Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteogenomic signature of Alzheimer’s disease and related dementia risk in individuals with major depressive disorder

Abstract

The mechanisms linking a history of major depressive disorder (MDD) to an increased risk of Alzheimer’s disease and related dementia (ADRD) are not fully understood. Using the UK Biobank, we evaluated the biological mechanisms linking the conditions. In participants without history of MDD, 493 proteins were significantly associated with the risk of ADRD. By contrast, in participants with a history of MDD at baseline, a smaller set of six proteins were significantly associated with ADRD risk (NfL, GFAP, PSG1, VGF, GET3 and HPGDS), with GET3 being specifically associated with ADRD risk in the latter group. Two-sample Mendelian randomization analysis showed that the apolipoprotein E and IL-10 receptor subunit B genes were causally linked to incident ADRD. Finally, we developed a proteomic risk score (PrRSMDD-ADRD), which showed strong discriminative power (C statistic = 0.84) to identify participants with MDD who developed ADRD on follow-up. Here we show that plasma proteins associated with inflammation and amyloid-β metabolism are causally linked to a higher ADRD risk in individuals with MDD. Moreover, the PrRSMDD-ADRD can be useful to identify individuals with the highest risk of developing ADRD in a highly vulnerable population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proteins significantly associated with incident ADRD in participants with a history of MDD at baseline (n = 3,615).
Fig. 2: MR-Egger plots to show causal estimates from IVW versus other MR methods for the effects of APOE and IL10RB (IVW FDR-adjusted P < 0.05) on incident ADRD in participants of European descent with a history of MDD at baseline (n = 30,903).
Fig. 3: Spearman correlations between PrRSMDD-ADRD, age and cognitive performance measures from baseline (reaction time, numeric memory, fluid intelligence score) or first imaging visit (symbol digit substitution, trail making, matrix pattern completion).
Fig. 4: Spearman correlations of PrRSMDD-ADRD with T1 structural and T2-weighted brain MRI IDPs, adjusting for head size.

Similar content being viewed by others

Data availability

The analyses were done using the restricted and sensitive data from the UK Biobank dataset. These data are available on request following the UK Biobank policies.

Code availability

The code for the calculation of the PrRSMDD-ADRD is available at https://github.com/kuo-lab-uchc.

References

  1. Morris, G. et al. Shared pathways for neuroprogression and somatoprogression in neuropsychiatric disorders. Neurosci. Biobehav. Rev. 107, 862–882 (2019).

    Article  PubMed  Google Scholar 

  2. Lynch, C. J., Gunning, F. M. & Liston, C. Causes and consequences of diagnostic heterogeneity in depression: paths to discovering novel biological depression subtypes. Biol. Psychiatry 88, 83–94 (2020).

    Article  PubMed  Google Scholar 

  3. Whiteford, H. A. et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 382, 1575–1586 (2013).

    Article  PubMed  Google Scholar 

  4. Lorenzo, E. C., Kuchel, G. A., Kuo, C. L., Moffitt, T. E. & Diniz, B. S. Major depression and the biological hallmarks of aging. Ageing Res. Rev. 83, 101805 (2023).

    Article  PubMed  Google Scholar 

  5. Diniz, B. S. et al. Late-life depression and risk of vascular dementia and Alzheimer’s disease: systematic review and meta-analysis of community-based cohort studies. Br. J. Psychiatry 202, 329–335 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ownby, R. L., Crocco, E., Acevedo, A., John, V. & Loewenstein, D. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch. Gen. Psychiatry 63, 530–538 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barnes, D. E. & Yaffe, K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 10, 819–828 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K. & Brayne, C. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 13, 788–794 (2014).

    Article  PubMed  Google Scholar 

  9. Livingston, G. et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 404, 572–628 (2024).

    Article  PubMed  Google Scholar 

  10. Wilson, R. S. et al. Late-life depression is not associated with dementia-related pathology. Neuropsychology 30, 135 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rhodes, E. et al. The impact of amyloid burden and APOE on rates of cognitive impairment in late life depression. J. Alzheimers Dis. 80, 991–1002 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Royall, D. R. & Palmer, R. F. Alzheimer’s disease pathology does not mediate the association between depressive symptoms and subsequent cognitive decline. Alzheimers Dement. 9, 318–325 (2013).

    Article  PubMed  Google Scholar 

  13. Gatchel, J. R. et al. Longitudinal association of depression symptoms with cognition and cortical amyloid among community-dwelling older adults. JAMA Netw. Open 2, e198964 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mourao, R. J., Mansur, G., Malloy-Diniz, L. F., Castro Costa, E. & Diniz, B. S. Depressive symptoms increase the risk of progression to dementia in subjects with mild cognitive impairment: systematic review and meta-analysis. Int. J. Geriatr. Psychiatry 31, 905–911 (2016).

    Article  PubMed  Google Scholar 

  15. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  16. Gonzales, M. M. et al. Biological aging processes underlying cognitive decline and neurodegenerative disease. J. Clin. Invest. 132, e158453 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Diniz, B. S. et al. Plasma biosignature and brain pathology related to persistent cognitive impairment in late-life depression. Mol. Psychiatry 20, 594–601 (2015).

    Article  PubMed  Google Scholar 

  18. Diniz, B. S. et al. Mild cognitive impairment and major depressive disorder are associated with molecular senescence abnormalities in older adults. Alzheimers Dement. 7, e12129 (2021).

    Google Scholar 

  19. Taylor, W. D. et al. Hippocampus atrophy and the longitudinal course of late-life depression. Am. J. Geriatr. Psychiatry 22, 1504–1512 (2014).

    Article  PubMed  Google Scholar 

  20. Harerimana, N. V. et al. Genetic evidence supporting a causal role of depression in Alzheimer's disease. Biol. Psychiatry 92, 25–33 (2022).

    Article  PubMed  Google Scholar 

  21. Eldjarn, G. H. et al. Large-scale plasma proteomics comparisons through genetics and disease associations. Nature 622, 348–358 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622, 329–338 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Potter, G. G. et al. Neuropsychological predictors of dementia in late-life major depressive disorder. Am. J. Geriatr. Psychiatry 21, 297–306 (2013).

    Article  PubMed  Google Scholar 

  25. Marawi, T. et al. Brain–cognition associations in older patients with remitted major depressive disorder or mild cognitive impairment: a multivariate analysis of gray and white matter integrity. Biol. Psychiatry 94, 913–923 (2023).

    Article  PubMed  Google Scholar 

  26. Network, D. I. A. et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat. Med. 25, 277–283 (2019).

    Article  Google Scholar 

  27. Quinn, J. P., Kandigian, S. E., Trombetta, B. A., Arnold, S. E. & Carlyle, B. C. VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases. Brain Commun. 3, fcab261 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ye, Q. et al. Low VGF is associated with executive dysfunction in patients with major depressive disorder. J. Psychiatr. Res. 152, 182–186 (2022).

    Article  PubMed  Google Scholar 

  29. Li, X. et al. Reduced serum VGF levels are linked with suicide risk in Chinese Han patients with major depressive disorder. BMC Psychiatry 20, 225 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yu, L. et al. Associations of VGF with neuropathologies and cognitive health in older adults. Ann. Neurol. 94, 232–244 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Llano, D. A., Devanarayan, P. & Devanarayan, V. CSF peptides from VGF and other markers enhance prediction of MCI to AD progression using the ATN framework. Neurobiol. Aging 121, 15–27 (2023).

    Article  PubMed  Google Scholar 

  32. Huang, Z. et al. Th2A cells: the pathogenic players in allergic diseases. Front. Immunol. 13, 916778 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chu, C., Wei, H., Zhu, W., Shen, Y. & Xu, Q. Decreased prostaglandin D2 levels in major depressive disorder are associated with depression-like behaviors. Int. J. Neuropsychopharmacol. 20, 731–739 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maesaka, J. K. et al. Prostaglandin D2 synthase: apoptotic factor in alzheimer plasma, inducer of reactive oxygen species, inflammatory cytokines and dialysis dementia. J. Nephropathol. 2, 166–180 (2013).

    PubMed  PubMed Central  Google Scholar 

  35. Dai, H., Zhou, J. & Zhu, B. Gene co-expression network analysis identifies the hub genes associated with immune functions for nocturnal hemodialysis in patients with end-stage renal disease. Medicine 97, e12018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Moore, T. & Dveksler, G. S. Pregnancy-specific glycoproteins: complex gene families regulating maternal-fetal interactions. Int. J. Dev. Biol. 58, 273–280 (2014).

    Article  PubMed  Google Scholar 

  37. Shahinian, J. H. et al. Pregnancy specific β-1 glycoprotein 1 is expressed in pancreatic ductal adenocarcinoma and its subcellular localization correlates with overall survival. J. Cancer 7, 2018–2027 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Denic, V., Dötsch, V. & Sinning, I. Endoplasmic reticulum targeting and insertion of tail-anchored membrane proteins by the GET pathway. Cold Spring Harb. Perspect. Biol. 5, a013334 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Colombo, S. F. et al. Tail-anchored protein insertion in mammals: function and reciprocal interactions of the two subunits of the TRC40 receptor. J. Biol. Chem. 291, 15292–15306 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Farrer, L. A. et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. JAMA 278, 1349–1356 (1997).

    Article  PubMed  Google Scholar 

  41. Makkar, S. R. et al. APOE ε4 and the influence of sex, age, vascular risk factors, and ethnicity on cognitive decline. J. Gerontol. A 75, 1863–1873 (2020).

    Article  Google Scholar 

  42. Lescai, F. et al. An APOE haplotype associated with decreased ε4 expression increases the risk of late onset Alzheimer’s disease. J. Alzheimers Dis. 24, 235–245 (2011).

    Article  PubMed  Google Scholar 

  43. Narasimhan, S. et al. Apolipoprotein E in Alzheimer’s disease trajectories and the next-generation clinical care pathway. Nat. Neurosci. 27, 1236–1252 (2024).

    Article  PubMed  Google Scholar 

  44. Yamazaki, Y., Zhao, N., Caulfield, T. R., Liu, C.-C. & Bu, G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Goldmann, O., Nwofor, O. V., Chen, Q. & Medina, E. Mechanisms underlying immunosuppression by regulatory cells. Front. Immunol. 15, 1328193 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liston, A., Dooley, J. & Yshii, L. Brain-resident regulatory T cells and their role in health and disease. Immunol. Lett. 248, 26–30 (2022).

    Article  PubMed  Google Scholar 

  47. Carlini, V. et al. The multifaceted nature of IL-10: regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front. Immunol. 14, 1161067 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lippitz, B. E. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 14, e218–e228 (2013).

    Article  PubMed  Google Scholar 

  49. Xu, M. et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl Acad. Sci. USA 112, E6301–E6310 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556–1568 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Diniz, B. S., Reynolds Iii, C. F., Sibille, E., Bot, M. & Penninx, B. Major depression and enhanced molecular senescence abnormalities in young and middle-aged adults. Transl. Psychiatry 9, 198 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lorenzo, E. C. et al. Unraveling the association between major depressive disorder and senescent biomarkers in immune cells of older adults: a single-cell phenotypic analysis. Front. Aging 5, 1376086 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bartels, C., Wagner, M., Wolfsgruber, S., Ehrenreich, H. & Schneider, A. Impact of SSRI therapy on risk of conversion from mild cognitive impairment to Alzheimer's dementia in individuals with previous depression. Am. J. Psychiatry 175, 232–241 (2017).

    Article  PubMed  Google Scholar 

  54. Ramos‐Cejudo, J. et al. Antidepressant exposure and long‐term dementia risk in a nationwide retrospective study on US veterans with midlife major depressive disorder. Alzheimers Dement. 20, 4106–4114 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sims, J. R. et al. Donanemab in early symptomatic Alzheimer disease. JAMA 330, 512–527 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Faquetti, M. L. et al. Baricitinib and tofacitinib off-target profile, with a focus on Alzheimer’s disease. Alzheimers Dement. 10, e12445 (2024).

    Google Scholar 

  57. Serrano-Pozo, A., Das, S. & Hyman, B. T. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 20, 68–80 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Glanville, K. P. et al. Multiple measures of depression to enhance validity of major depressive disorder in the UK Biobank. BJPsych Open 7, e44 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yang, L. et al. Depression, depression treatments, and risk of incident dementia: a prospective cohort study of 354,313 participants. Biol. Psychiatry 93, 802–809 (2023).

    Article  PubMed  Google Scholar 

  60. Kaup, A. R. et al. Trajectories of depressive symptoms in older adults and risk of dementia. JAMA Psychiatry 73, 525 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Torgo, L. Data Mining with R: Learning with Case Studies (Chapman and Hall/CRC, 2011).

  62. Kuo, C.-L. et al. Proteomic aging clock (PAC) predicts age-related outcomes in middle-aged and older adults. Aging Cell 23, e14195 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Article  Google Scholar 

  64. Davey Smith, G. & Ebrahim, S. What can Mendelian randomisation tell us about modifiable behavioural and environmental exposures? Brit. Med. J. 330, 1076–1079 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Evans, D. M. & Davey Smith, G. Mendelian randomization: new applications in the coming age of hypothesis-free causality. Annu. Rev. Genomics Hum. Genet. 16, 327–350 (2015).

    Article  PubMed  Google Scholar 

  66. Davies, N. M., Holmes, M. V. & Smith, G. D. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362, k601 (2017).

    Google Scholar 

  67. Melzer, D. et al. A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet. 4, e1000072 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Fauman, E. B. & Hyde, C. An optimal variant to gene distance window derived from an empirical definition of cis and trans protein QTLs. BMC Bioinf. 23, 169 (2022).

    Article  Google Scholar 

  69. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhao, Q., Wang, J., Hemani, G., Bowden, J. & Small, D. S. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. Ann. Stat. 48, 1742–1769 (2020).

    Article  Google Scholar 

  72. Bowden, J. et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int. J. Epidemiol. 45, 1961–1974 (2016).

    PubMed  PubMed Central  Google Scholar 

  73. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. https://doi.org/10.18637/jss.v033.i01 (2010).

  74. Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Phil. Trans. R. Soc. Lond. 115, 513–583 (1825).

    Google Scholar 

  75. Harrell, F. E. Jr., Califf, R. M., Pryor, D. B., Lee, K. L. & Rosati, R. A. Evaluating the yield of medical tests. JAMA 247, 2543–2546 (1982).

    Article  PubMed  Google Scholar 

  76. Fawns-Ritchie, C. & Deary, I. J. Reliability and validity of the UK Biobank cognitive tests. PLoS ONE 15, e0231627 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Therneau, T. A package for survival analysis in R. R package version 3.5-8 (2024).

  78. Simon, N., Friedman, J. H., Hastie, T. & Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. https://doi.org/10.18637/jss.v039.i05 (2011).

  79. Jackson, C. flexsurv: a platform for parametric survival modeling in R. J. Stat. Softw. https://doi.org/10.18637/jss.v070.i08 (2016).

  80. Pilling, L. C. gwasRtools: some useful R functions for processing GWAS output. GitHub https://github.com/lcpilling/gwasRtools/(2024).

  81. Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 1734–1739 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH grant P30AG067988 and has been conducted using the UK Biobank Resource under Application Number 92647, ‘Research to Inform the Field of Precision Gerontology’ (principal investigator R. H. Fortinski). In particular, this work uses data provided by patients and collected by the NHS as part of their care and support.

Author information

Authors and Affiliations

Authors

Contributions

B.S.D.: study conception and design, result interpretation, paper draft, and revision. Z.C.: data analysis, result interpretation, and paper review. D.C.S.: result interpretation and paper review. L.P.: consulted on data analysis, result interpretation, and paper review. Y.N., K.C.: figure preparation, result interpretation, and paper review. R.H.F. and G.A.K.: result interpretation and paper review. C.-L.K.: study conception and design, data analysis, result interpretation, paper draft, and revision.

Corresponding author

Correspondence to Breno Satler Diniz.

Ethics declarations

Competing interests

B.S.D. serves as a consultant to Bough Bioscience Inc in an area unrelated to this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Julius Popp, Lin Sun and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–12.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, B.S., Chen, Z., Steffens, D.C. et al. Proteogenomic signature of Alzheimer’s disease and related dementia risk in individuals with major depressive disorder. Nat. Mental Health 3, 879–888 (2025). https://doi.org/10.1038/s44220-025-00460-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44220-025-00460-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing