Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient denitrification and N2O mitigation in low-C/N wastewater treatment by promoting TCA cycle anaplerosis via glyoxylate shunt regulation

Abstract

Conventional biodenitrification for water with a low carbon-to-nitrogen ratio (C/N) demands exogenous carbon, exacerbating carbon consumption and emissions. Here we propose a metabolic reprogramming strategy leveraging Mo(VI)–Fe(III)–Cu(II) synergy to redirect carbon flux through the glyoxylate shunt (GS), enhancing tricarboxylic acid cycle anaplerosis for efficient denitrification and reduced greenhouse gases during low-C/N wastewater treatment. At a C/N of 3, Mo(VI)–Fe(III)–Cu(II) promoted carbon metabolism by the tricarboxylic acid cycle in Paracoccus denitrificans, elevating reducing power (electron carriers) production and electron transporter activity. This increased total nitrogen removal by 196.2% compared with the blank control and by approximately 32.0–146.6% compared with single- or dual-metal-supplemented controls, while reducing nitrous oxide emissions by 51.3% and approximately 26.2–85.6%, respectively. This effect originated from the inhibition of isocitrate dehydrogenase and α-ketoglutarate dehydrogenase by Mo(VI)–Fe(III)–Cu(II), causing isocitrate accumulation that activates isocitrate lyase of the glyoxylate shunt and prioritizes GS-driven anaplerosis. Finally, activated sludge validation increased 31.7% total nitrogen removal efficiency, highlighting the approach’s practical potential. This carbon-metabolism reprogramming strategy reduces organic carbon demand in denitrification, enhancing energy efficiency and advancing carbon-neutral wastewater treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic diagram of TCA-cycle-driven wastewater denitrification facilitated by the regulation on the GS.
Fig. 2: Effects of metal ions on denitrification of P. denitrificans.
Fig. 3: Effects of metal ions on the acetate metabolism of P. denitrificans.
Fig. 4: Potential mechanism for the GS facilitation by the associative action of metal ions with P. denitrificans.
Fig. 5: Effects of metal ions on electron transporters and denitrifying enzymes with P. denitrificans.
Fig. 6: Effects of metal ions on the denitrification performance, community structure and function contribution in activated sludge microorganisms.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  PubMed  Google Scholar 

  2. Liu, T. et al. Sustainable wastewater management through nitrogen-cycling microorganisms. Nat. Water 2, 936–952 (2024).

    Article  CAS  Google Scholar 

  3. Ye, J. et al. Wastewater denitrification driven by mechanical energy through cellular piezo-sensitization. Nat. Water 2, 531–540 (2024).

    Article  CAS  Google Scholar 

  4. Shi, H. et al. How β-cyclodextrin-functionalized biochar enhanced biodenitrification in low C/N conditions via regulating substrate metabolism and electron utilization. Environ. Sci. Technol. 57, 11122–11133 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, Y., Zhang, Z. & Chen, Y. Biochar mitigates N2O emission of microbial denitrification through modulating carbon metabolism and allocation of reducing power. Environ. Sci. Technol. 55, 8068–8078 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Yoshida, H., Mønster, J. & Scheutz, C. Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant. Water Res. 61, 108–118 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Du, W.-J. et al. Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality. Nat. Water 1, 166–175 (2023).

    Article  Google Scholar 

  8. Daelman, M. R. J. et al. Methane emission during municipal wastewater treatment. Water Res. 46, 3657–3670 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Sun, Q. et al. Insight into using multi-omics analysis to elucidate nitrogen removal mechanisms in a novel improved constructed rapid infiltration system. Water Res. 267, 122502 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Ma, Y. et al. Comprehensive metagenomic and enzyme activity analysis reveals the negatively influential and potentially toxic mechanism of polystyrene nanoparticles on nitrogen transformation in constructed wetlands. Water Res. 202, 117420 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, J. et al. Unveiling the coupling mechanism between central carbon and nitrogen metabolism of Pseudomonas stutzeri. ACS EST Water 5, 230–241 (2025).

    Article  CAS  Google Scholar 

  12. Mendonca, C. M. et al. Hierarchical routing in carbon metabolism favors iron-scavenging strategy in iron-deficient soil Pseudomonas species. Proc. Natl Acad. Sci. USA 117, 32358–32369 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Inigo, M., Deja, S. & Burgess, S. C. Ins and outs of the TCA cycle: the central role of anaplerosis. Annu. Rev. Nutr. 41, 19–47 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Fischer, E. & Sauer, U. A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J. Biol. Chem. 278, 46446–46451 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Krivoruchko, A. et al. Microbial acetyl-CoA metabolism and metabolic engineering. Metab. Eng. 28, 28–42 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Kim, D. H. et al. Optimum flux rerouting for efficient production of naringenin from acetate in engineered Escherichia coli. Biotechnol. Biofuels Bioprod. 15, 90 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, J. & Strous, M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochim. Biophys. Acta, Bioenerg. 1827, 136–144 (2013).

    Article  CAS  Google Scholar 

  18. Sparacino-Watkins, C., Stolz, J. F. & Basu, P. Nitrate and periplasmic nitrate reductases. Chem. Soc. Rev. 43, 676–706 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou, S. et al. Use of acetate for the production of 3-hydroxypropionic acid by metabolically-engineered Pseudomonas denitrificans. Bioresour. Technol. 307, 123194 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, J. & Jia, Z. Structure of the bifunctional isocitrate dehydrogenase kinase/phosphatase. Nature 465, 961–965 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Novackova, I. et al. The role of polyhydroxyalkanoates in adaptation of Cupriavidus necator to osmotic pressure and high concentration of copper ions. Int. J. Biol. Macromol. 206, 977–989 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, Z. et al. Enhancing the insecticidal activity of new Bacillus thuringiensis X023 by copper ions. Microb. Cell Fact. 19, 195 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thorgersen, M. P. et al. Molybdenum availability is key to nitrate removal in contaminated groundwater environments. Appl. Environ. Microbiol. 81, 4976–4983 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kozaeva, E. et al. Model-guided dynamic control of essential metabolic nodes boosts acetyl-coenzyme A–dependent bioproduction in rewired Pseudomonas putida. Metab. Eng. 67, 373–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Tovilla-Coutiño, D. B. et al. Engineered citrate synthase alters acetate accumulation in Escherichia coli. Metab. Eng. 61, 171–180 (2020).

    Article  PubMed  Google Scholar 

  26. Nie, M., Wang, J. & Zhang, K. Engineering a novel Acetyl-CoA pathway for efficient biosynthesis of acetyl-CoA-derived compounds. ACS Synth. Biol. 13, 358–369 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Ahmad, H. A. et al. Multi-omics analysis revealed the selective enrichment of partial denitrifying bacteria for the stable coupling of partial-denitrification and anammox process under the influence of low strength magnetic field. Water Res. 245, 120619 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Dolan, S. K. & Welch, M. The glyoxylate shunt, 60 years on. Annu. Rev. Microbiol. 72, 309–330 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Fang, J. et al. Impact of Cr(VI) on P removal performance in enhanced biological phosphorus removal (EBPR) system based on the anaerobic and aerobic metabolism. Bioresour. Technol. 121, 379–385 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, X. & Wang, W.-X. Intracellular biotransformation of Cu(II)/Cu(I) explained high Cu toxicity to phytoplankton Chlamydomonas reinhardtii. Environ. Sci. Technol. 55, 14772–14781 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Arguello, J. M. et al. Mechanisms of copper homeostasis in bacteria. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2013.00073 (2013).

  32. González-Guerrero, M. & Argüello, J. M. Mechanism of Cu+-transporting ATPases. Proc. Natl Acad. Sci. USA 105, 5992–5997 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tsvetkov, P. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254–1261 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wan, R. et al. Effect of CO2 on microbial denitrification via inhibiting electron transport and consumption. Environ. Sci. Technol. 50, 9915–9922 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, J. et al. Siderophores as a selective regulator for enhancing anaerobic ammonium oxidation bacteria. Nat. Water 3, 806–817 (2025).

    Article  CAS  Google Scholar 

  36. Jiang, M. et al. Bio-denitrification performance enhanced by graphene-facilitated iron acquisition. Water Res. 180, 115916 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Pan, Y. et al. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment. Water Res. 47, 3273–3281 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Müller, C. et al. Molecular interplay of an assembly machinery for nitrous oxide reductase. Nature 608, 626–631 (2022).

    Article  PubMed  Google Scholar 

  39. Dong, B. et al. A multi-omics approach to unravelling the coupling mechanism of nitrogen metabolism and phenanthrene biodegradation in soil amended with biochar. Environ. Int. 183, 108435 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Liao, Y. et al. From mechanism to application: decrypting light-regulated denitrifying microbiome through geometric deep learning. iMeta 3, e162 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hao, S. et al. Awakening a latent phosphoenolpyruvate–oxaloacetate–glyceraldehyde carbon-fixation pathway for cost-effective nitrogen removal. Chem. Eng. J. 488, 151065 (2024).

    Article  CAS  Google Scholar 

  42. Xu, D. et al. Selective genes expression and metabolites transformation drive a robust nitrite accumulation during nitrate reduction under alternating feast-famine condition. Water Res. 255, 121520 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Wan, H. et al. Algal-mediated nitrogen removal and sustainability of algal-derived dissolved organic matter supporting denitrification. Bioresour. Technol. 407, 131083 (2024).

    Article  CAS  PubMed  Google Scholar 

  44. Burow, L. C. et al. Anaerobic glyoxylate cycle activity during simultaneous utilization of glycogen and acetate in uncultured Accumulibacter enriched in enhanced biological phosphorus removal communities. ISME J. 2, 1040–1051 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Luo, Y. et al. Cr(VI) reduction and Fe(II) regeneration by Penicillium oxalicum SL2-enhanced nanoscale zero-valent iron. Environ. Sci. Technol. 57, 11313–11324 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Hubenova, Y. et al. The glyoxylate pathway contributes to enhanced extracellular electron transfer in yeast-based biofuel cell. Bioelectrochemistry 116, 10–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Qi, Z. et al. Glyoxylate cycle maintains the metabolic homeostasis of Pseudomonas aeruginosa in viable but nonculturable state induced by chlorine stress. Microbiol. Res. 270, 127341 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Jia, F. et al. FeO might be more suitable than Fe2+ for the construction of anammox-dominated Fe–N coupling system. Water Res. 274, 123097 (2025).

    Article  CAS  PubMed  Google Scholar 

  49. An, Z. et al. Synchronous achievement of advanced nitrogen removal and N2O reduction in the anoxic zone in the AOA process for low C/N municipal wastewater. Environ. Sci. Technol. 58, 2335–2345 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant no. 52470053).

Author information

Authors and Affiliations

Authors

Contributions

Y.C. supervised the study. H.P. designed and performed experiments, compiled and analysed all the data, and wrote the original paper. Q.Z. and Y.S. reviewed the paper. S.W. provided feedback. All authors discussed the paper.

Corresponding author

Correspondence to Yinguang Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Gyucheol Choi, Rui Du and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Tables 1–6, Figs. 1–12 and References.

Reporting Summary

Source data

Source Data Fig. 2

The statistical source data for bar charts and line graphs.

Source Data Fig. 3

The statistical source data for bar charts, box plots, heat maps and stacked column charts.

Source Data Fig. 4

The statistical source data for bar charts and heat maps.

Source Data Fig. 5

The statistical source data for bar charts, heat maps and stacked column charts.

Source Data Fig. 6

The statistical source data for line graphs and stacked column charts.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Zhang, Q., Su, Y. et al. Efficient denitrification and N2O mitigation in low-C/N wastewater treatment by promoting TCA cycle anaplerosis via glyoxylate shunt regulation. Nat Water 3, 992–1002 (2025). https://doi.org/10.1038/s44221-025-00501-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00501-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research