Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct brain network features predict internalizing and externalizing traits in children, adolescents and adults

Abstract

The distinction between externalizing and internalizing traits has been a classic area of study in psychiatry. However, whether shared or unique brain network features predict internalizing and externalizing behaviors remains poorly understood. Using a sample of 5,260 children from the Adolescent Brain Cognitive Development study, 229 adolescents from the Healthy Brain Network and 423 adults from the Human Connectome Project, we show that predictive network features are, at least in part, distinct across internalizing and externalizing behaviors. Across all three samples, behaviors within internalizing and externalizing categories exhibited more similar predictive feature weights than behaviors between categories. These data suggest shared and unique brain network features account for individual variation within broad internalizing and externalizing categories across developmental stages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Whole-brain FC predicts internalizing and externalizing behaviors in ABCD children.
Fig. 2: Distinct RSFC features predict internalizing and externalizing behaviors across all samples.
Fig. 3: Differential RSFC predictors of internalizing and externalizing behaviors across network blocks within each sample.
Fig. 4: Predictive RSFC feature weights associated with total internalizing problems and total externalizing problems in ABCD children, HBN adolescents and HCP adults.

Similar content being viewed by others

Data availability

The ABCD data are publicly available via the NIMH Data Archive (NDA) and via https://abcdstudy.org. The HBN data are publicly available via Child Mind Institute Healthy Brain Network at http://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/Data.html. The HCP data are also publicly available and can be accessed via https://www.humanconnectome.org. Access to all three datasets requires Data Use Agreement.

Code availability

Code for this study is publicly available via Github under the main branch: https://github.com/quyueyue/InternalizingExternalizingPredictions.git. The software dependencies were Freesurfer (5.3.0; https://surfer.nmr.mgh.harvard.edu), FSL (5.0.8; https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation), MATLAB (2018b; https://www.mathworks.com/products/matlab.html), Jupyter Notebook 6.4.5 (Python 3.9.7 ipykernel; https://jupyter.org), Python/3.10.8-GCCcore-12.2.0 (https://www.python.org) and the neuroCombat (v.1.0.13) package in R v.4.2.0.

References

  1. Achenbach, T. M. The child behavior profile: I. Boys aged 6–11. J. Consult. Clin. Psychol. 46, 478–488 (1978).

    Article  PubMed  Google Scholar 

  2. Achenbach, T. M. Manual for the Child Behavior Checklist/ 4–18 and 1991 Profile (Univ. Vermont, Department of Psychiatry, 1991).

    Google Scholar 

  3. Duprey, E. B., Oshri, A. & Liu, S. Developmental pathways from child maltreatment to adolescent suicide-related behaviors: the internalizing and externalizing comorbidity hypothesis. Dev. Psychopathol. 32, 945–959 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Commisso, M. et al. Childhood externalizing, internalizing and comorbid problems: distinguishing young adults who think about suicide from those who attempt suicide. Psychol. Med. https://doi.org/10.1017/S0033291721002464 (2021).

  5. Papachristou, E. & Flouri, E. The codevelopment of internalizing symptoms, externalizing symptoms, and cognitive ability across childhood and adolescence. Dev. Psychopathol. 32, 1375–1389 (2020).

    Article  PubMed  Google Scholar 

  6. Narusyte, J., Ropponen, A., Alexanderson, K. & Svedberg, P. Internalizing and externalizing problems in childhood and adolescence as predictors of work incapacity in young adulthood. Soc. Psychiatry Psychiatr. Epidemiol. 52, 1159 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sripada, C. et al. Prediction of neurocognition in youth from resting state fMRI. Mol. Psychiatry 25, 3413–3421 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shannon, B. J. et al. Premotor functional connectivity predicts impulsivity in juvenile offenders. Proc. Natl Acad. Sci. USA 108, 11241–11245 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Uddin, L. Q. et al. Salience network–based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70, 869 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lake, E. M. R. et al. The functional brain organization of an individual allows prediction of measures of social abilities transdiagnostically in autism and attention-deficit/hyperactivity disorder. Biol. Psychiatry 86, 315–326 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen, J. et al. Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study. Nat. Commun. 13, 2217 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ooi, L. Q. R. et al. Comparison of individualized behavioral predictions across anatomical, diffusion and functional connectivity MRI. Neuroimage 263, 119636 (2022).

    Article  PubMed  Google Scholar 

  13. Sydnor, V. J. et al. Neurodevelopment of the association cortices: patterns, mechanisms, and implications for psychopathology. Neuron 109, 2820–2846 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hwang, K., Hallquist, M. N. & Luna, B. The development of hub architecture in the human functional brain network. Cereb. Cortex 23, 2380–2393 (2013).

    Article  PubMed  Google Scholar 

  15. Dong, H. M., Margulies, D. S., Zuo, X. N. & Holmes, A. J. Shifting gradients of macroscale cortical organization mark the transition from childhood to adolescence. Proc. Natl Acad. Sci. USA 118, e2024448118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Volkow, N. D. et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7 (2018).

    Article  PubMed  Google Scholar 

  17. Alexander, L. M. et al. An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci. Data 4, 170181 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Van Essen, D. C. et al. The WU-minn human connectome project: An overview. Neuroimage 80, 62 (2013).

    Article  PubMed  Google Scholar 

  19. Mackinnon, J. G. in Handbook of Computational Econometrics (eds Belsley, D. A. & Kontoghiorghes, E. J.) 183–213 (WIley, 2009); https://doi.org/10.1002/9780470748916.CH6

  20. Achenbach, T. M. & Rescorla, L. A. Manual for ASEBA School-Age Forms & Profiles (ASEBA, 2001).

    Google Scholar 

  21. Achenbach, T. M. & Rescorla, L. A. Manual for the ASEBA Adult Forms & Profiles (ASEBA, 2003).

    Google Scholar 

  22. Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    Article  PubMed  Google Scholar 

  23. Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).

    Article  PubMed  Google Scholar 

  24. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Haufe, S. et al. On the interpretation of weight vectors of linear models in multivariate neuroimaging. Neuroimage 87, 96–110 (2014).

    Article  PubMed  Google Scholar 

  26. Dhamala, E., Jamison, K. W., Jaywant, A. & Kuceyeski, A. Shared functional connections within and between cortical networks predict cognitive abilities in adult males and females. Hum. Brain Mapp. 43, 1087–1102 (2022).

    Article  PubMed  Google Scholar 

  27. Parkes, L. et al. Transdiagnostic dimensions of psychopathology explain individuals’ unique deviations from normative neurodevelopment in brain structure. Transl. Psychiatry 11, 232 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brislin, S. J. et al. Differentiated nomological networks of internalizing, externalizing, and the general factor of psychopathology (‘p factor’) in emerging adolescence in the ABCD study. Psychol. Med. 52, 3051–3061 (2022).

    Article  PubMed  Google Scholar 

  29. Caspi, A. et al. The p factor: one general psychopathology factor in the structure of psychiatric disorders? Clin. Psychol. Sci. 2, 119 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  31. Krueger, R. F., Markon, K. E., Patrick, C. J., Benning, S. D. & Kramer, M. D. Linking antisocial behavior, substance use, and personality: an integrative quantitative model of the adult externalizing spectrum. J. Abnorm. Psychol. 116, 645–666 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Eaton, N. R. et al. An invariant dimensional liability model of gender differences in mental disorder prevalence: evidence from a national sample. J. Abnorm. Psychol. 121, 282–288 (2012).

    Article  PubMed  Google Scholar 

  33. Achenbach, T. M. & Edelbrock, C. S. Psychopathology of childhood. Annu. Rev. Psychol. 35, 227–256 (2003).

    Article  Google Scholar 

  34. Kessler, R. C. et al. Development of lifetime comorbidity in the world health organization world mental health surveys. Arch. Gen. Psychiatry 68, 90–100 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ringwald, W. R., Forbes, M. K. & Wright, A. G. C. Meta-analytic tests of measurement invariance of internalizing and externalizing psychopathology across common methodological characteristics. J. Psychopathol. Clin. Sci. 131, 847–856 (2022).

    Article  PubMed  Google Scholar 

  36. Rosenberg, M. D., Finn, E. S., Scheinost, D., Constable, R. T. & Chun, M. M. Characterizing attention with predictive network models. Trends Cogn. Sci. 21, 290–302 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rosenberg, M. D. et al. A neuromarker of sustained attention from whole-brain functional connectivity. Nat. Neurosci. 19, 165–171 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Satterthwaite, T. D. et al. Connectome-wide network analysis of youth with psychosis-spectrum symptoms. Mol. Psychiatry 20, 1508–1515 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pornpattananangkul, N., Leibenluft, E., Pine, D. S. & Stringaris, A. Association between childhood anhedonia and alterations in large-scale resting-state networks and task-evoked activation. JAMA Psychiatry 76, 624–633 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Karcher, N. R., O’Brien, K. J., Kandala, S. & Barch, D. M. Resting-state functional connectivity and psychotic-like experiences in childhood: results from the adolescent brain cognitive development study. Biol. Psychiatry 86, 7–15 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. He, T. et al. Deep neural networks and kernel regression achieve comparable accuracies for functional connectivity prediction of behavior and demographics. Neuroimage 206, 116276 (2020).

    Article  PubMed  Google Scholar 

  42. Narumoto, J., Okada, T., Sadato, N., Fukui, K. & Yonekura, Y. Attention to emotion modulates fMRI activity in human right superior temporal sulcus. Cogn. Brain Res. 12, 225–231 (2001).

    Article  Google Scholar 

  43. Mellem, M. S., Jasmin, K. M., Peng, C. & Martin, A. Sentence processing in anterior superior temporal cortex shows a social-emotional bias. Neuropsychologia 89, 217–224 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Völlm, B. A. et al. Neuronal correlates of theory of mind and empathy: a functional magnetic resonance imaging study in a nonverbal task. Neuroimage 29, 90–98 (2006).

    Article  PubMed  Google Scholar 

  45. Bigler, E. D. et al. Superior temporal gyrus, language function, and autism. Dev. Neuropsychol. 31, 217–238 (2007).

    Article  PubMed  Google Scholar 

  46. Weinrich, M., Wise, S. P. & Mauritz, K. H. A neurophysiological study of the premotor cortex in the rhesus monkey. Brain 107, 385–414 (1984).

    Article  PubMed  Google Scholar 

  47. Cunnington, R., Windischberger, C., Deecke, L. & Moser, E. The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response. Neuroimage 20, 404–412 (2003).

    Article  PubMed  Google Scholar 

  48. Kwan, H. C., MacKay, W. A., Murphy, J. T. & Wong, Y. C. Spatial organization of precentral cortex in awake primates. II. Motor outputs. J. Neurophysiol. 41, 1120–1131 (1978).

    Article  PubMed  Google Scholar 

  49. Penfield, W. & Boldrey, E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389–443 (1937).

    Article  Google Scholar 

  50. Lees, B. et al. Altered neurocognitive functional connectivity and activation patterns underlie psychopathology in preadolescence. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 387–398 (2021).

    PubMed  Google Scholar 

  51. Grayson, D. S. & Fair, D. A. Development of large-scale functional networks from birth to adulthood: a guide to neuroimaging literature. Neuroimage 160, 15 (2017).

    Article  PubMed  Google Scholar 

  52. Galván, A. & Tottenham, N. in Developmental Psychopathology 3rd edn (ed. Cicchetti, D.) Ch. 18 (Wiley, 2016); https://doi.org/10.1002/9781119125556.DEVPSY218

  53. Casey, B. J., Galván, A. & Somerville, L. H. Beyond simple models of adolescence to an integrated circuit-based account: a commentary. Dev. Cogn. Neurosci. 17, 128 (2016).

    Article  PubMed  Google Scholar 

  54. van Dijk, K. R. A., Sabuncu, M. R. & Buckner, R. L. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59, 431 (2012).

    Article  PubMed  Google Scholar 

  55. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    Article  PubMed  Google Scholar 

  56. Li, J. et al. Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity. Sci. Adv. 8, 1812 (2022).

    Article  Google Scholar 

  57. Dhamala, E., Yeo, B. T. T. & Holmes, A. J. One size does not fit all: methodological considerations for brain-based predictive modeling in psychiatry. Biol. Psychiatry 93, 717–728 (2023).

    Article  PubMed  Google Scholar 

  58. Dhamala, E. et al. Brain-based predictions of psychiatric illness-linked behaviors across the sexes. Biol. Psychiatry https://doi.org/10.1016/J.BIOPSYCH.2023.03.025 (2023).

  59. Auchter, A. M. et al. A description of the ABCD organizational structure and communication framework. Dev. Cogn. Neurosci. 32, 8–15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Clark, D. B. et al. Biomedical ethics and clinical oversight in multisite observational neuroimaging studies with children and adolescents: the ABCD experience. Dev. Cogn. Neurosci. 32, 143–154 (2018).

    Article  PubMed  Google Scholar 

  61. Li, J. et al. Global signal regression strengthens association between resting-state functional connectivity and behavior. Neuroimage 196, 126–141 (2019).

    Article  PubMed  Google Scholar 

  62. Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hagler, D. J. et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage 202, 116091 (2019).

    Article  PubMed  Google Scholar 

  64. Fischl, B., Liu, A. & Dale, A. M. Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans. Med. Imaging 20, 70–80 (2001).

    Article  PubMed  Google Scholar 

  65. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194 (1999).

    Article  PubMed  Google Scholar 

  66. Fischl, B., Sereno, M. I., Tootell, R. B. H. & Dale, A. M. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999).

    Article  PubMed  Google Scholar 

  68. Ségonne, F. et al. A hybrid approach to the skull stripping problem in MRI. Neuroimage 22, 1060–1075 (2004).

    Article  PubMed  Google Scholar 

  69. Ségonne, F., Pacheco, J. & Fischl, B. Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans. Med. Imaging 26, 518–529 (2007).

    Article  PubMed  Google Scholar 

  70. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63 (2009).

    Article  PubMed  Google Scholar 

  71. FsFast - Free Surfer wiki. https://surfer.nmr.mgh.harvard.edu/fswiki/FsFast (2011).

  72. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

    Article  PubMed  Google Scholar 

  73. Gratton, C. et al. Removal of high frequency contamination from motion estimates in single-band fMRI saves data without biasing functional connectivity. Neuroimage 217, 116866 (2020).

    Article  PubMed  Google Scholar 

  74. Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).

    Article  PubMed  Google Scholar 

  75. Kong, R. et al. Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb. Cortex 29, 2533–2551 (2019).

    Article  PubMed  Google Scholar 

  76. Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).

    Article  PubMed  Google Scholar 

  77. Yu, M. et al. Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Hum. Brain Mapp. 39, 4213 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Glasser, M. F. et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013).

    Article  PubMed  Google Scholar 

  79. Van Essen, D. C., Glasser, M. F., Dierker, D. L., Harwell, J. & Coalson, T. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22, 2241–2262 (2012).

    Article  PubMed  Google Scholar 

  80. Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).

    Article  PubMed  Google Scholar 

  81. Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004).

    Article  PubMed  Google Scholar 

  82. Barch, D. M. et al. Demographic, physical and mental health assessments in the adolescent brain and cognitive development study: rationale and description. Dev. Cogn. Neurosci. 32, 55–66 (2018).

    Article  PubMed  Google Scholar 

  83. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kong, R. Schaefer2018 parcellation 400-region 17-network in fslr space. Figshare https://doi.org/10.6084/m9.figshare.10062482.v1 (2019).

  85. Orban, C. Subcortical_regions.png. Figshare https://doi.org/10.6084/m9.figshare.10063016.v1 (2019).

Download references

Acknowledgments

Data used in the preparation of this article were obtained, in part, from the Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children aged 9–10 and follow them over 10 years into early HCP adults. The ABCD study is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123 and U24DA041147. A full list of supporters is available at abcdstudy.org/federal-partners.html. A list of participating sites and a complete list of the study investigators can be found at abcdstudy.org/consortium_members/. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. Additional data were provided, in part, by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: D. Van Essen and K. Ugurbil; 1U54MH091657) funded by the 16 NIH institutes and centers that support the NIH Blueprint for Neuroscience Research and by the McDonnell Center for Systems Neuroscience at Washington University. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or the ABCD and HCP consortia investigators. This work was supported by the National Institute of Mental Health (R01MH120080 and R01MH123245 to A.J.H.). This work was also supported by the following awards to B.T.T.Y.: NUS Yong Loo Lin School of Medicine (NUHSRO/2020/124/TMR/LOA), the Singapore National Medical Research Council (NMRC) LCG (OFLCG19May-0035), NMRC CTG-IIT (CTGIIT23jan-0001), NMRC STaR (STaR20nov-0003), Singapore Ministry of Health (MOH) Centre Grant (CG21APR1009) and the Temasek Foundation (TF2223-IMH-01). This work was also supported by the following awards to E.D.: the Kavli Institute for Neuroscience at Yale University (Postdoctoral Fellowship for Academic Diversity), the Feinstein Institutes for Medical Research Advancing Women in Science and Medicine (Career Development Award and Barbara Zucker Emerging Scientist Award). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not reflect the views of the funders. An earlier version of this paper is available at BioRxiv (https://doi.org/10.1101/2023.05.20.541490v1).

Author information

Authors and Affiliations

Authors

Contributions

Y.L.Q. and A.J.H. designed the research, analyzed and interpreted the results, made figures and wrote the paper. Y.L.Q. conducted the research, analyzed the data and reviewed and published the code. Y.L.Q., J.C., A.T., L.Q.R.O., E.D., C.V.C., S.Z., T.Z., C.L., B.T.T.Y. and A.J.H. provided analytic support. Y.L.Q., J.C., A.T., L.Q.R.O., E.D., C.V.C., S.Z., T.Z., C.L., B.T.T.Y. and A.J.H. edited the paper.

Corresponding authors

Correspondence to Yueyue Lydia Qu or Avram J. Holmes.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Peer review

Peer review information

Nature Mental Health thanks Kelley Gunther, Adrienne Romer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Tables 1–16 and Methods.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y.L., Chen, J., Tam, A. et al. Distinct brain network features predict internalizing and externalizing traits in children, adolescents and adults. Nat. Mental Health 3, 306–317 (2025). https://doi.org/10.1038/s44220-025-00388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44220-025-00388-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing