Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Predicting dimensional antidepressant response to repetitive transcranial magnetic stimulation using pretreatment resting-state functional connectivity

Abstract

Repetitive transcranial magnetic stimulation is an effective treatment for depression that modulates resting-state functional connectivity (RSFC) of depression-relevant neural circuits. So far, however, few studies have investigated whether individual treatment-related symptom changes are predictable from pretreatment RSFC. Here we use machine learning to predict dimensional changes in depressive symptoms using pretreatment RSFC. We hypothesized that changes in dimensional depressive symptoms would be predicted more accurately than scale total scores. Patients with depression (n = 26) underwent pretreatment RSFC magnetic resonance imaging. Depressive symptoms were assessed with the 17-item Hamilton Depression Rating Scale (HDRS-17). Random forest regression models were trained to predict treatment-related symptom changes captured by the HDRS-17, HDRS-6 and three previously identified HDRS subscales: core mood and anhedonia (CMA), somatic disturbances and insomnia. Changes along the CMA, HDRS-17 and HDRS-6 were predicted significantly above chance, with 9%, 2% and 2% of out-of-sample outcome variance explained, respectively (all P values <0.001). CMA changes were predicted more accurately than the HDRS-17 (P < 0.05). Higher baseline global connectivity (GC) of default mode network subregions and the somatomotor network predicted poorer outcomes, while higher GC of the right dorsal attention frontoparietal control and visual networks predicted reduced CMA symptoms. HDRS-17 and HDRS-6 changes were predicted with similar GC patterns. These results suggest that RSFC spanning the default mode, somatomotor, dorsal attention, frontoparietal control and visual network subregions predict dimensional changes with significantly greater accuracy than syndromal changes after repetitive transcranial magnetic stimulation. These findings highlight the need to assess more granular clinical dimensions in therapeutic studies and echo earlier studies supporting that dimensional outcomes improve model accuracy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Model performance by outcome.
Fig. 2: Predicted symptom changes given pretreatment connectivity.
Fig. 3: Predictor importance.

Similar content being viewed by others

Data availability

The dataset used for this study is not publicly available due to patient privacy concerns but may be made available from the corresponding author on request.

Code availability

Code used for this study is available via GitHub at https://github.com/bscwade/tms_moa_dimensional_predictions.

References

  1. George, M. S., Taylor, J. J. & Short, E. B. The expanding evidence base for rTMS treatment of depression. Curr. Opin. Psychiatry 26, 13–18 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cole, E. J. et al. Stanford Neuromodulation Therapy (SNT): a double-blind randomized controlled trial. Am. J. Psychiatry 179, 132–141 (2022).

    Article  PubMed  Google Scholar 

  3. Camprodon, J. A., Rauch, S. L., Greenberg, B. D., & Dougherty, D. D. (eds) Psychiatric Neurotherapeutics: Contemporary Surgical and Device-Based Treatments 1st edn (Springer, 2016).

  4. Harika-Germaneau, G. et al. Baseline clinical and neuroimaging biomarkers of treatment response to high-frequency rTMS over the left DLPFC for resistant depression. Front. Psychiatry 13, 894473 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brunoni, A. R. et al. Repetitive transcranial magnetic stimulation for the acute treatment of major depressive episodes: a systematic review with network meta-analysis. JAMA Psychiatry 74, 143–152 (2017).

    Article  PubMed  Google Scholar 

  6. Chervyakov, A. V., Chernyavsky, A. Y., Sinitsyn, D. O. & Piradov, M. A. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front. Hum. Neurosci. 9, 303 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Camprodon, J. A. & Pascual-Leone, A. Multimodal applications of transcranial magnetic stimulation for circuit-based psychiatry. JAMA Psychiatry 73, 407–408 (2016).

    Article  PubMed  Google Scholar 

  8. Fox, M. D., Buckner, R. L., White, M. P., Greicius, M. D. & Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry 72, 595–603 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Drevets, W. C., Savitz, J. & Trimble, M. The subgenual anterior cingulate cortex in mood disorders. CNS Spectr. 13, 663–681 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mayberg, H. S. Defining the neural circuitry of depression: toward a new nosology with therapeutic implications. Biol. Psychiatry 61, 729–730 (2007).

    Article  PubMed  Google Scholar 

  11. Pizzagalli, D. A. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology 36, 183–206 (2011).

    Article  PubMed  Google Scholar 

  12. Cash, R. F. H. et al. A multivariate neuroimaging biomarker of individual outcome to transcranial magnetic stimulation in depression. Hum. Brain Mapp. 40, 4618–4629 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liston, C. et al. Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol. Psychiatry 76, 517–526 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Boes, A. D. et al. Rostral anterior cingulate cortex is a structural correlate of repetitive TMS treatment response in depression. Brain Stimul. 11, 575–581 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baeken, C., van Beek, V., Vanderhasselt, M. A., Duprat, R. & Klooster, D. Cortical thickness in the right anterior cingulate cortex relates to clinical response to left prefrontal accelerated intermittent theta burst stimulation: an exploratory study. Neuromodulation 24, 938–949 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Buch, A. M. & Liston, C. Dissecting diagnostic heterogeneity in depression by integrating neuroimaging and genetics. Neuropsychopharmacology 46, 156–175 (2021).

    Article  PubMed  Google Scholar 

  17. Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2017).

    Article  PubMed  Google Scholar 

  18. Siddiqi, S. H. et al. Distinct symptom-specific treatment targets for circuit-based neuromodulation. Am. J. Psychiatry 177, 435–446 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bagby, R. M., Ryder, A. G., Schuller, D. R. & Marshall, M. B. The Hamilton Depression Rating Scale: has the gold standard become a lead weight? Am. J. Psychiatry 161, 2163–2177 (2004).

    Article  PubMed  Google Scholar 

  20. Maier, W., Heuser, I., Philipp, M., Frommberger, U. & Demuth, W. Improving depression severity assessment–II. Content, concurrent and external validity of three observer depression scales. J. Psychiatr. Res. 22, 13–19 (1988).

    Article  PubMed  Google Scholar 

  21. Bech, P. et al. The Hamilton depression scale. Evaluation of objectivity using logistic models. Acta Psychiatr. Scand. 63, 290–299 (1981).

    Article  PubMed  Google Scholar 

  22. Boone, W. J. Rasch analysis for instrument development: why, when, and how? CBE Life Sci. Educ. 15, rm4 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Timmerby, N., Andersen, J. H., Sondergaard, S., Ostergaard, S. D. & Bech, P. A systematic review of the clinimetric properties of the 6-Item Version of the Hamilton Depression Rating Scale (HAM-D6). Psychother. Psychosom. 86, 141–149 (2017).

    Article  PubMed  Google Scholar 

  24. Wade, B. S. C. et al. Accounting for symptom heterogeneity can improve neuroimaging models of antidepressant response after electroconvulsive therapy. Hum. Brain Mapp. 42, 5322–5333 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wade, B. S. C. et al. Anterior default mode network and posterior insular connectivity is predictive of depressive symptom reduction following serial ketamine infusion—CORRIGENDUM. Psychol. Med. 52, 2399 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Razza, L. B. et al. A systematic review and meta-analysis on placebo response to repetitive transcranial magnetic stimulation for depression trials. Prog. Neuropsychopharmacol. Biol. Psychiatry 81, 105–113 (2018).

    Article  PubMed  Google Scholar 

  27. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional–anatomic fractionation of the brain’s default network. Neuron 65, 550–562 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ochsner, K. N. et al. Reflecting upon feelings: an fMRI study of neural systems supporting the attribution of emotion to self and other. J. Cogn. Neurosci. 16, 1746–1772 (2004).

    Article  PubMed  Google Scholar 

  29. Buckner, R. L. & DiNicola, L. M. The brain’s default network: updated anatomy, physiology and evolving insights. Nat. Rev. Neurosci. 20, 593–608 (2019).

    Article  PubMed  Google Scholar 

  30. Mulders, P. C. et al. Default mode network coherence in treatment-resistant major depressive disorder during electroconvulsive therapy. J. Affect. Disord. 205, 130–137 (2016).

    Article  PubMed  Google Scholar 

  31. Zhou, H. X. et al. Rumination and the default mode network: meta-analysis of brain imaging studies and implications for depression. NeuroImage 206, 116287 (2020).

    Article  PubMed  Google Scholar 

  32. Hamilton, J. P., Farmer, M., Fogelman, P. & Gotlib, I. H. Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biol. Psychiatry 78, 224–230 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sheline, Y. I. et al. The default mode network and self-referential processes in depression. Proc. Natl Acad. Sci. USA 106, 1942–1947 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Foroughi, A. et al. The effectiveness of mindfulness-based cognitive therapy for reducing rumination and improving mindfulness and self-compassion in patients with treatment-resistant depression. Trends Psychiatry Psychother. 42, 138–146 (2020).

    Article  PubMed  Google Scholar 

  35. Dunlop, K. et al. MRI-guided dmPFC-rTMS as a treatment for treatment-resistant major depressive disorder. J. Vis. Exp. 11, e53129 (2015).

    Google Scholar 

  36. Muller, V. I., Langner, R., Cieslik, E. C., Rottschy, C. & Eickhoff, S. B. Interindividual differences in cognitive flexibility: influence of gray matter volume, functional connectivity and trait impulsivity. Brain Struct. Funct. 220, 2401–2414 (2015).

    Article  PubMed  Google Scholar 

  37. Kuhn, S., Gallinat, J. & Brass, M. ‘Keep calm and carry on’: structural correlates of expressive suppression of emotions. PLoS ONE 6, e16569 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jung, Y. C. et al. Synchrony of anterior cingulate cortex and insular-striatal activation predicts ambiguity aversion in individuals with low impulsivity. Cereb. Cortex 24, 1397–1408 (2014).

    Article  PubMed  Google Scholar 

  39. Downar, J. & Daskalakis, Z. J. New targets for rTMS in depression: a review of convergent evidence. Brain Stimul. 6, 231–240 (2013).

    Article  PubMed  Google Scholar 

  40. Dunlop, K. et al. Reductions in cortico-striatal hyperconnectivity accompany successful treatment of obsessive–compulsive disorder with dorsomedial prefrontal rTMS. Neuropsychopharmacology 41, 1395–1403 (2016).

    Article  PubMed  Google Scholar 

  41. Feffer, K. et al. Dorsomedial prefrontal rTMS for depression in borderline personality disorder: a pilot randomized crossover trial. J. Affect. Disord. 301, 273–280 (2022).

    Article  PubMed  Google Scholar 

  42. Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F. & Tendolkar, I. Resting-state functional connectivity in major depressive disorder: a review. Neurosci. Biobehav. Rev. 56, 330–344 (2015).

    Article  PubMed  Google Scholar 

  43. Greicius, M. D. et al. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 62, 429–437 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhu, X. et al. Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biol. Psychiatry 71, 611–617 (2012).

    Article  PubMed  Google Scholar 

  45. Salomons, T. V. et al. Resting-state cortico-thalamic-striatal connectivity predicts response to dorsomedial prefrontal rTMS in major depressive disorder. Neuropsychopharmacology 39, 488–498 (2014).

    Article  PubMed  Google Scholar 

  46. Cano, M. et al. Brain volumetric correlates of electroconvulsive therapy versus transcranial magnetic stimulation for treatment-resistant depression. J. Affect. Disord. 333, 140–146 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38 (2008).

    Article  PubMed  Google Scholar 

  48. Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

    Article  PubMed  Google Scholar 

  49. Gusnard, D. A., Akbudak, E., Shulman, G. L. & Raichle, M. E. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc. Natl Acad. Sci. USA 98, 4259–4264 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Leech, R. & Sharp, D. J. The role of the posterior cingulate cortex in cognition and disease. Brain 137, 12–32 (2014).

    Article  PubMed  Google Scholar 

  51. Leech, R., Braga, R. & Sharp, D. J. Echoes of the brain within the posterior cingulate cortex. J. Neurosci. 32, 215–222 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Leech, R., Kamourieh, S., Beckmann, C. F. & Sharp, D. J. Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J. Neurosci. 31, 3217–3224 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  53. van Tol, M. J. et al. Local cortical thinning links to resting-state disconnectivity in major depressive disorder. Psychol. Med. 44, 2053–2065 (2014).

    Article  PubMed  Google Scholar 

  54. Wise, T. et al. Instability of default mode network connectivity in major depression: a two-sample confirmation study. Transl. Psychiatry 7, e1105 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Berman, M. G. et al. Depression, rumination and the default network. Soc. Cogn. Affect. Neurosci. 6, 548–555 (2011).

    Article  PubMed  Google Scholar 

  56. Zhou, Y. et al. Increased neural resources recruitment in the intrinsic organization in major depression. J. Affect. Disord. 121, 220–230 (2010).

    Article  PubMed  Google Scholar 

  57. Bluhm, R. et al. Resting state default-mode network connectivity in early depression using a seed region-of-interest analysis: decreased connectivity with caudate nucleus. Psychiatry Clin. Neurosci. 63, 754–761 (2009).

    Article  PubMed  Google Scholar 

  58. Treynor, W., Gonzalez, R. & Nolen-Hoeksema, S. Rumination reconsidered: a psychometric analysis. Cogn. Ther. Res. 27, 247–259 (2003).

    Article  Google Scholar 

  59. Yan, C. G. et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl Acad. Sci. USA 116, 9078–9083 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sacchet, M. D. et al. Large-scale hypoconnectivity between resting-state functional networks in unmedicated adolescent major depressive disorder. Neuropsychopharmacology 41, 2951–2960 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Korgaonkar, M. S., Goldstein-Piekarski, A. N., Fornito, A. & Williams, L. M. Intrinsic connectomes are a predictive biomarker of remission in major depressive disorder. Mol. Psychiatry 25, 1537–1549 (2020).

    Article  PubMed  Google Scholar 

  62. Leaver, A. M. et al. Fronto-temporal connectivity predicts ECT outcome in major depression. Front. Psychiatry 9, 92 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72, 603–611 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sambataro, F. et al. Altered dynamics of brain connectivity in major depressive disorder at-rest and during task performance. Psychiatry Res. Neuroimaging 259, 1–9 (2017).

    Article  PubMed  Google Scholar 

  65. Armstrong, T. & Olatunji, B. O. Eye tracking of attention in the affective disorders: a meta-analytic review and synthesis. Clin. Psychol. Rev. 32, 704–723 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Golomb, J. D. et al. Enhanced visual motion perception in major depressive disorder. J. Neurosci. 29, 9072–9077 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen, C. et al. Decreased cortical folding of the fusiform gyrus and its hypoconnectivity with sensorimotor areas in major depressive disorder. J. Affect. Disord. 295, 657–664 (2021).

    Article  PubMed  Google Scholar 

  68. Ho, T. C. et al. Fusiform gyrus dysfunction is associated with perceptual processing efficiency to emotional faces in adolescent depression: a model-based approach. Front. Psychol. 7, 40 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sahib, A. K. et al. Modulation of the functional connectome in major depressive disorder by ketamine therapy. Psychol. Med. 52, 2596–2605 (2022).

    Article  PubMed  Google Scholar 

  70. Moreno-Ortega, M. et al. Resting state functional connectivity predictors of treatment response to electroconvulsive therapy in depression. Sci. Rep. 9, 5071 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Doehrmann, O. et al. Predicting treatment response in social anxiety disorder from functional magnetic resonance imaging. JAMA Psychiatry 70, 87–97 (2013).

    Article  PubMed  Google Scholar 

  72. Chen, H. et al. More optimal but less regulated dorsal and ventral visual networks in patients with major depressive disorder. J. Psychiatr. Res. 110, 172–178 (2019).

    Article  PubMed  Google Scholar 

  73. Whitfield-Gabrieli, S. et al. Brain connectomics predict response to treatment in social anxiety disorder. Mol. Psychiatry 21, 680–685 (2016).

    Article  PubMed  Google Scholar 

  74. Wu, F., Lu, Q., Kong, Y. & Zhang, Z. A comprehensive overview of the role of visual cortex malfunction in depressive disorders: opportunities and challenges. Neurosci. Bull. 39, 1426–1438 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Stephan-Otto, C. et al. Neural activity during object perception in schizophrenia patients is associated with illness duration and affective symptoms. Schizophr. Res. 175, 27–34 (2016).

    Article  PubMed  Google Scholar 

  76. Marek, S. & Dosenbach, N. U. F. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues Clin. Neurosci. 20, 133–140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cole, M. W., Repovs, G. & Anticevic, A. The frontoparietal control system: a central role in mental health. Neuroscientist 20, 652–664 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zweerings, J. et al. Fronto-parietal and temporal brain dysfunction in depression: a fMRI investigation of auditory mismatch processing. Hum. Brain Mapp. 40, 3657–3668 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Schultz, D. H. et al. Global connectivity of the fronto-parietal cognitive control network is related to depression symptoms in the general population. Netw. Neurosci. 3, 107–123 (2019).

    Article  PubMed  Google Scholar 

  80. Zhang, H., Nettleton, D. & Zhu, Z. Regression-enhanced random forests. In Joint Statistical Meetings Proc. 636–647 (ASA, 2017).

  81. Elbau, I. G. et al. Functional connectivity mapping for rTMS target selection in depression. Am. J. Psychiatry 180, 230–240 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article  PubMed  Google Scholar 

  83. Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Klein, A. et al. Mindboggling morphometry of human brains. PLoS Comput. Biol. 13, e1005350 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–173 (1996).

    Article  PubMed  Google Scholar 

  86. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002).

    Article  PubMed  Google Scholar 

  87. Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage 37, 90–101 (2007).

    Article  PubMed  Google Scholar 

  88. Schaefer, A. et al. Local–global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    Article  PubMed  Google Scholar 

  89. Kelly, C. et al. A convergent functional architecture of the insula emerges across imaging modalities. NeuroImage 61, 1129–1142 (2012).

    Article  PubMed  Google Scholar 

  90. Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980 (2006).

    Article  PubMed  Google Scholar 

  91. Pauli, W. M., Nili, A. N. & Tyszka, J. M. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci. Data 5, 180063 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Tyszka, J. M. & Pauli, W. M. In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template. Hum. Brain Mapp. 37, 3979–3998 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23, 56–62 (1960).

    Article  PubMed  PubMed Central  Google Scholar 

  95. O’Sullivan, R. L., Fava, M., Agustin, C., Baer, L. & Rosenbaum, J. F. Sensitivity of the six-item Hamilton Depression Rating Scale. Acta Psychiatr. Scand. 95, 379–384 (1997).

    Article  PubMed  Google Scholar 

  96. Wade, B. S. C. et al. Depressive symptom dimensions in treatment-resistant major depression and their modulation with electroconvulsive therapy. J. ECT 36, 123–129 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Snaith, R. P. et al. A scale for the assessment of hedonic tone the Snaith–Hamilton Pleasure Scale. Br. J. Psychiatry 167, 99–103 (1995).

    Article  PubMed  Google Scholar 

  98. Dietterich, T. G. Ensemble Methods in Machine Learning. In Multiple Classifier Systems: First International Workshop, Lecture notes in Computer Science, 1-15 (MCS, 2000).

  99. Grinsztajn, L., Oyallon, E. & Varoquaux, G. Why do tree-based models still outperform deep learning on typical tabular data? Adv. Neural Inf. Process. Syst. 35, 507–520 (2022).

    Google Scholar 

  100. Wade, B. S. C., Joshi, S. H., Gutman, B. A. & Thompson, P. M. Machine learning on high dimensional shape data from subcortical brain surfaces: a comparison of feature selection and classification methods. Pattern Recogn. 63, 731–739 (2017).

    Article  Google Scholar 

  101. Statnikov, A., Wang, L. & Aliferis, C. F. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinf. 9, 319 (2008).

    Article  Google Scholar 

  102. Poldrack, R. A., Huckins, G. & Varoquaux, G. Establishment of best practices for evidence for prediction: a review. JAMA Psychiatry 77, 534–540 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Phipson, B. & Smyth, G. K. Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol. 9, Article39 (2010).

    Article  PubMed  Google Scholar 

  104. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  105. Altmann, A., Tolosi, L., Sander, O. & Lengauer, T. Permutation importance: a corrected feature importance measure. Bioinformatics 26, 1340–1347 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a K99/R00 Pathway to Independence Award (MH119314 to B.S.C.W.) and NIH grants R01MH112737 and R61MH132869 to J.A.C.

Author information

Authors and Affiliations

Authors

Contributions

B.S.C.W. designed the study’s machine learning and statistical methods, interpreted the findings and drafted the paper. J.A.C. oversaw and funded data acquisition efforts. T.A.B., K.K.E. and J.A.C. assisted in interpreting the findings and drafting the paper.

Corresponding author

Correspondence to Benjamin S. C. Wade.

Ethics declarations

Competing interests

J.A.C. is listed as an inventor on patents and patent applications on neuromodulation targeting methods held by Massachusetts General Hospital. He is a member of the scientific advisory board of Hyka and Flow Neuroscience, and has been a paid consultant for Mifu Technologies, Neuroelectrics, and LivaNova. The other authors report no conflicts of interest.

Peer review

Peer review information

Nature Mental Health thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Reporting Summary

Supplementary Tables

Supplementary Table 1. Tabulation of atlas-based parcellations used in the analysis. Supplementary Table 2. Tabulation of Hamilton Depression Rating Scale items present in each subscale.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wade, B.S.C., Barbour, T.A., Ellard, K.K. et al. Predicting dimensional antidepressant response to repetitive transcranial magnetic stimulation using pretreatment resting-state functional connectivity. Nat. Mental Health 3, 1046–1056 (2025). https://doi.org/10.1038/s44220-025-00469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44220-025-00469-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing