Table 3 Summary of generalisation performance of the three classifiers trained with O = {5, 4, 3, 2} to new grasp poses (PT and RT datasets)
Random Forest | |||||||
---|---|---|---|---|---|---|---|
Dense-Dataset | Baseline-4 | Baseline-6 | |||||
Training Objects | PT | RT | PT | RT | PT | RT | |
5 | Avr. | 0.40 | 0.51 | 0.32 | 0.31 | 0.31 | 0.36 |
std | 0.04 | 0.07 | 0.06 | 0.07 | 0.09 | 0.14 | |
4 | Avr. | 0.42 | 0.54 | 0.32 | 0.30 | 0.30 | 0.36 |
std | 0.07 | 0.10 | 0.09 | 0.14 | 0.10 | 0.15 | |
3 | Avr. | 0.38 | 0.57 | 0.28 | 0.35 | 0.26 | 0.37 |
std | 0.08 | 0.14 | 0.12 | 0.10 | 0.14 | 0.14 | |
2 | Avr. | 0.34 | 0.47 | 0.24 | 0.30 | 0.27 | 0.32 |
std | 0.14 | 0.28 | 0.17 | 0.23 | 0.17 | 0.25 |
Support Vector Machine | |||||||
---|---|---|---|---|---|---|---|
Dense-Dataset | Baseline-4 | Baseline-6 | |||||
Training Objects | PT | RT | PT | RT | PT | RT | |
5 | Avr. | 0.52 | 0.48 | 0.49 | 0.43 | 0.48 | 0.45 |
std | 0.08 | 0.08 | 0.07 | 0.06 | 0.07 | 0.09 | |
4 | Avr. | 0.53 | 0.53 | 0.48 | 0.43 | 0.45 | 0.45 |
std | 0.06 | 0.09 | 0.09 | 0.11 | 0.09 | 0.09 | |
3 | Avr. | 0.49 | 0.51 | 0.42 | 0.43 | 0.42 | 0.43 |
std | 0.12 | 0.13 | 0.14 | 0.11 | 0.14 | 0.13 | |
2 | Avr. | 0.43 | 0.45 | 0.34 | 0.31 | 0.35 | 0.35 |
std | 0.17 | 0.24 | 0.15 | 0.18 | 0.16 | 0.19 |
Multi Layer Perceptron | |||||||
---|---|---|---|---|---|---|---|
Dense-Dataset | Baseline-4 | Baseline-6 | |||||
Training Objects | PT | RT | PT | RT | PT | RT | |
5 | Avr. | 0.46 | 0.44 | 0.27 | 0.29 | 0.33 | 0.41 |
std | 0.08 | 0.09 | 0.13 | 0.09 | 0.10 | 0.12 | |
4 | Avr. | 0.44 | 0.48 | 0.24 | 0.26 | 0.30 | 0.38 |
std | 0.10 | 0.13 | 0.12 | 0.15 | 0.12 | 0.10 | |
3 | Avr. | 0.35 | 0.45 | 0.15 | 0.21 | 0.23 | 0.35 |
std | 0.14 | 0.16 | 0.18 | 0.17 | 0.13 | 0.16 | |
2 | Avr. | 0.31 | 0.42 | 0.15 | 0.19 | 0.14 | 0.24 |
std | 0.15 | 0.22 | 0.17 | 0.19 | 0.16 | 0.20 |