largely apply to the results
presented in this table.

As expected, all classifiers do not perform equally for each number of
object sets. For instance, for O = 5 objects, the overall MCC of the SVM
(0.55) is larger than for both the RF (0.43) andML (0.50). However, for each
number of objects considered for training, classifiers fit on data collected
using theDENSE protocol lead to better andmore consistent generalisation
results for new objects. This means that the variability contained in the
dataset collected with the proposed approach further allows tactile slip
detection models to better generalise to objects with different sets of prop-
erties (e.g. coefficient of friction or geometry) than models trained with
typical data collection approaches reported in the literature14,24,38. Com-
puting the average of the generalisation results to newgrasps onnewobjects,
across the different numbers of objects used for training,O = {5, 4, 3, 2}, we
note that, models trained using the Dense-dataset improve up to 85% and
55% (best results obtained for theMLP classifier) compared to the Baseline-
4 and Baseline-6 datasets, respectively.

Discussion
In this work, we present a novel protocol for collecting tactile datasets
containing slip events. The DENSE protocol is easier, faster, more efficient,
and, most importantly, more reproducible than existing approaches14,24,38,39.
This is achieved by systematic sampling of robotic grasp configurations
based on the dimensions of each object (and sensor), thus making the
DENSEprotocol object and sensor-independent.Theprotocol is suitable for
a broader set of grippers (i.e. any gripper that is able to close thefingers on an
object, without requiring fine motor control); it requires fewer and simpler
robotic actions (up to less than 50% grasps compared to previously pro-
posed approaches) and a fast and easy labelling procedure (i.e. weak label-
ling); it produces data with a higher variability, thus better representing a
wide range of gripper-object interactions that are expected of robotic
grasping in real-world unstructured environments; and it permits to train
slip detection models that show better generalisation to unseen objects and
grasp poses, as proven by our experimental results using different machine
learning models—up to 85% generalisation improvement to both new
grasps (of the same objects) and new objects.

By analysing the MCC score, we show that classifiers trained with
our Dense-dataset show a higher degree of correlation (between samples
and predictions) than those trained with data collected using existing
protocols, indicating better generalisation capabilities to new grasps and
objects. While in this work we focus on the specific task of binary slip
detection during pick and place, the general idea (i.e. structuring the dataT
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collection process to obtain the most diverse data with easy labelling,
based on the experimenter’s understanding of the important aspects of
the task) could be applied to data collection procedures for different
tasks; for example, with a different choice of gripper poses, motions and
grasping forces, the procedure outlined in Section “Methods” could
generate diverse data for predicting incipient slip, modulating grip force,
or reacting to external forces other than gravity. Moreover, although
illustrated with a specific choice of tactile sensor and gripper, we believe
that our approach is general and can be applied to a wide variety of
sensors and robots. We, in fact, encourage the robotics community to

make use of the code and dataset that we have made publicly available to
test our data collection protocol with different robotic setups and to train
newmodels with theDense-dataset, to further extend ourfindings and to
flag possible limitations.

Methods
Slip definition and tactile sensor
Slips are stick-slip phenomena characterised by sudden changes in the
gripper-object state. These lead to unexpected variations of the object pose
with respect to the gripper. Slips can be rotational or translational and will
generally result in partial or complete loss of contact, which in turnweakens
the shear forces acting on the fingers47.

Slips are often formulated as perturbations in the frictional system
between a gripper and an object that can be described by the model of
Coulomb:

Ft ≤ μsFn; Static friction

Ft ¼ μkFn: Kinetic friction

where μs and μk are the static and kinetic coefficients of friction, respectively.
Thismodel implies that an object is held statically as long as the normal grip
force Fn counteracts the tangential forces Ft applied to the contact surface.
Therefore, slips occur when this balance is disturbed, and the held object
starts experiencing kinetic friction.

In this work, we detect slips with a tactile sensor based on magnetic
technology42. In general, these sensors measure the deformation of a soft
material as induced by external contacts (i.e. the tactile stimuli) by tracking
the resulting movements of magnetic sources that are embedded in the soft
material48–50.Weuse a specific versionof theuSkin sensor41,51, which features
24 taxels (i.e. sensing units) distributed as a 6 × 4 matrix (see Fig. 10). Each
taxel ismade of a silicone dome embedding amagnet located on top of a 3D
Hall effect sensor, updating its values at 100 Hz. Therefore, the raw data
measured at each taxel, denoted asui 2 Z3, represents the values of the local
3D magnetic field induced by the position of the corresponding magnet.

The forces applied to the sensor induce both shear (Ft) and normal (Fn)
forces across its surface. Hence, at each taxel i ∈ {1, …, 24}, we have the
following:

ui ¼ ½xi; yi; zi�;
ui ¼ gðFiÞ; Fi ¼ Fi

t þ Fi
n;

where Fi; Fi
t and Fi

n correspond to the local net, shear and normal force
applied to taxel i, and g is an unknown non-linear function. The values
mostly correlated to the distributed shear forces are xi and yi, whereas zi
mostly carry information related to normal forces. At a given time t, a full
tactile sample will be denoted as a 24 × 3 matrix Ut ¼ ½ut1; :::; ut24�T .

Given the robotic setup illustrated in Fig. 2, detecting slips is equivalent
to determining if a tactile sample Ut corresponds to an instance of an
unstable contact between a gripper and an object.

Slip detection can be formulated as a classification problem, which
consists of learning an approximation of the function f:Ut→ Y, where Y∈
{0, 1}, with Y = 0 denoting a static interaction between an object and the
sensor and Y = 1 a slip.

MLmodels parameters
Training ML classifiers requires tuning a set of hyperparameters (e.g.
number of neurons or decision trees, activation function, number of layers,
learning rate, etc.) which play a crucial role in their respective performances.
Although we explored multiple combinations of hyperparameters for each
MLmodel, in this paper, we report only the performance of the overall best-
performing ones, which correspond to:

Random Forest (RF): consisting of 300 decision trees—each using a
maximum of 25 features (i.e. maximum depth)—and using the Gini cri-
terion to assess the quality of a data split.

Fig. 10 | Left—Position of the 24 taxels composing the uSkin sensor. Each taxel i
measures the local magnetic field, denoted as ui, which is non-linearly correlated
to the normal and shear forces applied to the sensing unit. Right—uSkin tactile
imprint. The normal components are represented by the surface deformation and
colour (blue if the detected forces are high, red otherwise), while the local shear forces
are depicted by the fixed-length, directional red line segments.

Fig. 11 | Architecture of the best-performing Multi Layer Perceptron model for
which generalisation performance is reported in Section “Results”. A set of
regularised, fully connected layers learn an abstract representation of input features
that are then classified into ‘Slip’ and ‘No-Slip’ events.
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Support VectorMachine (SVM): featuring a Radial Basis Function as
the model kernel function.

Multi-Layer Perceptron (MLP): following an architecture illustrated
in Fig. 11.AnAdamoptimiser52 is used tominimise theCross-EntropyLoss,
over 100 epochs with an initial learning rate of 0.01 set to decrease via a
Cosine Annealing scheduler.

Feature extraction. Since the data collected by the uSkin sensor is
uncalibrated41, and that readings of the tactile sensor at rest can experi-
ence drifts after several experiments, we compute hand-crafted features
to train classifiers:

ϕt ¼ ½Ut�n � U0; � � � ;Ut � U0�; t > n≥ 1:

In other words, for a sample captured at time t > n ≥ 1, we concatenate the
previous n samples that are subtracted by the first reading of the corre-
sponding experiment, i.e. after the object grasp and before the object lift.
Training classifiers using these time windows accounts for the dynamic
nature of slip events.However,n should be carefully selected to limit the size
of the feature vector and avoid slowing down both training and prediction
time. In our case, we selected n = 3, meaning that all classifiers are trained
with features corresponding to 0.04 s.

Matthews correlation coefficient
In this paper, we utilised the MCC to compare the performance of various
classification models. Similarly to the F1-score53, the MCC evaluates the
quality of binary classification models, but considers all four entries (true
positive TP, true negative TN, false positive FP, and false negative samples
FN) of confusion matrices:

MCC ¼ ðTP×TNÞ � ðFP× FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p ;

Unlike the F1-score, which can attain high values despite low true negative
predictions46, this metric provides information relative to the correlation
between the predicted and the actual classes, where 1 indicates a perfect
prediction, 0 indicates no better than a randomprediction, and−1 indicates
total disagreement between the predicted and the actual sample classes. In
our previous work11, we noted that high F1-scores could still be obtained
despite low TN values. In fact, the MCC has been recommended as a fairer
and more reliable statistical metric for binary classification performance
analysis54.

Data availability
All data generated and analysed in this paper are available from the corre-
sponding author upon request, and are open-sourced at Github, https://
github.com/ARQ-CRISP/slip_detection_dataset_2025.

Received: 6 March 2025; Accepted: 27 September 2025;

References
1. Sun, Y., Falco, J., Roa, M. A. & Calli, B. Research challenges and

progress in robotic grasping and manipulation competitions. IEEE
Robot. Autom. Lett. 7, 874–881 (2021).

2. Du, G., Wang, K., Lian, S. & Zhao, K. Vision-based robotic grasping
from object localization, object pose estimation to grasp estimation
for parallel grippers: a review. Artif. Intell. Rev. 54, 1677–1734 (2021).

3. Dario, P. Tactile sensing: technology and applications. Sens.
Actuators A: Phys. 26, 251–256 (1991).

4. Kleeberger, K., Bormann, R., Kraus, W. & Huber, M. F. A survey on
learning-based robotic grasping.Curr. Robot.Rep.1, 239–249 (2020).

5. Romeo, R. A. & Zollo, L. Methods and sensors for slip detection in
robotics: a survey. IEEE Access 8, 73027–73050 (2020).

6. Stachowsky, M., Hummel, T., Moussa, M. & Abdullah, H. A. A slip
detection and correction strategy for precision robot grasping. IEEE/
ASME Trans. Mechatron. 21, 2214–2226 (2016).

7. Roa, M. A. & Suárez, R. Grasp quality measures: review and
performance. Autonom. Robots 38, 65–88 (2015).

8. Chen, W., Khamis, H., Birznieks, I., Lepora, N. F. & Redmond, S. J.
Tactile sensors for friction estimation and incipient slip detection-
toward dexterous robotic manipulation: a review. IEEE Sens. J. 18,
9049–9064 (2018).

9. James, J. W., Pestell, N. & Lepora, N. F. Slip detection with a
biomimetic tactile sensor. IEEE Robot. Autom. Lett. 3, 3340–3346
(2018).

10. Li, J., Dong, S. & Adelson, E. Slip detection with combined tactile and
visual information. InProc. IEEE InternationalConferenceonRobotics
and Automation (ICRA), 7772–7777 (IEEE, 2018).

11. Zenha,R., Denoun,B., Coppola, C. & Jamone, L. Tactile slip detection
in the wild leveraging distributed sensing of both normal and shear
forces. In Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2708–2713 (IEEE, 2021).

12. Chi, C., Sun, X., Xue, N., Li, T. & Liu, C. Recent progress in
technologies for tactile sensors. Sensors 18, 948 (2018).

13. Liu, Y. et al. Recent progress in tactile sensors and their applications in
intelligent systems. Sci. Bull. 65, 70–88 (2020).

14. James, J. W. & Lepora, N. F. Slip detection for grasp stabilization with
a multifingered tactile robot hand. IEEE Trans. Robot. 37, 506–519
(2020).

15. Zapata-Impata, B. S., Gil, P. & Torres, F. Learning spatio temporal
tactile features with a ConvLSTM for the direction of slip detection.
Sensors 19, 523 (2019).

16. Massalim, Y., Kappassov, Z. & Varol, H. A. Deep vibro-tactile
perception for simultaneous texture identification, slip detection, and
speed estimation. Sensors 20, 4121 (2020).

17. Sui, R., Zhang, L., Li, T. & Jiang, Y. Incipient slip detectionmethodwith
vision-based tactile sensor based on distribution force and
deformation. IEEE Sens. J. 21, 25973–25985 (2021).

18. Levins, M. & Lang, H. A tactile sensor for an anthropomorphic robotic
fingertip basedonpressure sensingandmachine learning. IEEESens.
J. 20, 13284–13290 (2020).

19. Cortes, C. & Vapnik, V. Support-vector networks.Mach. Learn. 20,
273–297 (1995).

20. Ward-Cherrier, B. et al. The tactip family: Soft optical tactile sensors
with 3d-printed biomimetic morphologies. Soft Robot. 5, 216–227
(2018).

21. Ho, T. K. Random decision forests. In Proc. 3rd International
Conference on Document Analysis and Recognition, Vol. 1, 278–282
(IEEE, 1995).

22. Heideman, M., Johnson, D. & Burrus, C. Gauss and the history of the
fast Fourier transform. IEEE ASSP Mag. 1, 14–21 (1984).

23. Bengio, Y., Courville, A. & Vincent, P. Representation learning: a
review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell.
35, 1798–1828 (2013).

24. Yan, G. et al. Detection of slip from vision and touch. In Proc.
International Conference on Robotics and Automation (ICRA),
3537–3543 (IEEE, 2022).

25. Wettels, N., Fishel, J. A. & Loeb,G. E.Multimodal tactile sensor. In The
HumanHand as an Inspiration for RobotHandDevelopment, 405–429
(Springer, 2014).

26. Wang, H., Lei, Z., Zhang, X., Zhou, B. & Peng, J. Machine learning
basics. Deep Learning 98–164 (2016).

27. Jin, P., Lu, L., Tang, Y. & Karniadakis, G. E. Quantifying the
generalization error in deep learning in terms of data distribution and
neural network smoothness. Neural Netw. 130, 85–99 (2020).

28. Höfer, S. et al. Sim2real in robotics and automation: applications and
challenges. IEEE Trans. Autom. Sci. Eng. 18, 398–400 (2021).

https://doi.org/10.1038/s44182-025-00055-y Article

npj Robotics |            (2025) 3:36 13

https://github.com/ARQ-CRISP/slip_detection_dataset_2025
https://github.com/ARQ-CRISP/slip_detection_dataset_2025
www.nature.com/npjrobot


29. Gomes, D. F., Paoletti, P. & Luo, S. Generation of gelsight tactile
images for sim2real learning. IEEE Robot. Autom. Lett. 6, 4177–4184
(2021).

30. Lin, Y., Lloyd, J., Church, A. & Lepora, N. F. Tactile gym 2.0: sim-to-
real deep reinforcement learning for comparing low-cost high-
resolution robot touch. IEEE Robot. Autom. Lett. 7, 10754–10761
(2022).

31. Church, A. et al. Tactile sim-to-real policy transfer via real-to-sim
image translation. InProc.ConferenceonRobot Learning, 1645–1654
(PMLR, 2022).

32. Zhao, Y., Jing, X., Qian, K., Gomes, D. F. & Luo, S. Skill generalization
of tubular object manipulation with tactile sensing and sim2real
learning. Robot. Auton. Syst. 160, 104321 (2023).

33. Higuera, C., Boots, B. & Mukadam, M. Learning to read braille:
Bridging the tactile reality gap with diffusion models. Preprint at
https://doi.org/10.48550/arXiv.2304.01182 (2023).

34. Yuan, W., Dong, S. & Adelson, E. H. Gelsight: High-resolution robot
tactile sensors for estimating geometry and force. Sensors 17, 2762
(2017).

35. Navarro-Guerrero, N., Toprak, S., Josifovski, J. & Jamone, L. Visuo-
haptic object perception for robots: an overview. Auton. Robots 47,
377–403 (2023).

36. Su, Z. et al. Force estimation and slip detection/classification for grip
control using a biomimetic tactile sensor. In Proc. IEEE-RAS 15th
InternationalConferenceonHumanoidRobots (Humanoids), 297–303
(IEEE, 2015).

37. VanWyk, K. & Falco, J. Calibration and Analysis of Tactile Sensors as
Slip Detectors. In IEEE ICRA, 2744–2751 (2018).

38. Veiga, F., Peters, J. & Hermans, T. Grip stabilization of novel objects
using slip prediction. IEEE Transactions on Haptics (2018).

39. Dong, S.,Ma,D., Donlon, E. &Rodriguez, A.Maintaining graspswithin
slipping bounds by monitoring incipient slip. In Proc. International
Conference on Robotics and Automation (ICRA), 3818–3824 (IEEE,
2019).

40. Zhou, Z.-H.Machine Learning (Springer Nature, 2021).
41. Tomo, T. P. et al. A new silicone structure for uskin—a soft,

distributed, digital 3-axis skin sensor and its integration on the
humanoid robot icub. IEEE Robot. Autom. Lett. 3, 2584–2591 (2018).

42. Man, J., Chen, G. & Chen, J. Recent progress of biomimetic tactile
sensing technology based onmagnetic sensors.Biosensors 12, 1054
(2022).

43. Denoun, B., Leon, B., Hansard, M. & Jamone, L. Grasping robot
integrationandprototyping: the grip software framework. IEEERobot.
Autom. Mag. 28, 101–111 (2021).

44. Kurtus, R. Determining the coefficient of friction. The School for
Champions (2002).

45. Rosenblatt, F. et al.Principles ofNeurodynamics: Perceptrons and the
Theory of Brain Mechanisms, vol. 55 (Spartan Books, 1962).

46. Kantardjieff, K. A. & Rupp, B. Matthews coefficient probabilities:
improved estimates for unit cell contents of proteins, DNA, and
protein–nucleic acid complex crystals. Protein Sci. 12, 1865–1871
(2003).

47. Schwarz, C. The slip hypothesis: tactile perception and its neuronal
bases. Trends Neurosci. 39, 449–462 (2016).

48. Jamone, L., Natale, L., Metta, G. & Sandini, G. Highly sensitive soft
tactile sensors for an anthropomorphic robotic hand. IEEESens. J.15,
4226–4233 (2015).

49. Tomo, T. P. et al. Development of a Hall-effect-based skin sensor. In
Proc. IEEE sensors, 1–4 (IEEE, 2015).

50. Paulino, T. et al. Low-cost 3-axis soft tactile sensors for the human-
friendly robot Vizzy. In Proc. IEEE International Conference on
Robotics and Automation (ICRA), 966–971 (IEEE, 2017).

51. Tomo,T.P. et al. Coveringa robotfingertipwith uskin: a soft electronic
skin with distributed 3-axis force sensitive elements for robot hands.
IEEE Robot. Autom. Lett. 3, 124–131 (2017).

52. Kinga, D. & Adam, J. B. A method for stochastic optimization. In
International conference on learning representations (ICLR). Vol. 5,
(2015).

53. Van Rijsbergen, C. J. The Geometry of Information Retrieval
(Cambridge University Press, 2004).

54. Chicco, D. & Jurman, G. The advantages of the Matthews Correlation
Coefficient (MCC) over f1 score and accuracy in binary classification
evaluation. BMC Genom. 21 (2020).

Acknowledgements
Thisworkwaspartially supportedby theEPSRCUK throughprojectsNCNR
(EP/R02572X/1) and MAN3 (EP/S00453X/1).

Author contributions
R.Z. andB.D.wrote themainmanuscript text. R.Z. preparedFigures 1–6and
8–10, co-created the software for data collection and analysis, and per-
formed the data collection. B.D. prepared Fig. 7 and Fig. 11, and co-created
the software for data collection and analysis. A.C. contributed to the writing
of the “Results” and “Methods” sections. A.B. contributed to the writing of
the “Results” section and the concept for Fig. 7. L.J. contributed to the
conception and design of the work and to the writing of the “Abstract”,
“Introduction”, “Results” and “Discussion” sections. All authors supported
the data analysis and interpretation, and reviewed the wholemanuscript. All
authors approved the final submitted version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to
Rodrigo Zenha, Brice Denoun, Andrea Cavallaro, Alexandre Bernardino or
Lorenzo Jamone.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’snoteSpringerNature remainsneutralwith regard to jurisdictional
claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s44182-025-00055-y Article

npj Robotics |            (2025) 3:36 14

https://doi.org/10.48550/arXiv.2304.01182
https://doi.org/10.48550/arXiv.2304.01182
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjrobot

	Let&#x02019;s DENSE: a novel protocol for efficiently collecting dense and diverse data for tactile slip detection in robotic grasping
	Results
	The DENSE protocol
	Grasp pose sampling
	Grasp execution
	Data labelling
	Data collection

	Tactile slip detection
	Training sets
	Variability comparison
	Generalisation testing
	Generalisation to new grasp poses
	Generalisation to unknown objects


	Discussion
	Methods
	Slip definition and tactile sensor
	ML models parameters
	Feature extraction

	Matthews correlation coefficient

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




