Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-term obesity impacts brain morphology, functional connectivity and cognition in adults

Abstract

Although obesity has been implicated in brain and cognitive health, the effect of longitudinal obesity trajectories on brain and cognitive aging remains insufficiently understood. Here, using multifaceted obesity measurements from the UK Biobank, we identified five distinct obesity trajectories: low-stable, moderate-stable, high-stable, increasing and decreasing. We observed that individuals in the decreasing trajectory showed minimal adverse effects on brain structure and cognitive performance, compared with the low-stable trajectory (low obesity levels over time). By contrast, the increasing and moderate- and high-stable trajectories were associated with progressively greater impairments in brain morphology, functional connectivity and cognitive abilities. Specifically, adverse effects extended from fronto-mesolimbic regions in the increasing trajectory to parietal and temporal regions in the moderate-stable trajectory, culminating in widespread brain abnormalities in the high-stable group. These findings highlight the dynamic relationship between obesity evolution and brain-cognitive health, underscoring the clinical importance of long-term monitoring and management of obesity through a multifaceted approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of the participant selection.
Fig. 2: Longitudinal obesity trajectory analysis.
Fig. 3: Statistical maps of standardized β coefficients for the effects of longitudinal obesity trajectories on cortical thickness (left column), subcortical volume (middle column) and FC (right column).
Fig. 4: Distribution of cognitive scores in each obesity group.

Similar content being viewed by others

Data availability

The UK Biobank data are a public health database. This work mainly includes demographic data, multiple obesity measures, brain images and cognitive tests. Researchers can apply for access to the data on the UK Biobank website (https://www.ukbiobank.ac.uk). Additional information regarding registration for data access is available at http://www.ukbiobank.ac.uk/register-apply/. The application number for this study is 57831.

Code availability

No new algorithms were written for this study. Study analyses were carried out in MATLAB R2017b (The MathWorks) and Python 3.6. The version of R software is 4.3.1. The code is available from the corresponding author upon reasonable request.

References

  1. World Health Organization. Obesity and overweight, fact sheet. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2024).

  2. Jaacks, L. M. et al. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 7, 231–240 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Frank, P. et al. Overweight, obesity, and individual symptoms of depression: a multicohort study with replication in UK Biobank. Brain Behav. Immun. 105, 192–200 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Avila, C. et al. An overview of links between obesity and mental health. Curr. Obes. Rep. 4, 303–310 (2015).

    Article  PubMed  Google Scholar 

  5. Tam, B. T., Morais, J. A. & Santosa, S. Obesity and ageing: two sides of the same coin. Obes. Rev. 21, e12991 (2020).

    Article  PubMed  Google Scholar 

  6. Bischof, G. N. & Park, D. C. Obesity and aging: consequences for cognition, brain structure, and brain function. Psychosom. Med. 77, 697–709 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pugazhenthi, S., Qin, L. & Reddy, P. H. Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 1037–1045 (2017).

    Article  PubMed  Google Scholar 

  8. Jones, R. A., Lawlor, E. R., Griffin, S. J., van Sluijs, E. M. F. & Ahern, A. L. Impact of adult weight management interventions on mental health: a systematic review and meta-analysis protocol. BMJ Open 10, e031857 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Payne, M. E. et al. Quality of life and mental health in older adults with obesity and frailty: associations with a weight loss intervention. J. Nutr. Health. Aging 22, 1259–1265 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zheng, S. et al. Effectiveness of holistic mobile health interventions on diet, and physical, and mental health outcomes: a systematic review and meta-analysis. EClinicalMedicine 66, 102309 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Veronese, N. et al. Weight loss is associated with improvements in cognitive function among overweight and obese people: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 72, 87–94 (2017).

    Article  PubMed  Google Scholar 

  12. Levakov, G. et al. The effect of weight loss following 18 months of lifestyle intervention on brain age assessed with resting-state functional connectivity. eLife 12, e83604 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schmitt, L. O. & Gaspar, J. M. Obesity-induced brain neuroinflammatory and mitochondrial changes. Metabolites 13, 86 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Guillemot-Legris, O. & Muccioli, G. G. Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci. 40, 237–253 (2017).

    Article  PubMed  Google Scholar 

  15. Roh, H. T., Cho, S. Y. & So, W. Y. Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise. J. Sport. Health. Sci. 6, 225–230 (2017).

    Article  PubMed  Google Scholar 

  16. Santos, A. L. & Sinha, S. Obesity and aging: molecular mechanisms and therapeutic approaches. Ageing Res. Rev. 67, 101268 (2021).

    Article  PubMed  Google Scholar 

  17. Neto, A., Fernandes, A. & Barateiro, A. The complex relationship between obesity and neurodegenerative diseases: an updated review. Front. Cell. Neurosci. 17, 1294420 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carnell, S. et al. Neural correlates of familial obesity risk and overweight in adolescence. NeuroImage 159, 236–247 (2017).

    Article  PubMed  Google Scholar 

  19. Belfort-DeAguiar, R. et al. Humans with obesity have disordered brain responses to food images during physiological hyperglycemia. Am. J. Physiol. Endocrinol. Metab. 314, E522–E529 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Blechert, J., Klackl, J., Miedl, S. F. & Wilhelm, F. H. To eat or not to eat: effects of food availability on reward system activity during food picture viewing. Appetite 99, 254–261 (2016).

    Article  PubMed  Google Scholar 

  21. Demos, K. E. et al. The effects of experimental manipulation of sleep duration on neural response to food cues. Sleep 40, zsx125 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wiemerslage, L. et al. An obesity-associated risk allele within the FTO gene affects human brain activity for areas important for emotion, impulse control and reward in response to food images. Eur. J. Neurosci. 43, 1173–1180 (2016).

    Article  PubMed  Google Scholar 

  23. Dodd, S. L., Long, J. D., Hou, J., Kahathuduwa, C. N. & O’Boyle, M. W. Brain activation and affective judgements in response to personal dietary images: an fMRI preliminary study. Appetite 148, 104561 (2020).

    Article  PubMed  Google Scholar 

  24. Li, G. et al. Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions. Mol. Psychiatry 28, 1466–1479 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Smith, E., Hay, P., Campbell, L. & Trollor, J. N. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes. Rev. 12, 740–755 (2011).

    Article  PubMed  Google Scholar 

  26. Wang, C., Chan, J. S., Ren, L. & Yan, J. H. Obesity reduces cognitive and motor functions across the lifespan. Neural. Plast. 2016, 2473081 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Anstey, K. J., Cherbuin, N., Budge, M. & Young, J. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes. Rev. 12, e426–e437 (2011).

    Article  PubMed  Google Scholar 

  28. Schall, M., Iordanishvili, E., Mauler, J., Oros-Peusquens, A. M. & Shah, N. J. Increasing body mass index in an elderly cohort: effects on the quantitative MR parameters of the brain. J. Magn. Reson. Imaging 51, 514–523 (2020).

    Article  PubMed  Google Scholar 

  29. Walther, K., Birdsill, A. C., Glisky, E. L. & Ryan, L. Structural brain differences and cognitive functioning related to body mass index in older females. Hum. Brain Mapp. 31, 1052–1064 (2010).

    Article  PubMed  Google Scholar 

  30. Hamer, M. & Batty, G. D. Association of body mass index and waist-to-hip ratio with brain structure: UK Biobank study. Neurology 92, e594–e600 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Y. et al. Recovery of brain structural abnormalities in morbidly obese patients after bariatric surgery. Int. J. Obes. 40, 1558–1565 (2016).

    Article  Google Scholar 

  32. Almby, K. E. et al. Effects of gastric bypass surgery on the brain: simultaneous assessment of glucose uptake, blood flow, neural activity, and cognitive function during normo- and hypoglycemia. Diabetes 70, 1265–1277 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tuulari, J. J. et al. Bariatric surgery induces white and grey matter density recovery in the morbidly obese: a voxel-based morphometric study. Hum. Brain Mapp. 37, 3745–3756 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Janssen, I. & Mark, A. E. Elevated body mass index and mortality risk in the elderly. Obes. Rev. 8, 41–59 (2007).

    Article  PubMed  Google Scholar 

  35. Snijder, M. B., van Dam, R. M., Visser, M. & Seidell, J. C. What aspects of body fat are particularly hazardous and how do we measure them? Int. J. Epidemiol. 35, 83–92 (2006).

    Article  PubMed  Google Scholar 

  36. Kumar, A. et al. Brain–muscle communication prevents muscle aging by maintaining daily physiology. Science 384, 563–572 (2024).

    Article  PubMed  Google Scholar 

  37. Lee, H. et al. Obesity and muscle may have synergic effect more than independent effects on brain volume in community-based elderly. Eur. Radiol. 31, 2956–2966 (2021).

    Article  PubMed  Google Scholar 

  38. Wang, R.-Z. et al. Body weight in neurological and psychiatric disorders: a large prospective cohort study. Nat. Ment. Health 2, 41–51 (2024).

    Article  Google Scholar 

  39. Grapsa, I. et al. Longitudinal examination of body mass index and cognitive function in older adults: the HELIAD study. Nutrients 15, 1795 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pflanz, C. P. et al. Central obesity is selectively associated with cerebral gray matter atrophy in 15,634 subjects in the UK Biobank. Int. J. Obes. 46, 1059–1067 (2022).

    Article  Google Scholar 

  41. Dekkers, I. A., Jansen, P. R. & Lamb, H. J. Obesity, brain volume, and white matter microstructure at MRI: a cross-sectional UK Biobank study. Radiology 291, 763–771 (2019).

    Article  PubMed  Google Scholar 

  42. Kim, A. Y., Shim, J. H., Choi, H. J. & Baek, H. M. Comparison of volumetric and shape changes of subcortical structures based on 3-dimensional image between obesity and normal-weighted subjects using 3.0 T MRI. J. Clin. Neurosci. 73, 280–287 (2020).

    Article  PubMed  Google Scholar 

  43. Franz, C. E. et al. Body mass trajectories and cortical thickness in middle-aged men: a 42-year longitudinal study starting in young adulthood. Neurobiol. Aging 79, 11–21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ambikairajah, A., Tabatabaei-Jafari, H., Walsh, E., Hornberger, M. & Cherbuin, N. Longitudinal changes in fat mass and the hippocampus. Obesity 28, 1263–1269 (2020).

    Article  PubMed  Google Scholar 

  45. Willette, A. A. & Kapogiannis, D. Does the brain shrink as the waist expands? Ageing Res. Rev. 20, 86–97 (2015).

    Article  PubMed  Google Scholar 

  46. Driscoll, I. et al. Midlife obesity and trajectories of brain volume changes in older adults. Hum Brain. Mapp. 33, 2204–2210 (2012).

    Article  PubMed  Google Scholar 

  47. Bobb, J. F., Schwartz, B. S., Davatzikos, C. & Caffo, B. Cross-sectional and longitudinal association of body mass index and brain volume. Hum. Brain Mapp. 35, 75–88 (2014).

    Article  PubMed  Google Scholar 

  48. Park, B. Y. et al. Whole-brain functional connectivity correlates of obesity phenotypes. Hum. Brain Mapp. 41, 4912–4924 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Berthoud, H. R., Munzberg, H. & Morrison, C. D. Blaming the brain for obesity: integration of hedonic and homeostatic mechanisms. Gastroenterology 152, 1728–1738 (2017).

    Article  PubMed  Google Scholar 

  50. Kaplan, J. M., Seeley, R. J. & Grill, H. J. Daily caloric intake in intact and chronic decerebrate rats. Behav. Neurosci. 107, 876–881 (1993).

    Article  PubMed  Google Scholar 

  51. Friedman, J. M. Leptin and the endocrine control of energy balance. Nat. Metab. 1, 754–764 (2019).

    Article  PubMed  Google Scholar 

  52. Martín, M. & Ramos, S. Dietary flavonoids and insulin signaling in diabetes and obesity. Cells 10, 1474 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Steinert, R. E. et al. Ghrelin, CCK, GLP-1, and PYY(3-36): secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol. Rev. 97, 411–463 (2017).

    Article  PubMed  Google Scholar 

  54. Low, A. Y. T. et al. Reverse-translational identification of a cerebellar satiation network. Nature 600, 269–273 (2021).

    Article  PubMed  Google Scholar 

  55. Tregellas, J. R. et al. Altered default network activity in obesity. Obesity 19, 2316–2321 (2011).

    Article  PubMed  Google Scholar 

  56. McFadden, K. L., Cornier, M. A., Melanson, E. L., Bechtell, J. L. & Tregellas, J. R. Effects of exercise on resting-state default mode and salience network activity in overweight/obese adults. NeuroReport 24, 866–871 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Li, G. et al. Bariatric surgery in obese patients reduced resting connectivity of brain regions involved with self-referential processing. Hum. Brain Mapp. 39, 4755–4765 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Doucet, G. E., Rasgon, N., McEwen, B. S., Micali, N. & Frangou, S. Elevated body mass index is associated with increased integration and reduced cohesion of sensory-driven and internally guided resting-state functional brain networks. Cereb. Cortex 28, 988–997 (2018).

    Article  PubMed  Google Scholar 

  59. Caunca, M. R. et al. Measures of obesity are associated with MRI markers of brain aging: The Northern Manhattan Study. Neurology 93, 791–803 (2019).

    Article  Google Scholar 

  60. Dake, M. D. et al. Obesity and brain vulnerability in normal and abnormal aging: a multimodal MRI study. J. Alzheimers Dis. Rep. 5, 65–77 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. van Galen, K. A. et al. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat. Metab. 5, 1059–1072 (2023).

    Article  PubMed  Google Scholar 

  62. Dye, L., Boyle, N. B., Champ, C. & Lawton, C. The relationship between obesity and cognitive health and decline. Proc. Nutr. Soc. 76, 443–454 (2017).

    Article  PubMed  Google Scholar 

  63. Cournot, M. et al. Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology 67, 1208–1214 (2006).

    Article  PubMed  Google Scholar 

  64. Yim, C. Y. et al. The effect of overweight/obesity on cognitive function in euthymic individuals with bipolar disorder. Eur. Psychiatry 27, 223–228 (2012).

    Article  PubMed  Google Scholar 

  65. Jaeger, J. Digit symbol substitution test: the case for sensitivity over specificity in neuropsychological testing. J. Clin. Psychopharmacol 38, 513–519 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fama, R. & Sullivan, E. V. Thalamic structures and associated cognitive functions: relations with age and aging. Neurosci. Biobehav. Rev. 54, 29–37 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Burgaleta, M. et al. Subcortical regional morphology correlates with fluid and spatial intelligence. Hum. Brain Mapp. 35, 1957–1968 (2014).

    Article  PubMed  Google Scholar 

  68. Thibaut, F. Basal ganglia play a crucial role in decision making. Dialogues Clin. Neurosci. 18, 3 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26 (2010).

    Article  PubMed  Google Scholar 

  70. Calsolaro, V. & Edison, P. Novel GLP-1 (glucagon-like peptide-1) analogues and insulin in the treatment for Alzheimer’s disease and other neurodegenerative diseases. CNS Drugs 29, 1023–1039 (2015).

    Article  PubMed  Google Scholar 

  71. Yeo, B. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  72. Aminoff, E. M., Kveraga, K. & Bar, M. The role of the parahippocampal cortex in cognition. Trends. Cogn. Sci. 17, 379–390 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Namboodiri, V. M. K. et al. Single-cell activity tracking reveals that orbitofrontal neurons acquire and maintain a long-term memory to guide behavioral adaptation. Nat. Neurosci. 22, 1110–1121 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bosello, O. & Vanzo, A. Obesity paradox and aging. Eat. Weight Disord. 26, 27–35 (2021).

    Article  PubMed  Google Scholar 

  76. Heymsfield, S. B., Gallagher, D., Mayer, L., Beetsch, J. & Pietrobelli, A. Scaling of human body composition to stature: new insights into body mass index. Am. J. Clin. Nutr. 86, 82–91 (2007).

    Article  PubMed  Google Scholar 

  77. Yang, J. et al. Trajectories of depressive symptoms during pregnancy and risk of premature birth: a multicenter and prospective cohort study. Psychiatry Res. 326, 115284 (2023).

    Article  PubMed  Google Scholar 

  78. Zheng, M. et al. Nighttime sleep duration trajectories were associated with body mass index trajectories in early childhood. Pediatr. Obes. 16, e12766 (2020).

    Article  PubMed  Google Scholar 

  79. Reuter, M., Schmansky, N. J., Rosas, H. D. & Fischl, B. Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage 61, 1402–1418 (2012).

    Article  PubMed  Google Scholar 

  80. Smith, S. M. et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004).

    Article  PubMed  Google Scholar 

  81. Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48, 63–72 (2009).

    Article  PubMed  Google Scholar 

  82. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Achard, S. & Bullmore, E. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3, e17 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  84. He, Y., Chen, Z. & Evans, A. Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. J. Neurosci. 28, 4756–4766 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang, J. et al. Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum. Brain Mapp. 30, 1511–1523 (2009).

    Article  PubMed  Google Scholar 

  86. Bielczyk, N. Z. et al. Thresholding functional connectomes by means of mixture modeling. NeuroImage 171, 402–414 (2018).

    Article  PubMed  Google Scholar 

  87. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52, 1059–1069 (2010).

    Article  PubMed  Google Scholar 

  88. Fawns-Ritchie, C. & Deary, I. J. Reliability and validity of the UK Biobank cognitive tests. PLoS ONE 15, e0231627 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fanelli, G. et al. The link between cognition and somatic conditions related to insulin resistance in the UK Biobank study cohort: a systematic review. Neurosci. Biobehav. Rev. 143, 104927 (2022).

    Article  PubMed  Google Scholar 

  90. Arbuthnott, K. & Frank, J. Trail making test, part B as a measure of executive control: validation using a set-switching paradigm. J. Clin. Exp. Neuropsychol. 22, 518–528 (2000).

    Article  PubMed  Google Scholar 

  91. Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation: R package for causal mediation analysis. J. Stat. Softw. 59, 1–38 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the STI 2030 – Major Project (project no. 2022ZD0209000), the National Research Foundation, Singapore, and the Agency for Science Technology and Research (A*STAR), Singapore, under its Prenatal/Early Childhood Grant (grant no. H22P0M0007). Additional support is provided by the RGC GRF project (project no. 15201124) and the Hong Kong Global STEM Scholar scheme. We also thank S. Lyu (Department of Biomedical Engineering, National University of Singapore, Singapore) for his initial work on this study.

Author information

Authors and Affiliations

Authors

Contributions

A.Q. led the project. A.Q., D.Z, C.S., C.L. and N.C. were responsible for the study concept and the design of the study. D.Z., C.L. and C.S. contributed to brain image analysis and statistical analysis. C.S., J.H., K.K.L. and Z.W. contributed to visualization. A.Q., D.Z., J.H., K.K.L. and Z.W. contributed to the results interpretation and discussion. All the authors contributed to the manuscript writing.

Corresponding author

Correspondence to Anqi Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Wyllians Borelli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Statistical comparisons of sample characteristics between the trajectory analysis group and other subgroups
Extended Data Table 2 Statistical comparisons of sample characteristics of brain morphology analysis between the low-stable group and other groups
Extended Data Table 3 Statistical comparisons of sample characteristics of brain functional connectivity analysis between the low-stable group and other groups
Extended Data Table 4 Statistical comparisons of subcortical analysis between the low-stable group and other groups

Supplementary information

Supplementary Information

Supplementary methods, Figures 1–4 and Tables 1–5.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Shen, C., Chen, N. et al. Long-term obesity impacts brain morphology, functional connectivity and cognition in adults. Nat. Mental Health 3, 466–478 (2025). https://doi.org/10.1038/s44220-025-00396-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44220-025-00396-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing