Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Merits, limitations and innovation priorities for heterogeneous catalytic platforms to destroy PFAS

Abstract

Heterogeneous catalysis has the potential to efficiently and sustainably mineralize per- and polyfluoroalkyl substances (PFAS) with low material and energy inputs. However, the implementation of catalytic technologies is hindered by the large variety of PFAS compounds requiring treatment, a limited understanding of catalytic PFAS-degradation mechanisms and pathways, poor catalytic process selectivity towards PFAS over other water constituents, and a lack of appropriate methods to compare catalytic treatment options. Here we recommend strategies to overcome these challenges, including pretreating complex PFAS mixtures to simplify the design space of catalytic treatments, engineering catalytic systems and catalyst surfaces for selectivity, and developing holistic figures of merit that consider defluorination efficiencies and life-cycle costs to push forward the research, development and deployment of catalytic technologies for PFAS mineralization. Research needs to realize these designs and include a better understanding of the reaction mechanisms, catalyst surface engineering and treatment process design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed approach to pretreat complex PFAS mixtures to simplify catalyst design for effective treatment.
Fig. 2: Potential degradation steps and associated catalytic processes for PFAS mineralization.
Fig. 3: Strategies to improve catalyst selectivity for PFAS.
Fig. 4: Roadmap towards the holistic assessment of catalysis approaches for PFAS treatments.
Fig. 5: Range of reported defluorination rate constants and calculated defluorination energy efficiency, EEOD.

Similar content being viewed by others

References

  1. Uhlmann, D. M. PFAS Enforcement Discretion and Settlement Policy Under CERCLA (US EPA, 2024).

  2. Per- and Polyfluoroalkyl Substances (PFAS) (US EPA, 2021); https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas

  3. Wang, X. et al. Contamination of per- and polyfluoroalkyl substances in the water source from a typical agricultural area in North China. Front. Environ. Sci. 10.3389/fenvs.2022.1071134 (2023).

  4. Directive (EU) 2020/2184 of the European Parliament and of the Council (European Council, 2020); https://eur-lex.europa.eu/eli/dir/2020/2184/oj

  5. Boyer, T. H. et al. Life cycle environmental impacts of regeneration options for anion exchange resin remediation of PFAS impacted water. Water Res. 207, 117798 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Ellis, A. C., Boyer, T. H., Fang, Y., Liu, C. J. & Strathmann, T. J. Life cycle assessment and life cycle cost analysis of anion exchange and granular activated carbon systems for remediation of groundwater contaminated by per- and polyfluoroalkyl substances (PFASs). Water Res. 243, 120324 (2023).

    Article  CAS  PubMed  Google Scholar 

  7. Longendyke, G. K., Katel, S. & Wang, Y. PFAS fate and destruction mechanisms during thermal treatment: a comprehensive review. Environ. Sci. Process. Impacts 24, 196–208 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, J. et al. Critical review of thermal decomposition of per- and polyfluoroalkyl substances: mechanisms and implications for thermal treatment processes. Environ. Sci. Technol. 56, 5355–5370 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Tow, E. W. et al. Managing and treating per- and polyfluoroalkyl substances (PFAS) in membrane concentrates. AWWA Water Sci. 3, e1233 (2021).

    Article  CAS  Google Scholar 

  10. Fennell, B. D., Mezyk, S. P. & McKay, G. Critical review of UV-advanced reduction processes for the treatment of chemical contaminants in water. ACS Environ. Au 2, 178–205 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cui, J., Gao, P. & Deng, Y. Destruction of per- and polyfluoroalkyl substances (PFAS) with advanced reduction processes (ARPs): a critical review. Environ. Sci. Technol. 54, 3752–3766 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Z. et al. Challenging the contamination of per- and polyfluoroalkyl substances in water: advanced oxidation or reduction? Environ. Funct. Mater. 1, 325–337 (2022).

    Google Scholar 

  13. Barzen-Hanson, K. A. et al. Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ. Sci. Technol. 51, 2047–2057 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Shojaei, M., Kumar, N. & Guelfo, J. L. An integrated approach for determination of total per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Technol. 56, 14517–14527 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Xiao, F., Jin, B., Golovko, S. A., Golovko, M. Y. & Xing, B. Sorption and desorption mechanisms of cationic and zwitterionic per- and polyfluoroalkyl substances in natural soils: thermodynamics and hysteresis. Environ. Sci. Technol. 53, 11818–11827 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Lenka, S. P., Kah, M. & Padhye, L. P. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water Res. 199, 117187 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Thompson, K. A. et al. Poly- and perfluoroalkyl substances in municipal wastewater treatment plants in the United States: seasonal patterns and meta-analysis of long-term trends and average concentrations. ACS ES&T Water 2, 690–700 (2022).

    Article  CAS  Google Scholar 

  18. D’Ambro, E. L. et al. Characterizing the air emissions, transport, and deposition of per- and polyfluoroalkyl substances from a fluoropolymer manufacturing facility. Environ. Sci. Technol. 55, 862–870 (2021).

    Article  PubMed  Google Scholar 

  19. Li, R. & MacDonald Gibson, J. Predicting the occurrence of short-chain PFAS in groundwater using machine-learned Bayesian networks. Front. Environ. Sci. 10.3389/fenvs.2022.958784 (2022).

  20. Shimizu, M. S. et al. Atmospheric deposition and annual flux of legacy perfluoroalkyl substances and replacement perfluoroalkyl ether carboxylic acids in Wilmington, NC, USA. Environ. Sci. Technol. Lett. 8, 366–372 (2021).

    Article  CAS  Google Scholar 

  21. Sun, M. et al. Legacy and emerging perfluoroalkyl substances are important drinking water contaminants in the Cape Fear river watershed of North Carolina. Environ. Sci. Technol. Lett. 3, 415–419 (2016).

    Article  CAS  Google Scholar 

  22. Smith, S. J. et al. The need to include a fluorine mass balance in the development of effective technologies for PFAS destruction. Environ. Sci. Technol. 58, 2587–2590 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Anumol, T., Dagnino, S., Vandervort, D. R. & Snyder, S. A. Transformation of polyfluorinated compounds in natural waters by advanced oxidation processes. Chemosphere 144, 1780–1787 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Houtz, E. F. & Sedlak, D. L. Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff. Environ. Sci. Technol. 46, 9342–9349 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Ersan, M. S., Wang, B., Wong, M. S. & Westerhoff, P. Advanced oxidation processes may transform unknown PFAS in groundwater into known products. Chemosphere 349, 140865 (2024).

    Article  CAS  PubMed  Google Scholar 

  26. Cook, E. K. et al. Biological and chemical transformation of the six-carbon polyfluoroalkyl substance N-dimethyl ammonio propyl perfluorohexane sulfonamide (AmPr-FHxSA). Environ. Sci. Technol. 56, 15478–15488 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Houtz, E. F., Higgins, C. P., Field, J. A. & Sedlak, D. L. Persistence of perfluoroalkyl acid precursors in AFFF-impacted groundwater and soil. Environ. Sci. Technol. 47, 8187–8195 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. LaFond, J. A., Hatzinger, P. B., Guelfo, J. L., Millerick, K. & Andrew Jackson, W. Bacterial transformation of per- and poly-fluoroalkyl substances: a review for the field of bioremediation. Environ. Sci. Adv. 2, 1019–1041 (2023).

    Article  CAS  Google Scholar 

  29. Jin, B. et al. Aerobic biotransformation and defluorination of fluoroalkylether substances (ether PFAS): substrate specificity, pathways and applications. Environ. Sci. Technol. Lett. 10, 755–761 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, J. & Mejia Avendaño, S. Microbial degradation of polyfluoroalkyl chemicals in the environment: a review. Environ. Int. 61, 98–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Banayan Esfahani, E., Asadi Zeidabadi, F. & Mohseni, M. Vacuum-UV radiation capable of catalyst-free decomposition of 6:2 FTSA: the transformation mechanism and impacts of the water matrix. ACS ES&T Water 3, 3614–3625 (2023).

    Article  CAS  Google Scholar 

  32. Chen, Z. et al. Enhanced UV photoreductive destruction of perfluorooctanoic acid in the presence of alcohols: synergistic mechanism of hydroxyl radical quenching and solvent effect. Appl. Catal. B 316, 121652 (2022).

    Article  CAS  Google Scholar 

  33. Plumlee, M. H., McNeill, K. & Reinhard, M. Indirect photolysis of perfluorochemicals: hydroxyl radical-initiated oxidation of N-ethyl perfluorooctane sulfonamido acetate (N-EtFOSAA) and other perfluoroalkanesulfonamides. Environ. Sci. Technol. 43, 3662–3668 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Xin, X., Kim, J., Ashley, D. C. & Huang, C.-H. Degradation and defluorination of per- and polyfluoroalkyl substances by direct photolysis at 222 nm. ACS ES&T Water 3, 2776–2785 (2023).

    Article  CAS  Google Scholar 

  35. Guan, Y. et al. Near-complete destruction of PFAS in aqueous film-forming foam by integrated photo-electrochemical processes. Nat. Water 2, 443–452 (2024).

    Article  CAS  Google Scholar 

  36. Bentel, M. J. et al. Degradation of perfluoroalkyl ether carboxylic acids with hydrated electrons: structure–reactivity relationships and environmental implications. Environ. Sci. Technol. 54, 2489–2499 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Fennell, B. D., Chavez, S. & McKay, G. Destruction of per- and polyfluoroalkyl substances in reverse osmosis concentrate using UV-advanced reduction processes. ACS ES&T Water 4, 4818–4827 (2024).

    Article  CAS  Google Scholar 

  38. Liu, Z. et al. Oxidative transformation of nafion-related fluorinated ether sulfonates: comparison with legacy PFAS structures and opportunities of acidic persulfate digestion for PFAS precursor analysis. Environ. Sci. Technol. 58, 6415–6424 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, C., Hopkins, Z. R., McCord, J., Strynar, M. J. & Knappe, D. R. U. Fate of per- and polyfluoroalkyl ether acids in the total oxidizable precursor assay and implications for the analysis of impacted water. Environ. Sci. Technol. Lett. 6, 662–668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ateia, M., Chiang, D., Cashman, M. & Acheson, C. Total Oxidizable Precursor (TOP) assay—best practices, capabilities and limitations for PFAS site investigation and remediation. Environ. Sci. Technol. Lett. 10, 292–301 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Minakata, D., Li, K., Westerhoff, P. & Crittenden, J. Development of a group contribution method to predict aqueous phase hydroxyl radical (HO) reaction rate constants. Environ. Sci. Technol. 43, 6220–6227 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Minakata, D., Kamath, D. & Maetzold, S. Mechanistic insight into the reactivity of chlorine-derived radicals in the aqueous-phase UV-chlorine advanced oxidation process: quantum mechanical calculations. Environ. Sci. Technol. 51, 6918–6926 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Minakata, D. & Crittenden, J. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation. Environ. Sci. Technol. 45, 3479–3486 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Lee, J., von Gunten, U. & Kim, J.-H. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 54, 3064–3081 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Radjenovic, J., Duinslaeger, N., Avval, S. S. & Chaplin, B. P. Facing the challenge of poly- and perfluoroalkyl substances in water: is electrochemical oxidation the answer? Environ. Sci. Technol. 54, 14815–14829 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, C., Tang, T. & Knappe, D. R. U. Oxidation of per- and polyfluoroalkyl ether acids and other per- and polyfluoroalkyl substances by sulfate and hydroxyl radicals: kinetic insights from experiments and models. Environ. Sci. Technol. 57, 18970–18980 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, Z. et al. Near-quantitative defluorination of perfluorinated and fluorotelomer carboxylates and sulfonates with integrated oxidation and reduction. Environ. Sci. Technol. 55, 7052–7062 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Qanbarzadeh, M. et al. An ultraviolet/boron nitride photocatalytic process efficiently degrades poly-/perfluoroalkyl substances in complex water matrices. Environ. Sci. Technol. Lett. 10, 705–710 (2023).

    Article  CAS  Google Scholar 

  49. Bentel, M. J. et al. Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: structural dependence and implications to PFAS remediation and management. Environ. Sci. Technol. 53, 3718–3728 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Fang, B. et al. Stability and biotransformation of 6:2 fluorotelomer sulfonic acid, sulfonamide amine oxide and sulfonamide alkylbetaine in aerobic aludge. Environ. Sci. Technol. 58, 2446–2457 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Le, T. X. H., Haflich, H., Shah, A. D. & Chaplin, B. P. Energy-efficient electrochemical oxidation of perfluoroalkyl substances using a Ti4O7 reactive electrochemical membrane anode. Environ. Sci. Technol. Lett. 6, 504–510 (2019).

    Article  CAS  Google Scholar 

  52. Yin, S. et al. Trap-n-zap: electrocatalytic degradation of perfluorooctanoic acid (PFOA) with UiO-66 modified boron nitride electrodes at environmentally relevant concentrations. Appl. Catal. B Environ. Energy 355, 124136 (2024).

    Article  CAS  Google Scholar 

  53. Chen, Y. et al. Mechanistic insight into the photo-oxidation of perfluorocarboxylic acid over boron nitride. Environ. Sci. Technol. 56, 8942–8952 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Long, M. et al. Adsorption and reductive defluorination of perfluorooctanoic acid over palladium nanoparticles. Environ. Sci. Technol. 55, 14836–14843 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Long, M., Zheng, C.-W., Roldan, M. A., Zhou, C. & Rittmann, B. E. Co-removal of perfluorooctanoic acid and nitrate from water by coupling Pd catalysis with enzymatic biotransformation. Environ. Sci. Technol. 58, 11514–11524 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Long, M. et al. Hydrodefluorination of perfluorooctanoic acid in the H2-based membrane catalyst-film reactor with platinum group metal nanoparticles: pathways and optimal conditions. Environ. Sci. Technol. 55, 16699–16707 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Wu, B. et al. Rapid destruction and defluorination of perfluorooctanesulfonate by alkaline hydrothermal reaction. Environ. Sci. Technol. Lett. 6, 630–636 (2019).

    Article  CAS  Google Scholar 

  58. Hao, S., Choi, Y. J., Deeb, R. A., Strathmann, T. J. & Higgins, C. P. Application of hydrothermal alkaline treatment for destruction of per- and polyfluoroalkyl substances in contaminated groundwater and soil. Environ. Sci. Technol. 56, 6647–6657 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Yu, Y. et al. Microbial cleavage of C-F bonds in two C6 per- and polyfluorinated compounds via reductive defluorination. Environ. Sci. Technol. 54, 14393–14402 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Che, S. et al. Structure-specific aerobic defluorination of short-chain fluorinated carboxylic acids by activated sludge communities. Environ. Sci. Technol. Lett. 8, 668–674 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, Z. & Ma, Y. The path to complete defluorination of PFAS. Nat. Water 1, 313–314 (2023).

    Article  CAS  Google Scholar 

  62. Biswas, S. & Wong, B. M. Beyond conventional density functional theory: advanced quantum dynamical methods for understanding degradation of per- and polyfluoroalkyl substances. ACS ES&T Eng. 4, 96–104 (2024).

    Article  CAS  Google Scholar 

  63. Zhang, Y., Moores, A., Liu, J. & Ghoshal, S. New insights into the degradation mechanism of perfluorooctanoic acid by persulfate from density functional theory and experimental data. Environ. Sci. Technol. 53, 8672–8681 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Raza, A. et al. A machine learning approach for predicting defluorination of per- and polyfluoroalkyl substances (PFAS) for their efficient treatment and removal. Environ. Sci. Technol. Lett. 6, 624–629 (2019).

    Article  CAS  Google Scholar 

  65. Awfa, D., Ateia, M., Mendoza, D. & Yoshimura, C. Application of quantitative structure-property relationship predictive models to water treatment: a critical review. ACS ES&T Water 1, 498–517 (2021).

    Article  CAS  Google Scholar 

  66. Minakata, D. & von Gunten, U. Predicting transformation products during aqueous oxidation processes: current state and outlook. Environ. Sci. Technol. 57, 18410–18419 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang, K., Zhong, S. & Zhang, H. Predicting aqueous adsorption of organic compounds onto biochars, carbon nanotubes, granular activated carbons and resins with machine learning. Environ. Sci. Technol. 54, 7008–7018 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, T. et al. In situ remediation of subsurface contamination: opportunities and challenges for nanotechnology and advanced materials. Environ. Sci. Nano 6, 1283–1302 (2019).

    Article  CAS  Google Scholar 

  69. Arana Juve, J.-M. et al. Size-selective trapping and photocatalytic degradation of PFOA in Fe-modified zeolite frameworks. Appl. Catal. B Environ. Energy 349, 123885 (2024).

    Article  CAS  Google Scholar 

  70. Van den Bergh, M. et al. Highly selective removal of perfluorinated contaminants by adsorption on all-silica zeolite beta. Angew. Chem. Int. Ed. 59, 14086–14090 (2020).

    Article  Google Scholar 

  71. Chen, Z. et al. Amine-functionalized A-center sphalerite for selective and efficient destruction of perfluorooctanoic acid. Environ. Sci. Technol. 57, 10438–10447 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Fu, H. et al. Mechanism for selective binding of aromatic compounds on oxygen-rich graphene nanosheets based on molecule size/polarity matching. Sci. Adv. 8, eabn4650 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bouteh, E., Bentel, M. J. & Cates, E. L. Semiconductor-hydrophobic material interfaces as a new active site paradigm for photocatalytic degradation of perfluorocarboxylic acids. J. Hazard. Mater. 453, 131437 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Lee, C.-G. et al. Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environ. Sci. Technol. 52, 4285–4293 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, B. et al. Surface hydrophobicity of boron nitride promotes PFOA photocatalytic degradation. Chem. Eng. J. 483, 149134 (2024).

    Article  CAS  Google Scholar 

  76. Wang, Y. et al. Molecularly imprinted MOFs-driven carbon nanofiber for sensitive electrochemical detection and targeted electro-Fenton degradation of perfluorooctanoic acid. Sep. Purif. Technol. 310, 123257 (2023).

    Article  CAS  Google Scholar 

  77. Li, F. et al. Biomimetic degradability of linear perfluorooctanesulfonate (L-PFOS): degradation products and pathways. Chemosphere 259, 127502 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Marciesky, M., Aga, D. S., Bradley, I. M., Aich, N. & Ng, C. Mechanisms and opportunities for rational in silico design of enzymes to degrade per- and polyfluoroalkyl substances (PFAS). J. Chem. Inf. Model. 63, 7299–7319 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Park, S., de Perre, C. & Lee, L. S. Alternate reductants with VB12 to transform C8 and C6 perfluoroalkyl sulfonates: limitations and insights into isomer-specific transformation rates, products and pathways. Environ. Sci. Technol. 51, 13869–13877 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Yu, Y. et al. Microbial defluorination of unsaturated per- and polyfluorinated carboxylic acids under anaerobic and aerobic conditions: a structure specificity study. Environ. Sci. Technol. 56, 4894–4904 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. McDonough, C. A., Guelfo, J. L. & Higgins, C. P. Measuring total PFASs in water: the tradeoff between selectivity and inclusivity. Curr. Opin. Environ. Sci. Health 7, 13–18 (2019).

    Article  PubMed  Google Scholar 

  82. Liu, Y., D’Agostino, L. A., Qu, G., Jiang, G. & Martin, J. W. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. Trends Anal. Chem. 121, 115420 (2019).

    Article  CAS  Google Scholar 

  83. Bowers, B. B. et al. Nontarget analysis and fluorine atom balances of transformation products from UV/sulfite degradation of perfluoroalkyl contaminants. Environ. Sci. Process. Impacts 25, 472–483 (2023).

    Article  CAS  PubMed  Google Scholar 

  84. Tenorio, R., Maizel, A. C., Schaefer, C. E., Higgins, C. P. & Strathmann, T. J. Application of high-resolution mass spectrometry to evaluate UV-sulfite-induced transformations of per- and polyfluoroalkyl substances (PFASs) in aqueous film-forming foam (AFFF). Environ. Sci. Technol. 56, 14774–14787 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Lauria, M. Z. et al. Closing the organofluorine mass balance in marine mammals using suspect screening and machine learning-based quantification. Environ. Sci. Technol. 58, 2458–2467 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Charbonnet, J. A. et al. Environmental source tracking of per- and polyfluoroalkyl substances within a forensic context: current and future techniques. Environ. Sci. Technol. 55, 7237–7245 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Joseph, N. T. et al. Target and suspect screening integrated with machine learning to discover per- and polyfluoroalkyl substance source fingerprints. Environ. Sci. Technol. 57, 14351–14362 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Horst, J., McDonough, J., Ross, I. & Houtz, E. Understanding and managing the potential by-products of PFAS destruction. Groundwater Monit. Rem. 40, 17–27 (2020).

    Article  Google Scholar 

  89. Bolton, J. R., Bircher, K. G., Tumas, W. & Tolman, C. A. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report). Pure Appl. Chem. 73, 627–637 (2001).

    Article  CAS  Google Scholar 

  90. Miklos, D. B. et al. Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review. Water Res. 139, 118–131 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Sun, Z., Zhang, C., Chen, P., Zhou, Q. & Hoffmann, M. R. Impact of humic acid on the photoreductive degradation of perfluorooctane sulfonate (PFOS) by UV/iodide process. Water Res. 127, 50–58 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Tushar, M. M. R., Pushan, Z. A., Aich, N. & Rowles, L. S. Balancing sustainability goals and treatment efficacy for PFAS removal from water. npj Clean Water 7, 130 (2024).

    Article  CAS  Google Scholar 

  93. Glass, S. et al. Supporting information: Merits, limitations, and innovation priorities for heterogeneous catalytic platforms to destroy PFAS. Zenodo https://zenodo.org/records/14956697 (2025).

  94. Liu, S. et al. Promotive effects of chloride and sulfate on the near-complete destruction of perfluorocarboxylates (PFCAs) in brine via hydrogen-tuned 185-nm UV photolysis: mechanisms and kinetics. Environ. Sci. Technol. 58, 10347–10356 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, Z. et al. Accelerated degradation of perfluorosulfonates and perfluorocarboxylates by UV/sulfite + iodide: reaction mechanisms and system efficiencies. Environ. Sci. Technol. 56, 3699–3709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zarzo, D. & Prats, D. Desalination and energy consumption. What can we expect in the near future? Desalination 427, 1–9 (2018).

    Article  CAS  Google Scholar 

  97. Liu, C. J. et al. Pilot-scale field demonstration of a hybrid nanofiltration and UV-sulfite treatment train for groundwater contaminated by per- and polyfluoroalkyl substances (PFASs). Water Res. 205, 117677 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Rosenfeldt, E. J., Linden, K. G., Canonica, S. & von Gunten, U. Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. Water Res. 40, 3695–3704 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Qu, X., Alvarez, P. J. J. & Li, Q. Applications of nanotechnology in water and wastewater treatment. Water Res. 47, 3931–3946 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Appleman, T. D., Dickenson, E. R. V., Bellona, C. & Higgins, C. P. Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids. J. Hazard. Mater. 260, 740–746 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (EEC-1449500). G.V.L. and H.A.S.-C. acknowledge funding support from the NIEHS (R01ES032708) for their contributions. H.A.S.-C. acknowledges support from the National Science Foundation Graduate Research Fellowship (DGE2140739) and a Dean’s Fellowship from the College of Engineering at Carnegie Mellon University. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. W.C. and T.Z. acknowledge support from the National Natural Science Foundation of China (22125603 and 22020102004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory V. Lowry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Timothy Strathmann and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glass, S., Santiago-Cruz, H.A., Chen, W. et al. Merits, limitations and innovation priorities for heterogeneous catalytic platforms to destroy PFAS. Nat Water 3, 644–654 (2025). https://doi.org/10.1038/s44221-025-00433-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00433-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing