Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cognitive and global morphometry trajectories as predictors of persistent distressing psychotic-like experiences in youth

Abstract

Psychotic-like experiences (PLEs) may result from genetic and environmental risk factors that contribute to progressive declines in cognition and brain morphometry, which in turn exacerbate PLEs over time. Here we used three waves of unique longitudinal Adolescent Brain Cognitive Development Study data (ages 9–13 years) to test whether changes in cognition and global morphometry metrics attenuate associations between genetic and environmental risk with persistent distressing PLEs. Multigroup univariate latent growth models examined three waves of cognitive metrics and global morphometry separately for three PLEs groups: persistent distressing PLEs (n = 356), transient distressing PLEs (n = 408) and low-level PLEs (n = 7,901). Persistent distressing PLEs showed greater decreases (that is, more negative slopes) of cognition and morphometry metrics over time compared with those in low-level PLEs groups. Analyses also provided evidence for extant theories that worsening cognition and global morphometry metrics may partially account for associations between environmental risk with persistent distressing PLEs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Associations between cognitive and global morphometry metrics with PLEs over time.
Fig. 2: Evidence for cognitive and global morphometry metrics attenuating associations between environmental risk with PLEs over time.

Similar content being viewed by others

Data availability

Data used in the preparation of this Article were obtained from the Adolescent Brain Cognitive Development (ABCD) study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children aged 9–10 years and follow them over 10 years into early adulthood. The ABCD data repository grows and changes over time. The ABCD data used in this Article are available at https://nda.nih.gov/study.html?id=2313.

Code availability

Code is available via GitHub at https://github.com/nkarcher/Genetic-and-Environmental-Influences-on-Associations-between-Cognition-and-Neural-Metrics-with-PLEs.

References

  1. Karcher, N. R. Psychotic-like experiences in childhood and early adolescence: clarifying the construct and future directions. Schizophr. Res. 246, 205–206 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Staines, L. et al. Psychotic experiences in the general population, a review; definition, risk factors, outcomes and interventions. Psychol. Med. 52, 3297–3308 (2022).

    Article  PubMed Central  Google Scholar 

  3. Fisher, H. L. et al. Specificity of childhood psychotic symptoms for predicting schizophrenia by 38 years of age: a birth cohort study. Psychol. Med. 43, 2077–2086 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Poulton, R. et al. Children’s self-reported psychotic symptoms and adult schizophreniform disorder: a 15-year longitudinal study. Arch. Gen. Psychiatry 57, 1053–1058 (2000).

    Article  PubMed  Google Scholar 

  5. Zammit, S. et al. Psychotic experiences and psychotic disorders at age 18 in relation to psychotic experiences at age 12 in a longitudinal population-based cohort study. Am. J. Psychiatry 170, 742–750 (2013).

    Article  PubMed  Google Scholar 

  6. Evermann, U., Gaser, C., Besteher, B., Langbein, K. & Nenadić, I. Cortical gyrification, psychotic-like experiences, and cognitive performance in nonclinical subjects. Schizophr. Bull. 46, 1524–1534 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Satterthwaite, T. D. et al. Structural brain abnormalities in youth with psychosis spectrum symptoms. JAMA Psychiatry 73, 515–524 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Karcher, N. R. et al. Assessment of the Prodromal Questionnaire-Brief Child Version for Measurement of Self-reported Psychoticlike Experiences in Childhood. JAMA Psychiatry 75, 853–861 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Karcher, N. R. et al. Persistent and distressing psychotic-like experiences using Adolescent Brain Cognitive DevelopmentSM study data. Mol. Psychiatry 27, 1490–1501 (2022).

    Article  PubMed  Google Scholar 

  10. Schoorl, J. et al. Grey and white matter associations of psychotic-like experiences in a general population sample (UK Biobank). Transl. Psychiatry 11, 21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Romer, A. L. & Pizzagalli, D. A. Associations between brain structural alterations, executive dysfunction, and general psychopathology in a healthy and cross-diagnostic adult patient sample. Biol. Psychiatry Glob. Open Sci. 2, 17–27 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Karcher, N. R., Merchant, J., Pine, J. & Kilciksiz, C. M. Cognitive dysfunction as a risk factor for psychosis. Curr. Top. Behav. Neurosci. 63, 173–203 (2023).

    Article  PubMed  Google Scholar 

  13. Gur, R. C. et al. Neurocognitive growth charting in psychosis spectrum youths. JAMA Psychiatry 71, 366–374 (2014).

    Article  PubMed  Google Scholar 

  14. Dickson, H. et al. Trajectories of cognitive development during adolescence among youth at-risk for schizophrenia. J. Child Psychol. Psychiatry 59, 1215–1224 (2018).

    Article  PubMed  Google Scholar 

  15. Tamnes, C. K. et al. Development of the cerebral cortex across adolescence: a multisample study of inter-related longitudinal changes in cortical volume, surface area, and thickness. J. Neurosci. 37, 3402–3412 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Thorup, A. A. E. et al. The Danish High-Risk and Resilience Study—VIA 15—a study protocol for the third clinical assessment of a cohort of 522 children born to parents diagnosed with schizophrenia or bipolar disorder and population-based controls. Front. Psychiatry 13, 809807 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Collins, M. A. et al. Accelerated cortical thinning precedes and predicts conversion to psychosis: the NAPLS3 longitudinal study of youth at clinical high-risk. Mol. Psychiatry 28, 1182–1189 (2023).

    Article  PubMed  Google Scholar 

  18. Cannon, T. D. et al. Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol. Psychiatry 77, 147–157 (2015).

    Article  PubMed  Google Scholar 

  19. Pantelis, C. et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361, 281–288 (2003).

    Article  PubMed  Google Scholar 

  20. Merritt, K., Luque Laguna, P., Irfan, A. & David, A. S. Longitudinal structural MRI findings in individuals at genetic and clinical high risk for psychosis: a systematic review. Front. Psychiatry 12, 620401 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. van Os, J., Linscott, R. J., Myin-Germeys, I., Delespaul, P. & Krabbendam, L. A systematic review and meta-analysis of the psychosis continuum: evidence for a psychosis proneness-persistence-impairment model of psychotic disorder. Psychol. Med. 39, 179–195 (2009).

    Article  PubMed  Google Scholar 

  22. Karcher, N. R. et al. Psychotic-like experiences and polygenic liability in the Adolescent Brain Cognitive Development Study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 7, 45–55 (2022).

    PubMed  Google Scholar 

  23. Karcher, N. R., Schiffman, J. & Barch, D. M. Environmental risk factors and psychotic-like experiences in children aged 9–10. J. Am. Acad. Child Adolesc. Psychiatry 60, 490–500 (2021).

    Article  PubMed  Google Scholar 

  24. Glenthøj, L. B., Hjorthøj, C., Kristensen, T. D., Davidson, C. A. & Nordentoft, M. The effect of cognitive remediation in individuals at ultra-high risk for psychosis: a systematic review. NPJ Schizophr. 3, 20 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sekar, A. et al. Schizophrenia risk from complex variation of complement component 4. Nature 530, 177–183 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shaw, P. et al. Neurodevelopmental trajectories of the human cerebral cortex. J. Neurosci. 28, 3586–3594 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fusar-Poli, P. et al. Deconstructing vulnerability for psychosis: meta-analysis of environmental risk factors for psychosis in subjects at ultra high-risk. Eur. Psychiatry 40, 65–75 (2017).

    Article  PubMed  Google Scholar 

  28. Linscott, R. J. & van Os, J. An updated and conservative systematic review and meta-analysis of epidemiological evidence on psychotic experiences in children and adults: on the pathway from proneness to persistence to dimensional expression across mental disorders. Psychol. Med. 43, 1133–1149 (2013).

    Article  PubMed  Google Scholar 

  29. Masten, A. S. & Cicchetti, D. Developmental cascades. Dev. Psychopathol. 22, 491–495 (2010).

    Article  PubMed  Google Scholar 

  30. Myin-Germeys, I. & van Os, J. Stress-reactivity in psychosis: evidence for an affective pathway to psychosis. Clin. Psychol. Rev. 27, 409–424 (2007).

    Article  PubMed  Google Scholar 

  31. Meyer, M. N. et al. Wrestling with social and behavioral genomics: risks, potential benefits, and ethical responsibility. Hastings Cent. Rep. 53, S2–S49 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Karcher, N. R. & Barch, D. M. The ABCD study: understanding the development of risk for mental and physical health outcomes. Neuropsychopharmacology 46, 131–142 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Barch, D. M. et al. Demographic and mental health assessments in the adolescent brain and cognitive development study: updates and age-related trajectories. Dev. Cogn. Neurosci. 52, 101031 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Garavan, H. et al. Recruiting the ABCD sample: design considerations and procedures. Dev. Cogn. Neurosci. 32, 16–22 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Karcher, N. R., Modi, H., Kochunov, P., Gao, S. & Barch, D. M. Regional vulnerability indices in youth with persistent and distressing psychoticlike experiences. JAMA Netw. Open 6, e2343081 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chapman, L. J., Chapman, J. P., Kwapil, T. R., Eckblad, M. & Zinser, M. C. Putatively psychosis-prone subjects 10 years later. J. Abnorm. Psychol. 103, 171–183 (1994).

    Article  PubMed  Google Scholar 

  38. Weintraub, S. et al. Cognition assessment using the NIH Toolbox. Neurology 80, S54–S64 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage 9, 195–207 (1999).

    Article  PubMed  Google Scholar 

  40. Chen, C. H. et al. Hierarchical genetic organization of human cortical surface area. Science 335, 1634–1636 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl Acad. Sci. USA 97, 11050–11055 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hagler, D. J. Jr et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage 202, 116091 (2019).

    Article  PubMed  Google Scholar 

  43. Beer, J. C. et al. Longitudinal ComBat: a method for harmonizing longitudinal multi-scanner imaging data. NeuroImage 220, 117129 (2020).

    Article  PubMed  Google Scholar 

  44. Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bigdeli, T. B. et al. Contributions of common genetic variants to risk of schizophrenia among individuals of African and Latino ancestry. Mol. Psychiatry 25, 2455–2467 (2020).

    Article  PubMed  Google Scholar 

  46. Ge, T., Chen, C. Y., Ni, Y., Feng, Y. C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rosenberg, J. M., Beymer, P. N., Anderson, D. J., van Lissa, C. J. & Schmidt, J. A. tidyLPA: an R package to easily carry out latent profile analysis (LPA) using open-source or commercial software. J. Open Source Softw. 3, 978 (2019).

    Article  Google Scholar 

  48. Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R. J. 8, 289–317 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chakrabarti, A. & Ghosh, J. K. AIC, BIC and recent advances in model selection. Philos. Stat. 7, 583–605 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

Data used in the preparation of this Article were obtained from the Adolescent Brain Cognitive Development (ABCD) study (https://abcdstudy.org), held in the NIMH Data Archive (NDA). This is a multisite, longitudinal study designed to recruit more than 10,000 children aged 9–10 years and follow them over 10 years into early adulthood. The ABCD study is supported by the National Institutes of Health (NIH) and additional federal partners under award numbers U01DA041048, U01DA050989, U01DA051016, U01DA041022, U01DA051018, U01DA051037, U01DA050987, U01DA041174, U01DA041106, U01DA041117, U01DA041028, U01DA041134, U01DA050988, U01DA051039, U01DA041156, U01DA041025, U01DA041120, U01DA051038, U01DA041148, U01DA041093, U01DA041089, U24DA041123 and U24DA041147. A full list of supporters is available at https://abcdstudy.org/federal-partners.html. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/principal-investigators.html. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This Article reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators. The ABCD data repository grows and changes over time. This Article is the result of funding in whole or in part by the NIH. It is subject to the NIH Public Access Policy. Through acceptance of this federal funding, NIH has been given a right to make this Article publicly available in PubMed Central upon the Official Date of Publication, as defined by NIH. This work was supported by National Institutes of Health grants U01 DA041120 (D.M.B.), K23 MH121792 (N.R.K.), R01-MH139880 (N.R.K.), R01-DA054869 (A.A.), K01-DA051759 (E.C.J.), R01-DA054750 (A.A. and R.B.) and F31-AA029934 (S.E.P.).

Author information

Authors and Affiliations

Authors

Contributions

N.R.K. performed statistical analyses and prepared figures and tables. N.R.K., C.M.K. and D.M.B. drafted the paper. N.R.K., F.D. and D.M.B. designed the study. S.E.P. and E.C.J. computed PGS and performed quality assurance checks of genetic data. D.M.B. obtained funding. All authors, including N.R.K., F.D., S.E.P., E.C.J., C.M.K., H.O., J.S., A.A., R.B., J.J.J. and D.M.B., revised the paper and provided critical intellectual contributions.

Corresponding author

Correspondence to Nicole R. Karcher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Pedro Mario Pan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Results, Tables 1–12 and Figs. 1–5.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karcher, N.R., Dong, F., Paul, S.E. et al. Cognitive and global morphometry trajectories as predictors of persistent distressing psychotic-like experiences in youth. Nat. Mental Health 3, 1012–1019 (2025). https://doi.org/10.1038/s44220-025-00481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44220-025-00481-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing