Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The threats of micro- and nanoplastics to aquatic ecosystems and water health

Abstract

Micro(nano)plastics (MNPs) are pervasive in global water sources, posing indirect threats to water quality by disrupting biogeochemical cycles, facilitating pathogen dispersion and interacting with emerging contaminants. Here we delve into the intricate ways in which MNPs affect nutrient sequestration, essential element adsorption and microbial functions, consequently impacting the carbon, nitrogen, phosphorus and sulfur cycles in aquatic environments. MNPs act as carriers for pathogens, potentially exacerbating transmission risks and endangering both aquatic ecosystems and human health. Moreover, their synergy with emerging contaminants amplifies contaminant persistence and bioavailability, warranting a deeper understanding of these implications for water security. We outline strategies for assessing the contributions of MNPs and implementing regulatory frameworks to mitigate their indirect effects. To manage these interactions under fluctuating environmental variables, advanced water treatment, modular control strategies, and early warning are essential. A holistic approach involving research, innovation and policy is imperative to protect water quality from MNPs-related impacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sources, transport and potential annual fluxes of MNPs in water resources.
Fig. 2: A brief history from the direct to more subtle indirect effects of MNPs on water security.
Fig. 3: Impact of MNPs on biogenic elements biotransformation in water.
Fig. 4: Impact of MNPs on the colonization and migration of pathogens in water.
Fig. 5: MNPs as vectors for emerging contaminants in water.
Fig. 6: Comprehensive interference and regulation of MNPs’ indirect effects on water quality.

Similar content being viewed by others

References

  1. Brahney, J. et al. Constraining the atmospheric limb of the plastic cycle. Proc. Natl Acad. Sci. USA 118, e2020719118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Allen, S. et al. Examination of the ocean as a source for atmospheric microplastics. PLoS ONE 15, e0232746 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fuller, S. & Gautam, A. A procedure for measuring microplastics using pressurized fluid extraction. Environ. Sci. Technol. 50, 5774–5780 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Lebreton, L. C. M. et al. River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li, J., Liu, H. & Paul Chen, J. Microplastics in freshwater systems: a review on occurrence, environmental effects and methods for microplastics detection. Water Res. 137, 362–374 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Zhou, Y. et al. Microplastics discharged from urban drainage system: prominent contribution of sewer overflow pollution. Water Res. 236, 119976 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, Q. et al. Distribution and sedimentation of microplastics in Taihu Lake. Sci. Total Environ. 795, 148745 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Niu, L. et al. Occurrence, degradation pathways and potential synergistic degradation mechanism of microplastics in surface water: a review. Curr. Pollut. Rep. 9, 312–326 (2023).

    Article  Google Scholar 

  10. Collard, F., Gasperi, J., Gabrielsen, G. W. & Tassin, B. Plastic particle ingestion by wild freshwater fish: a critical review. Environ. Sci. Technol. 53, 12974–12988 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Lu, Y. et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environ. Sci. Technol. 50, 4054–4060 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. McIlwraith, H. K. et al. Evidence of microplastic translocation in wild-caught fish and implications for microplastic accumulation dynamics in food webs. Environ. Sci. Technol. 55, 12372–12382 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Bowley, J., Baker-Austin, C., Porter, A., Hartnell, R. & Lewis, C. Oceanic hitchhikers–assessing pathogen risks from marine microplastic. Trends Microbiol. 29, 107–116 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Law, K. L. & Thompson, R. C. Microplastics in the seas. Science 345, 144–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Romera-Castillo, C., Pinto, M., Langer, T. M., Álvarez-Salgado, X. A. & Herndl, G. J. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat. Commun. 9, 1430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Amaneesh, C. et al. Gross negligence: impacts of microplastics and plastic leachates on phytoplankton community and ecosystem dynamics. Environ. Sci. Technol. 57, 5–24 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, X. et al. Microplastics and chemical leachates from plastic pipes are associated with increased virulence and antimicrobial resistance potential of drinking water microbial communities. J. Hazard. Mater. 463, 132900 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Fernández-Juárez, V. et al. ‘The good, the bad and the double-sword’ effects of microplastics and their organic additives in marine bacteria. Front. Microbiol. 11, 581118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gigault, J. et al. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 16, 501–507 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, X., Yu, X., Zhang, L., Zhao, W. & Sui, Q. Organic pollutants adsorbed on microplastics: potential indicators for source appointment of microplastics. J. Hazard. Mater. 465, 133225 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Cortés-Arriagada, D., Miranda-Rojas, S., Camarada, M. B., Ortega, D. E. & Alarcón-Palacio, V. B. The interaction mechanism of polystyrene microplastics with pharmaceuticals and personal care products. Sci. Total Environ. 861, 160632 (2023).

    Article  PubMed  Google Scholar 

  22. Yang, X. et al. Plastic particles affect N2O release via altering core microbial metabolisms in constructed wetlands. Water Res. 255, 121506 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, X. et al. C-N-S synergy in a pilot-scale mainstream anammox fluidized-bed membrane bioreactor for treating chemically enhanced primary treatment saline sewage. Water Res. 229, 119475 (2023).

    Article  CAS  Google Scholar 

  24. Sun, S., Hu, X., Kang, W. & Yao, M. Combined effects of microplastics and warming enhance algal carbon and nitrogen storage. Water Res. 233, 119815 (2023). This study provides insights into how microplastic pollution and warming can jointly reshape phytoplankton metabolism and affect biogeochemical cycling in aquatic ecosystems.

    Article  CAS  PubMed  Google Scholar 

  25. Yu, H. et al. Polyethylene microplastics interfere with the nutrient cycle in water-plant-sediment systems. Water Res. 214, 118191 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Hitchcock, J. N. Microplastics can alter phytoplankton community composition. Sci. Total Environ. 819, 153074 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, X., Li, J. & Pan, X. How micro-/nano-plastics influence the horizontal transfer of antibiotic resistance genes—a review. Sci. Total Environ. 944, 173881 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Wu, L., Dong, J., Shen, Z. & Zhou, Y. Microplastics as vectors for antibiotic resistance: role of pathogens, heavy metals, and pharmaceuticals and personal care products. J. Water Process. Eng. 67, 106124 (2024).

    Article  Google Scholar 

  29. Hu, X., Waigi, M. G., Yang, B. & Gao, Y. Impact of plastic particles on the horizontal transfer of antibiotic resistance genes to bacterium: dependent on particle sizes and antibiotic resistance gene vector replication capacities. Environ. Sci. Technol. 56, 14948–14959 (2022). This study highlights the complex and size-dependent role of plastic particles in facilitating or hindering ARG transfer.

    Article  CAS  PubMed  Google Scholar 

  30. Zhi, L., Li, Z., Su, Z. & Wang, J. Immunotoxicity of microplastics: carrying pathogens and destroying the immune system. TrAC Trends Anal. Chem. 177, 117817 (2024).

    Article  CAS  Google Scholar 

  31. Zhong, H. et al. The hidden risk of microplastic-associated pathogens in aquatic environments. Eco Environ. Health 2, 142–151 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu, S. et al. Genome-wide molecular adaptation in algal primary productivity induced by prolonged exposure to environmentally realistic concentration of nanoplastics. Environ. Sci. Technol. 18, 29820–29831 (2024).

    CAS  Google Scholar 

  33. Loiseau, C. & Sorci, G. Can microplastics facilitate the emergence of infectious diseases? Sci. Total Environ. 823, 153694 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, L. et al. Bacterial community colonization on tire microplastics in typical urban water environments and associated impacting factors. Environ. Pollut. 265, 114922 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Rochman, C. M. Microplastics research—from sink to source. Science 360, 28–29 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Nava, V. et al. Plastic debris in lakes and reservoirs. Nature 619, 317–322 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Vethaak, A. D. & Legler, J. Microplastics and human health. Science 371, 672–674 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Mitrano, D. M., Wick, P. & Nowack, B. Placing nanoplastics in the context of global plastic pollution. Nat. Nanotechnol. 16, 491–500 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Su, X. et al. Estuarine plastisphere as an overlooked source of N2O production. Nat. Commun. 13, 3884 (2022). This study pinpoints plastisphere as a N2O source, and provides insights into roles of the new biotope in biogeochemical cycling in the Anthropocene.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gong, M., Yang, G., Zhuang, L. & Zeng, E. Y. Microbial biofilm formation and community structure on low-density polyethylene microparticles in lake water microcosms. Environ. Pollut. 252, 94–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Bank, M. S., Mitrano, D. M., Rillig, M. C., Sze Ki Lin, C. & Ok, Y. S. Embrace complexity to understand microplastic pollution. Nat. Rev. Earth Environ. 3, 736–737 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou, J., Gao, L., Lin, Y., Pan, B. & Li, M. Micrometer scale polystyrene plastics of varying concentrations and particle sizes inhibit growth and upregulate microcystin-related gene expression in Microcystis aeruginosa. J. Hazard. Mater. 420, 126591 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Gall, S. C. & Thompson, R. C. The impact of debris on marine life. Mar. Pollut. Bull. 92, 170–179 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Parrella, F., Brizzolara, S., Holzner, M. & Mitrano, D. M. Impact of heteroaggregation between microplastics and algae on particle vertical transport. Nat. Water 2, 541–552 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mato, Y. et al. Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ. Sci. Technol. 35, 318–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Amaral-Zettler, L. A., Zettler, E. R. & Mincer, T. J. Ecology of the plastisphere. Nat. Rev. Microbiol. 18, 139–151 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the ‘plastisphere’: microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Xu, C., Lu, J., Shen, C., Wang, J. & Li, F. Deciphering the mechanisms shaping the plastisphere antibiotic resistome on riverine microplastics. Water Res. 225, 119192 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Miao, L. et al. Distinct microbial metabolic activities of biofilms colonizing microplastics in three freshwater ecosystems. J. Hazard. Mater. 403, 123577 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Zheng, X. et al. Toxicity mechanism of Nylon microplastics on Microcystis aeruginosa through three pathways: photosynthesis, oxidative stress and energy metabolism. J. Hazard. Mater. 426, 128094 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Kesy, K., Oberbeckmann, S., Kreikemeyer, B. & Labrenz, M. Spatial environmental heterogeneity determines young biofilm assemblages on microplastics in Baltic Sea mesocosms. Front. Microbiol. 10, 1665 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chen, Y. et al. Effects of microplastics on soil carbon pool and terrestrial plant performance. Carbon Res. 3, 37 (2024).

    Article  CAS  Google Scholar 

  53. Abbasi, S. Uncovering the intricate relationship between plant nutrients and microplastics in agroecosystems. Chemosphere 346, 140604 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Webb, H. K., Crawford, R. J., Sawabe, T. & Ivanova, E. P. Poly(ethylene terephthalate) polymer surfaces as a substrate for bacterial attachment and biofilm formation. Microbes Environ. 24, 39–42 (2009).

    Article  PubMed  Google Scholar 

  55. Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 116 (2017).

    Article  PubMed  Google Scholar 

  56. Li, Y. et al. Interactions between nano/micro plastics and suspended sediment in water: implications on aggregation and settling. Water Res. 161, 486–495 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. He, B., Duodu, G. O., Rintoul, L., Ayoko, G. A. & Goonetilleke, A. Influence of microplastics on nutrients and metal concentrations in river sediments. Environ. Pollut. 263, 114490 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, H., Huang, W., Zhang, Y., Wang, C. & Jiang, H. Unique metalloid uptake on microplastics: the interaction between boron and microplastics in aquatic environment. Sci. Total Environ. 800, 149668 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Zhao, M. et al. Adsorption of different pollutants by using microplastic with different influencing factors and mechanisms in wastewater: a review. Nanomaterials (Basel) 12, 2256 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fadare, O. O. et al. Eco-corona vs protein corona: effects of humic substances on corona formation and nanoplastic particle toxicity in Daphnia magna. Environ. Sci. Technol. 54, 8001–8009 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Kang, W., Sun, S. & Hu, X. Microplastics trigger the Matthew effect on nitrogen assimilation in marine diatoms at an environmentally relevant concentration. Water Res. 233, 119762 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Yin, M. et al. Effects of microplastics on nitrogen and phosphorus cycles and microbial communities in sediments. Environ. Pollut. 318, 120852 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Khan, T. F. & Hodson, M. E. Polyethylene microplastic can adsorb phosphate but is unlikely to limit its availability in soil. Heliyon 10, e23179 (2024).

    Article  CAS  PubMed  Google Scholar 

  64. Dai, H.-H., Gao, J.-F., Wang, Z.-Q., Zhao, Y.-F. & Zhang, D. Behavior of nitrogen, phosphorus and antibiotic resistance genes under polyvinyl chloride microplastics pressures in an aerobic granular sludge system. J. Clean. Prod. 256, 120402 (2020).

    Article  CAS  Google Scholar 

  65. Ahmad, M. et al. Microplastic-assisted removal of phosphorus and ammonium using date palm waste derived biochar. Toxics 11, 881 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Song, X. et al. New insights into changes in phosphorus profile at sediment-water interface by microplastics: role of benthic bioturbation. J. Hazard. Mater. 469, 134047 (2024). This study finds that microplastics alter phosphorus biogeochemical processes by disrupting the bioturbation activities of chironomid larvae.

    Article  CAS  PubMed  Google Scholar 

  67. Casals, E., Pfaller, T., Duschl, A., Oostingh, G. J. & Puntes, V. Time evolution of the nanoparticle protein corona. ACS Nano 4, 3623–3632 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Ali, I. et al. Eco- and bio-corona-based microplastics and nanoplastics complexes in the environment: modulations in the toxicological behavior of plastic particles and factors affecting. Process Saf. Environ. Prot. 187, 356–375 (2024).

    Article  CAS  Google Scholar 

  69. Cao, J. et al. Coronas of micro/nano plastics: a key determinant in their risk assessments. Part. Fibre Toxicol. 19, 55 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Liu, G., Jiang, R., You, J., Muir, D. C. G. & Zeng, E. Y. Microplastic impacts on microalgae growth: effects of size and humic acid. Environ. Sci. Technol. 54, 1782–1789 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Parsai, T. et al. Implication of microplastic toxicity on functioning of microalgae in aquatic system. Environ. Pollut. 308, 119626 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Lagarde, F. et al. Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type. Environ. Pollut. 215, 331–339 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Coppock, R. L. et al. Microplastics alter feeding selectivity and faecal density in the copepod, Calanus helgolandicus. Sci. Total Environ. 687, 780–789 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Wieczorek, A. M., Croot, P. L., Lombard, F., Sheahan, J. N. & Doyle, T. K. Microplastic ingestion by gelatinous zooplankton may lower efficiency of the biological pump. Environ. Sci. Technol. 53, 5387–5395 (2019).

    Article  CAS  PubMed  Google Scholar 

  75. Paluselli, A., Fauvelle, V., Galgani, F. & Sempéré, R. Phthalate release from plastic fragments and degradation in seawater. Environ. Sci. Technol. 53, 166–175 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Yang, X. et al. Nanoplastics disturb nitrogen removal in constructed wetlands: responses of microbes and macrophytes. Environ. Sci. Technol. 54, 14007–14016 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Li, Y. et al. Current advances in microplastic contamination in aquatic sediment: analytical methods, global occurrence and effects on elemental cycling. TrAC Trends Anal. Chem. 168, 117331 (2023).

    Article  CAS  Google Scholar 

  78. Liu, S. et al. Differences of microplastics and nanoplastics in urban waters: environmental behaviors, hazards and removal. Water Res. 260, 121895 (2024).

    Article  CAS  PubMed  Google Scholar 

  79. Wu, T. et al. Microplastics perturb nitrogen removal, microbial community and metabolism mechanism in biofilm system. J. Hazard. Mater. 458, 131971 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Seeley, M. E., Song, B., Passie, R. & Hale, R. C. Microplastics affect sedimentary microbial communities and nitrogen cycling. Nat. Commun. 11, 2372 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Su, X. et al. Nitrifying niche in estuaries is expanded by the plastisphere. Nat. Commun. 15, 5866 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. He, Y. et al. Insights into N2O turnovers under polyethylene terephthalate microplastics stress in mainstream biological nitrogen removal process. Water Res. 224, 119037 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Long, M. et al. Interactions between microplastics and phytoplankton aggregates: impact on their respective fates. Mar. Chem. 175, 39–46 (2015).

    Article  CAS  Google Scholar 

  84. Wang, H. et al. Coupling of sulfate reduction and dissolved organic carbon degradation accelerated by microplastics in blue carbon ecosystems. Water Res. 279, 123414 (2025). This study provides the first evidence that PLA microplastics significantly enhance the activity of microorganisms driving carbon and sulfur cycling.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, H., Quan, H., Zhou, S., Sun, L. & Lu, H. Enhanced performance and electron transfer of sulfur-mediated biological process under polyethylene terephthalate microplastics exposure. Water Res. 223, 119038 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Pinnell, L. J. & Turner, J. W. Shotgun metagenomics reveals the benthic microbial community response to plastic and bioplastic in a coastal marine environment. Front. Microbiol. 10, 1252 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rahman, I., Mujahid, A., Palombo, E. A. & Müller, M. A functional gene-array analysis of microbial communities settling on microplastics in a peat-draining environment. Mar. Pollut. Bull. 166, 112226 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, H. et al. Stable isotopic and metagenomic analyses reveal microbial-mediated effects of microplastics on sulfur cycling in coastal sediments. Environ. Sci. Technol. 57, 1167–1176 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Chen, C. et al. Effects of microplastics on denitrification and associated N2O emission in estuarine and coastal sediments: insights from interactions between sulfate reducers and denitrifiers. Water Res. 245, 120590 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Chen, X. et al. Effects of microplastic biofilms on nutrient cycling in simulated freshwater systems. Sci. Total Environ. 719, 137276 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Wang, X. et al. Recent advances on the effects of microplastics on elements cycling in the environment. Sci. Total Environ. 849, 157884 (2022).

    Article  CAS  PubMed  Google Scholar 

  92. Song, X., Zou, H., Zhang, Y., Yang, J. & Ding, J. Microplastics alter the microbiota-mediated phosphorus profiles at sediment-water interface: distinct microbial effects between sediment and plastisphere. Sci. Total Environ. 933, 173048 (2024).

    Article  CAS  PubMed  Google Scholar 

  93. Sanz-Lázaro, C., Casado-Coy, N. & Beltrán-Sanahuja, A. Biodegradable plastics can alter carbon and nitrogen cycles to a greater extent than conventional plastics in marine sediment. Sci. Total Environ. 756, 143978 (2021).

    Article  PubMed  Google Scholar 

  94. Yang, M., Zhang, B., Xin, X., Lee, K. & Chen, B. Microplastic and oil pollution in oceans: interactions and environmental impacts. Sci. Total Environ. 838, 156142 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, Y. et al. How climate change and eutrophication interact with microplastic pollution and sediment resuspension in shallow lakes: a review. Sci. Total Environ. 705, 135979 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Ma, Y. et al. A comprehensive study on the exposure of nanoplastics to constructed wetland ecological systems: macrophyte physiology and microbial enzymology, community composition and metabolic functions. Chem. Eng. J. 434, 134592 (2022).

    Article  CAS  Google Scholar 

  97. Oberbeckmann, S., Kreikemeyer, B. & Labrenz, M. Environmental factors support the formation of specific bacterial assemblages on microplastics. Front. Microbiol. 8, 2709 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Guo, X. & Wang, J. The chemical behaviors of microplastics in marine environment: a review. Mar. Pollut. Bull. 142, 1–14 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Li, R. et al. Viral metagenome reveals microbial hosts and the associated antibiotic resistome on microplastics. Nat. Water 2, 553–565 (2024). This study provides comprehensive profiles of viral communities, virus-related ARGs and their driving factors on microplastics.

    Article  CAS  Google Scholar 

  100. McCormick, A. R. et al. Microplastic in surface waters of urban rivers: concentration, sources and associated bacterial assemblages. Ecosphere 7, e01556 (2016).

    Article  Google Scholar 

  101. Bydalek, F. et al. Microplastic biofilm, associated pathogen and antimicrobial resistance dynamics through a wastewater treatment process incorporating a constructed wetland. Water Res. 235, 119936 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Zhang, Y., Lu, J., Wu, J., Wang, J. & Luo, Y. Potential risks of microplastics combined with superbugs: enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system. Ecotoxicol. Environ. Saf. 187, 109852 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Marti, E., Variatza, E. & Balcazar, J. L. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 22, 36–41 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Li, Y. et al. Engineered DNA scavenger for mitigating antibiotic resistance proliferation in wastewater treatment. Nat. Water 2, 758–769 (2024).

    Article  CAS  Google Scholar 

  105. Ramírez-Castillo, F. Y. et al. Waterborne pathogens: detection methods and challenges. Pathogens 4, 307–334 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kettner, M. T., Oberbeckmann, S., Labrenz, M. & Grossart, H.-P. The eukaryotic life on microplastics in brackish ecosystems. Front. Microbiol. 10, 538 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  107. McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J. & Kelly, J. J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 48, 11863–11871 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Casabianca, S. et al. Plastic-associated harmful microalgal assemblages in marine environment. Environ. Pollut. 244, 617–626 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Li, R., Zhu, L., Cui, L. & Zhu, Y.-G. Viral diversity and potential environmental risk in microplastic at watershed scale: evidence from metagenomic analysis of plastisphere. Environ. Int. 161, 107146 (2022).

    Article  CAS  PubMed  Google Scholar 

  110. Shruti, V. C., Kutralam-Muniasamy, G. & Perez-Guevara, F. Viruses in the era of microplastics and plastispheres: analytical methods, advances and future directions. Sci. Total Environ. 955, 177010 (2024).

    Article  CAS  PubMed  Google Scholar 

  111. Yi, X. et al. Giant viruses as reservoirs of antibiotic resistance genes. Nat. Commun. 15, 7536 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rai, P. K., Sonne, C., Brown, R. J. C., Younis, S. A. & Kim, K.-H. Adsorption of environmental contaminants on micro- and nano-scale plastic polymers and the influence of weathering processes on their adsorptive attributes. J. Hazard. Mater. 427, 127903 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Rillig, M. C. & Lehmann, A. Microplastic in terrestrial ecosystems. Science 368, 1430–1431 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lu, J., Yu, Z., Ngiam, L. & Guo, J. Microplastics as potential carriers of viruses could prolong virus survival and infectivity. Water Res. 225, 119115 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. He, L. et al. Bacteria have different effects on the transport behaviors of positively and negatively charged microplastics in porous media. J. Hazard. Mater. 415, 125550 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Thompson, J. R. et al. Diversity and dynamics of a North Atlantic coastal Vibrio community. Appl. Environ. Microbiol. 70, 4103–4110 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. He, S. et al. Microplastics influence the fate of antibiotics in freshwater environments: biofilm formation and its effect on adsorption behavior. J. Hazard. Mater. 442, 130078 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Zhang, W. et al. Physiological characteristics, geochemical properties and hydrological variables influencing pathogen migration in subsurface system: what we know or not? Geosci. Front. 13, 101346 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, Y., Cai, Y., Zhang, B. & Zhang, Y.-H. P. J. Spatially structured exchange of metabolites enhances bacterial survival and resilience in biofilms. Nat. Commun. 15, 7575 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yin, W., Wang, Y., Liu, L. & He, J. Biofilms: the microbial ‘protective clothing’ in extreme environments. Int. J. Mol. Sci. 20, 3423 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wu, J. et al. Phthalates promote dissemination of antibiotic resistance genes: an overlooked environmental risk. Environ. Sci. Technol. 57, 6876–6887 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Luo, T., Dai, X., Wei, W., Xu, Q. & Ni, B.-J. Microplastics enhance the prevalence of antibiotic resistance genes in anaerobic sludge digestion by enriching antibiotic-resistant bacteria in surface biofilm and facilitating the vertical and horizontal gene transfer. Environ. Sci. Technol. 57, 14611–14621 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Huang, Y. et al. Coupled effects of urbanization level and dam on microplastics in surface waters in a coastal watershed of Southeast China. Mar. Pollut. Bull. 154, 111089 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Watkins, L., McGrattan, S., Sullivan, P. J. & Walter, M. T. The effect of dams on river transport of microplastic pollution. Sci. Total Environ. 664, 834–840 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Beans, C. Are microplastics spreading infectious disease? Proc. Natl Acad. Sci. USA 120, e2311253120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chowdhury, B. & Anand, S. Environmental persistence of Listeria monocytogenes and its implications in dairy processing plants. Compr. Rev. Food Sci. Food Saf. 22, 4573–4599 (2023).

    Article  PubMed  Google Scholar 

  127. Wang, X. et al. Microplastic-mediated new mechanism of liver damage: from the perspective of the gut–liver axis. Sci. Total Environ. 919, 170962 (2024).

    Article  CAS  PubMed  Google Scholar 

  128. Nguyen, T. B.-A. et al. Protistan predation selects for antibiotic resistance in soil bacterial communities. ISME J. 17, 2182–2189 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. McDougall, L. et al. Adsorption of a diverse range of pharmaceuticals to polyethylene microplastics in wastewater and their desorption in environmental matrices. Sci. Total Environ. 808, 152071 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Atugoda, T. et al. Interactions between microplastics, pharmaceuticals and personal care products: implications for vector transport. Environ. Int. 149, 106367 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Li, J., Zhang, K. & Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 237, 460–467 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Liu, G. et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater. Environ. Pollut. 246, 26–33 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Wang, F. et al. Interaction of toxic chemicals with microplastics: a critical review. Water Res. 139, 208–219 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Bhagat, J., Nishimura, N. & Shimada, Y. Toxicological interactions of microplastics/nanoplastics and environmental contaminants: current knowledge and future perspectives. J. Hazard. Mater. 405, 123913 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Santana-Viera, S., Montesdeoca-Esponda, S., Torres-Padrón, M. E., Sosa-Ferrera, Z. & Santana-Rodríguez, J. J. An assessment of the concentration of pharmaceuticals adsorbed on microplastics. Chemosphere 266, 129007 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Yu, Y., Mo, W. Y. & Luukkonen, T. Adsorption behaviour and interaction of organic micropollutants with nano and microplastics – a review. Sci. Total Environ. 797, 149140 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Frias, J. P. G. L., Sobral, P. & Ferreira, A. M. Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar. Pollut. Bull. 60, 1988–1992 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Rochman, C. M. et al. Polybrominated diphenyl ethers (PBDEs) in fish tissue may be an indicator of plastic contamination in marine habitats. Sci. Total Environ. 476-477, 622–633 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Hirai, H. et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62, 1683–1692 (2011).

    Article  CAS  PubMed  Google Scholar 

  140. Zhang, W. et al. Persistent organic pollutants carried on plastic resin pellets from two beaches in China. Mar. Pollut. Bull. 99, 28–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Ding, L., Mao, R., Ma, S., Guo, X. & Zhu, L. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants. Water Res. 174, 115634 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Liu, P. et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes. Environ. Sci. Technol. 53, 3579–3588 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Xiang, Y. et al. Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors. J. Environ. Manag. 237, 128–138 (2019).

    Article  CAS  Google Scholar 

  144. Antony, A., Fudianto, R., Cox, S. & Leslie, G. Assessing the oxidative degradation of polyamide reverse osmosis membrane—Accelerated ageing with hypochlorite exposure. J. Membr. Sci. 347, 159–164 (2010).

    Article  CAS  Google Scholar 

  145. Yu, F., Yang, C., Zhu, Z., Bai, X. & Ma, J. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment. Sci. Total Environ. 694, 133643 (2019).

    Article  CAS  PubMed  Google Scholar 

  146. Wu, P., Cai, Z., Jin, H. & Tang, Y. Adsorption mechanisms of five bisphenol analogues on PVC microplastics. Sci. Total Environ. 650, 671–678 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Hüffer, T. & Hofmann, T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environ. Pollut. 214, 194–201 (2016).

    Article  PubMed  Google Scholar 

  148. Chen, Y., Li, J., Wang, F., Yang, H. & Liu, L. Adsorption of tetracyclines onto polyethylene microplastics: a combined study of experiment and molecular dynamics simulation. Chemosphere 265, 129133 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Lu, H.-C., Ziajahromi, S., Locke, A., Neale, P. A. & Leusch, F. D. L. Microplastics profile in constructed wetlands: distribution, retention and implications. Environ. Pollut. 313, 120079 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Shen, M. et al. Microplastics act as an important protective umbrella for bacteria during water/wastewater disinfection. J. Clean. Prod. 315, 128188 (2021).

    Article  CAS  Google Scholar 

  151. Nguyen, H. T., Lee, Y. K., Kwon, J. H. & Hur, J. Microplastic biofilms in water treatment systems: fate and risks of pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic resistance genes. Sci. Total Environ. 892, 164523 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Seewoo, B. J. et al. How do plastics, including microplastics and plastic-associated chemicals, affect human health? Nat. Med. 30, 3036–3037 (2024).

    Article  CAS  PubMed  Google Scholar 

  153. Ramsperger, A. F. R. M. et al. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 6, eabd1211 (2020). This study finds that the coating of the particles with biomolecules enhances the cellular internalization of microplastic particles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Samir, A., Ashour, F. H., Hakim, A. A. A. & Bassyouni, M. Recent advances in biodegradable polymers for sustainable applications. npj Mater. Degrad. 6, 68 (2022).

    Article  CAS  Google Scholar 

  155. Kaing, V. et al. Photodegradation of biodegradable plastics in aquatic environments: current understanding and challenges. Sci. Total Environ. 911, 168539 (2024).

    Article  CAS  PubMed  Google Scholar 

  156. DelRe, C. et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature 592, 558–563 (2021).

    Article  CAS  PubMed  Google Scholar 

  157. Guicherd, M. et al. An engineered enzyme embedded into PLA to make self-biodegradable plastic. Nature 631, 884–890 (2024). This study presents a PLA-based plastic in which an optimized enzyme is embedded to ensure rapid biodegradation and compostability at room temperature, using a scalable industrial process.

    Article  CAS  PubMed  Google Scholar 

  158. Yu, F., Qin, Q., Zhang, X. & Ma, J. Characteristics and adsorption behavior of typical microplastics in long-term accelerated weathering simulation. Environ. Sci. Process. Impacts 26, 882–890 (2024).

    Article  CAS  PubMed  Google Scholar 

  159. Ashok, D. et al. Superhydrophobic surfaces to combat bacterial surface colonization. Adv. Mater. Interfaces 10, 2300324 (2023).

    Article  CAS  Google Scholar 

  160. Jin, H., Kong, F., Li, X. & Shen, J. Artificial intelligence in microplastic detection and pollution control. Environ. Res. 262, 119812 (2024).

    Article  CAS  PubMed  Google Scholar 

  161. Mu, M. et al. Multifunctional coatings for mitigating bacterial fouling and contamination. Colloids Interface Sci. Commun. 55, 100717 (2023).

    Article  CAS  Google Scholar 

  162. Ali, I. et al. Removal of micro- and nanoplastics by filtration technology: performance and obstructions to market penetrations. J. Clean. Prod. 470, 143305 (2024).

    Article  CAS  Google Scholar 

  163. Lu, Y., Li, M.-C., Lee, J., Liu, C. & Mei, C. Microplastic remediation technologies in water and wastewater treatment processes: current status and future perspectives. Sci. Total Environ. 868, 161618 (2023).

    Article  CAS  PubMed  Google Scholar 

  164. Mehta, N. et al. Advances in circular bioeconomy technologies: from agricultural wastewater to value-added resources. Environments 8, 20 (2021).

    Article  Google Scholar 

  165. Maneein, S., Sangsanont, J., Limpiyakorn, T., Sirikanchana, K. & Rattanakul, S. The coagulation process for enveloped and non-enveloped virus removal in turbid water: removal efficiencies, mechanisms and its application to SARS-CoV-2 Omicron BA.2. Sci. Total Environ. 931, 172945 (2024).

    Article  CAS  PubMed  Google Scholar 

  166. Jiao, Y. et al. Adsorption efficiency and in-situ catalytic thermal degradation behaviour of microplastics from water over Fe-modified lignin-based magnetic biochar. Sep. Purif. Technol. 353, 128468 (2025).

    Article  CAS  Google Scholar 

  167. Ali, I. et al. Innovations in the development of promising adsorbents for the remediation of microplastics and nanoplastics—a critical review. Water Res. 230, 119526 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. Jia, M. et al. Advanced nanobubble flotation for enhanced removal of sub-10-µm microplastics from wastewater. Nat. Commun. 15, 9079 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Liu, S. et al. Removal of micro/nanoplastics in constructed wetland: efficiency, limitations and perspectives. Chem. Eng. J. 475, 146033 (2023).

    Article  CAS  Google Scholar 

  170. Li, C. et al. A low-impact nature-based solution for reducing aquatic microplastics from freshwater ecosystems. Water Res. 268, 122632 (2025). This work provides the first evidence-based demonstration of a low-impact, plant-based solution capable of simultaneously removing microplastics and nutrients from freshwater ecosystems.

    Article  CAS  PubMed  Google Scholar 

  171. Yuan, W. et al. Tracing and trapping micro- and nanoplastics: untapped mitigation potential of aquatic plants? Water Res. 242, 120249 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Siddall, R. et al. The Natural Robotics Contest: crowdsourced biomimetic design. Bioinspir. Biomim. 18, 036002 (2023).

    Article  Google Scholar 

  173. Leppänen, I. et al. Capturing colloidal nano- and microplastics with plant-based nanocellulose networks. Nat. Commun. 13, 1814 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wang, Y. et al. Flowthrough capture of microplastics through polyphenol-mediated interfacial interactions on wood sawdust. Adv. Mater. 35, 2301531 (2023).

    Article  CAS  Google Scholar 

  175. Özgenç, E. Advanced analytical techniques for assessing and detecting microplastic pollution in water and wastewater systems. Environ. Qual. Manag. 34, e22217 (2024).

    Article  Google Scholar 

  176. Berkel, C. & Özbek, O. Methods used in the identification and quantification of micro(nano)plastics from water environments. S. Afr. J. Chem. Eng. 50, 388–403 (2024).

    Google Scholar 

  177. Zendehboudi, S., Rezaei, N. & Lohi, A. Applications of hybrid models in chemical, petroleum and energy systems: a systematic review. Appl. Energy 228, 2539–2566 (2018).

    Article  CAS  Google Scholar 

  178. Beghetto, V. et al. Plastics today: key challenges and EU strategies towards carbon neutrality: a review. Environ. Pollut. 334, 122102 (2023).

    Article  CAS  PubMed  Google Scholar 

  179. Mitrano, D. M. & Wohlleben, W. Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nat. Commun. 11, 5324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Abdolahpur Monikh, F. et al. Exposure protocol for ecotoxicity testing of microplastics and nanoplastics. Nat. Protoc. 18, 3534–3564 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. Ladewig, S. M., Coco, G., Hope, J. A., Vieillard, A. M. & Thrush, S. F. Real-world impacts of microplastic pollution on seafloor ecosystem function. Sci. Total Environ. 858, 160114 (2023).

    Article  CAS  PubMed  Google Scholar 

  182. Liu, X. et al. Microplastic diversity stimulates N2O emission during NO3-N transformation by altering microbial interaction and electron consumption in eutrophic water. J. Hazard. Mater. 489, 137594 (2025).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Australian Research Council (ARC) Discovery Project (DP220101139) and Linkage Project (LP240100542). W.W. acknowledges the support of the ARC through project no. DE220100530.

Author information

Authors and Affiliations

Corresponding authors

Correspondence to Wei Wei or Bing-Jie Ni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Austin Gray and Jie Ma for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Wei, W., Chen, Z. et al. The threats of micro- and nanoplastics to aquatic ecosystems and water health. Nat Water 3, 764–781 (2025). https://doi.org/10.1038/s44221-025-00464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00464-1

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene