Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electron-buffering rechargeable microelectrode adsorbents for rapid environmental remediation of uranium-containing wastewater

This article has been updated

Abstract

Environmental remediation of uranium-containing wastewater has emerged as a critical challenge in the nuclear industry, addressing both ecological protection and resource sustainability concerns. However, conventional adsorption methods suffer from slow kinetics, whereas electrochemical approaches are limited by the direct coupling between electron injection and uranyl ion reduction, leading to ion-blocking layers that severely impede remediation efficiency. Here we develop an electron-buffering rechargeable microelectrode adsorbent system that operates through a three-step cycle: electron storage, uranium extraction and adsorbent regeneration. This sequential process decouples electron injection from uranyl ion reduction by separating them in time and space. The microelectrode stores electrons in an environment free of competing ions and releases them in a controlled manner during uranium extraction. The Fe–O bonds on the surface serve as active sites for capturing uranyl ions and lowering their reduction overpotential, whereas the release of charge-balancing cations maintains surface electronegativity for efficient mass transfer. This synergistic integration achieves an initial extraction rate of 1,062 mg g−1 h−1 and a uranium capacity of 854 mg g−1, with nearly 100% electron utilization efficiency. Most importantly, when tested with actual uranium mine wastewater containing 0.545 ppm uranium, the system achieves 97.1% extraction efficiency and a capacity of 78.5 mg g−1 within 6 h, demonstrating its practical viability for environmental remediation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of rechargeable microelectrode adsorbent system.
Fig. 2: Design and screening of microelectrode materials.
Fig. 3: Uranium-extraction performance by rechargeable microelectrode adsorbents.
Fig. 4: The proposed reaction mechanism of LFP microelectrode.
Fig. 5: Recovery of extracted uranium and reusability of LFP microelectrode adsorbents.

Similar content being viewed by others

Data availability

The main data that supports the findings of this study are available within the article and its Supplementary Information.

Change history

  • 28 August 2025

    In the version of Supplementary Information initially published alongside this article, references in Table 1 cited papers in the main article reference list, and now cite references in a revised Supplementary References list.

References

  1. Uranium 2022: Resources, Production and Demand (NEA & IAEA, 2023).

  2. Xie, Y. et al. Uranium extraction from seawater: material design, emerging technologies and marine engineering. Chem. Soc. Rev. 52, 97–162 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. The Uranium Fuel Report: Expanded Summary (WNA, 2022).

  4. Hu, Y. et al. Photochemically triggered self-extraction of uranium from aqueous solution under ambient conditions. Appl. Catal. B. 322, 122092 (2023).

    Article  CAS  Google Scholar 

  5. Li, P. et al. Uranium elimination and recovery from wastewater with ligand chelation-enhanced electrocoagulation. Chem. Eng. J. 393, 124819 (2020).

    Article  CAS  Google Scholar 

  6. Hua, Y. et al. Enrichment of uranium from wastewater with nanoscale zero-valent iron (nZVI). Environ. Sci. Nano 8, 666–674 (2021).

    Article  CAS  Google Scholar 

  7. Fang, Q. et al. High-efficiency removal of U(VI) from low-concentration uranium-bearing wastewater using ZnCl2-modified activated carbon loading nZVI. J. Radioanal. Nucl. Chem. 332, 3977–3990 (2023).

    Article  CAS  Google Scholar 

  8. Lin, T. et al. Ion pair sites for efficient electrochemical extraction of uranium in real nuclear wastewater. Nat. Commun. 15, 4149 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, J. et al. Removal of uranium from uranium plant wastewater using zero-valent iron in an ultrasonic field. Nucl. Eng. Technol. 48, 744–750 (2016).

    Article  Google Scholar 

  10. Yang, P. et al. Water-endurable intercalated graphene oxide adsorbent with highly efficient uranium capture from acidic wastewater. Sep. Purif. Technol. 263, 118364 (2021).

    Article  CAS  Google Scholar 

  11. Ye, Y. et al. Spontaneous electrochemical uranium extraction from wastewater with net electrical energy production. Nat. Water 1, 887–898 (2023).

    Article  CAS  Google Scholar 

  12. Zhao, S. et al. A dual-surface amidoximated halloysite nanotube for high-efficiency economical uranium extraction from seawater. Angew. Chem. Int. Ed. 58, 14979–14985 (2019).

    Article  CAS  Google Scholar 

  13. Tang, N. et al. Amidoxime-based materials for uranium recovery and removal. J. Mater. Chem. A 8, 7588–7625 (2020).

    Article  CAS  Google Scholar 

  14. Yang, L. et al. Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater. Nat. Sustain. 5, 71–80 (2021).

    Article  Google Scholar 

  15. Liu, T. et al. Vertically aligned polyamidoxime/graphene oxide hybrid sheets’ membrane for ultrafast and selective extraction of uranium from seawater. Adv. Funct. Mater. 32, 2111049 (2022).

    Article  CAS  Google Scholar 

  16. Li, H. et al. Zwitterion functionalized graphene oxide/polyacrylamide/polyacrylic acid hydrogels with photothermal conversion and antibacterial properties for highly efficient uranium extraction from seawater. Adv. Funct. Mater. 33, 2301773 (2023).

    Article  CAS  Google Scholar 

  17. Zhang, C.-R. et al. rGO-based covalent organic framework hydrogel for synergistically enhance uranium capture capacity through photothermal desalination. Chem. Eng. J. 428, 131178 (2022).

    Article  CAS  Google Scholar 

  18. Fu, M. et al. Solar enhanced uranium extraction from seawater with the efficient strategy of MXene loaded nano-porous polyamidoxime membrane. Sep. Purif. Technol. 332, 125803 (2024).

    Article  CAS  Google Scholar 

  19. Sun, Q. et al. Bio-inspired nano-traps for uranium extraction from seawater and recovery from nuclear waste. Nat. Commun. 9, 1644 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xu, X. et al. 3D hierarchical porous amidoxime fibers speed up uranium extraction from seawater. Energy Environ. Sci. 12, 1979–1988 (2019).

    Article  CAS  Google Scholar 

  21. Yuan, Y. et al. Photoinduced multiple effects to enhance uranium extraction from natural seawater by black phosphorus nanosheets. Angew. Chem. Int. Ed. 59, 1220–1227 (2019).

    Article  Google Scholar 

  22. Yan, B. et al. An ion-crosslinked supramolecular hydrogel for ultrahigh and fast uranium recovery from seawater. Adv. Mater. 32, 1906615 (2020).

    Article  CAS  Google Scholar 

  23. Li, N. et al. High-capacity amidoxime-functionalized β-cyclodextrin/graphene aerogel for selective uranium capture. Environ. Sci. Technol. 55, 9181–9188 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Li, T. et al. Photothermal-enhanced uranium extraction from seawater: a biomass solar thermal collector with 3D ion-transport networks. Adv. Funct. Mater. 33, 2212819 (2023).

    Article  CAS  Google Scholar 

  25. Liu, C. et al. A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nat. Energy 2, 17007 (2017).

    Article  CAS  Google Scholar 

  26. Chi, F. et al. Highly efficient recovery of uranium from seawater using an electrochemical approach. Ind. Eng. Chem. Res. 57, 8078–8084 (2018).

    Article  CAS  Google Scholar 

  27. Xue, Y. et al. Electroadsorption of uranium on amidoxime modified graphite felt. Sep. Purif. Technol. 255, 117753 (2021).

    Article  CAS  Google Scholar 

  28. Ye, Y. et al. Electrochemical removal and recovery of uranium: effects of operation conditions, mechanisms, and implications. J. Hazard. Mater. 432, 128723 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, X. et al. Highly efficient electrocatalytic uranium extraction from seawater over an amidoxime‐functionalized In–N–C catalyst. Adv. Sci. 9, 2201735 (2022).

    Article  CAS  Google Scholar 

  30. Yang, H. et al. Functionalized iron–nitrogen–carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Adv. Mater. 33, 2106621 (2021).

    Article  CAS  Google Scholar 

  31. Zhang, P. et al. Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption. ACS Appl. Mater. Interfaces 12, 15579–15587 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Pan, M. et al. Efficient electrosorption of uranyl ions by a homemade amidoxime-modified carbon paper-based electrode in acidic aqueous condition. J. Chem. Technol. Biotechnol. 96, 2916–2929 (2021).

    Article  CAS  Google Scholar 

  33. Tang, X. et al. Sulfur edge in molybdenum disulfide nanosheets achieves efficient uranium binding and electrocatalytic extraction in seawater. Nanoscale 14, 6285–6290 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Lin, L. et al. Electrocatalytic removal of low-concentration uranium using TiO2 nanotube arrays/Ti mesh electrodes. Environ. Sci. Technol. 56, 13327–13337 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, Y. et al. Electrochemical-mediated regenerable FeII active sites for efficient uranium extraction at ultra-low cell voltage. Angew. Chem. Int. Ed. 62, e202217601 (2023).

    Article  CAS  Google Scholar 

  36. Feng, S. et al. Stabilizing *CO2 intermediates at the acidic interface using molecularly dispersed cobalt phthalocyanine as catalysts for CO2 reduction. Angew. Chem. Int. Ed. 63, e202317942 (2024).

    Article  CAS  Google Scholar 

  37. Shen, M. et al. Hierarchical design enables sufficient activated CO2 for efficient electrolysis of bicarbonate to CO. Joule 8, 1999–2015 (2024).

    Article  CAS  Google Scholar 

  38. Chen, Y. et al. Preparation of porous composite phase Na super ionic conductor adsorbent by in situ process for ultrafast and efficient strontium adsorption from wastewater. Metals 13, 677 (2023).

    Article  CAS  Google Scholar 

  39. Liu, N. et al. Fe-MMT/WO3 composites for chemical and photocatalysis synergistic reduction of uranium (VI). Chemosphere 344, 140321 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, Y. et al. Flexible self-supporting Na3MnTi(PO4)3@C fibres for uranium extraction from seawater by electro sorption. J. Hazard. Mater. 461, 132664 (2024).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, K. et al. Semiconducting metal–organic frameworks decorated with spatially separated dual cocatalysts for efficient uranium(VI) photoreduction. Adv. Funct. Mater. 32, 2200315 (2022).

    Article  CAS  Google Scholar 

  42. Wang, C. et al. Dual-functional S-scheme Fe3O4/TiO2/g-C3N4 double-heterostructure bridged by TiO2 for collaborative removal of U(VI) and Sb(III). J. Cleaner Prod. 426, 139114 (2023).

    Article  CAS  Google Scholar 

  43. Dong, Z. et al. Novel Co3O4@TiO2@CdS@Au double-shelled nanocage for high-efficient photocatalysis removal of U(VI): roles of spatial charges separation and photothermal effect. J. Hazard. Mater. 452, 131248 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Yan, G. et al. Defining the challenges of Li extraction with olivine host: the roles of competitor and spectator ions. Proc. Natl Acad. Sci. USA 119, e2200751119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, T. et al. Constructing new Fe3O4@MnOx with 3D hollow structure for efficient recovery of uranium from simulated seawater. Chemosphere 283, 131241 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Li, N. et al. Bioinspired green tea waste/graphene aerogel for solar-enhanced uranium extraction from seawater. Desalination 545, 116153 (2023).

    Article  CAS  Google Scholar 

  47. Liu, T. et al. Mussel-inspired dual-crosslinked polyamidoxime photothermal hydrogel with enhanced mechanical strength for highly efficient and selective uranium extraction from seawater. Chem. Eng. J. 430, 133182 (2022).

    Article  CAS  Google Scholar 

  48. Ho, Y. et al. Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465 (1999).

    Article  CAS  Google Scholar 

  49. Zhang, H. et al. Three mechanisms in one material: uranium capture by a polyoxometalate-organic framework through combined complexation, chemical reduction, and photocatalytic reduction. Angew. Chem. Int. Ed. 58, 16110–16114 (2019).

    Article  CAS  Google Scholar 

  50. Cui, W. R. et al. Regenerable covalent organic frameworks for photo-enhanced uranium adsorption from seawater. Angew. Chem. Int. Ed. 59, 17684–17690 (2020).

    Article  CAS  Google Scholar 

  51. Zhang, X. et al. Controllable shell corrosion of coated nanoscale zero valent iron induces long-term potentiation of its reactivity for uranium removal. Sep. Purif. Technol. 287, 120550 (2022).

    Article  CAS  Google Scholar 

  52. Latta, E. et al. Influence of magnetite stoichiometry on UVI reduction. Environ. Sci. Technol. 46, 778–786 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Ye, Y. et al. Efficient and durable uranium extraction from uranium mine tailings seepage water via a photoelectrochemical method. iScience 24, 103230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. AbowSlama, E. H. Y., Ebraheem, E. & Sam, A. K. Precipitation and purification of uranium from rock phosphate. J. Radioanal. Nucl. Chem. 299, 815–818 (2013).

    Article  Google Scholar 

  55. Rychkov, V. N. et al. Precipitation of yellowcake from pregnant regenerate by various reagents. J. Radioanal. Nucl. Chem. 314, 1741–1746 (2017).

    Article  CAS  Google Scholar 

  56. Smirnov, A. L. et al. Precipitation of uranium from nitrate-sulfuric eluates by aqueous ammonia solution. J. Radioanal. Nucl. Chem. 317, 863–869 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is jointly supported by the National Natural Science Foundation of China (numbers 92462301, 52525202, 92262305, 52302225, 52202251, 52461160296), ‘GeoX’ Interdisciplinary Project of Frontiers Science Center for Critical Earth Material Cycling (20250106), the New Cornerstone Science Foundation through XPLORER PRIZE, the Natural Science Foundation of Jiangsu Province (BK20233001, BK20243009) and the Project of Laoshan Laboratory (LSKJ2025001600). We acknowledge the micro-fabrication centre of the National Laboratory of Solid State Microstructures (NLSSM) for technique support.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and Xiaojun Wang conceived the project and designed the experiments. S.C., H.Z., Z.W., Xiyang Wang and Z.L. conducted the synthesis, characterizations and the majority of the experiments. S.C. and S.F. were responsible for device fabrication. C.Z. and T.S. provided critical resources and valuable guidance. S.C., Xiaojun Wang and J.Z. analysed the data and drafted the manuscript. All authors contributed to discussions of the results and provided feedback on the manuscript.

Corresponding authors

Correspondence to Xiaojun Wang or Jia Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Shaohong Liu, Shengqian Ma and Costas Tsouris for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–32 and Tables 1–4.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Wang, X., Zheng, H. et al. Electron-buffering rechargeable microelectrode adsorbents for rapid environmental remediation of uranium-containing wastewater. Nat Water 3, 937–948 (2025). https://doi.org/10.1038/s44221-025-00471-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00471-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing