Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Assessing antimicrobial resistance connectivity across One Health sectors

Abstract

The first therapeutic use of antimicrobial agents initiated their endless arms race with antimicrobial resistance (AMR). Although the genes encoding antimicrobial resistance are ancient and ubiquitous in various environmental compartments, including aquatic environments, over eight decades of exposure to selective pressure has changed the way antimicrobial resistance genes (ARGs) emerge and transmit among the three One Health sectors (that is, the intersected sectors of humans, animals and the environment). The dissemination of ARGs has been facilitated by the widespread use of antimicrobials, along with direct and secondary pollution pathways. Current global consensus dictates that AMR should be addressed under a One Health framework. AMR National Action Plans have frequently been formulated. However, the capacity for implementation is not ready in most countries, especially in low- and middle-income regions. This is in part due to the substantial challenges in documenting and controlling cross-sector AMR connectivity. Here we describe the past and current status of AMR, emphasizing the contribution of connectivity to global AMR burden. We discuss connectivity at ecological, microbial and genetic levels; propose an approach based on genomics and metagenomics to assess connectivity; and finally advocate for cross-sector studies to better understand AMR connectivity and mitigate dissemination. We believe that such harmonized connectivity studies will facilitate coordinated actions and investments across sectors and regions to scale up AMR management globally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of AMR connectivity between the sectors of humans, animals and the environment.
Fig. 2: Approaches to assess AMR connectivity at different levels.
Fig. 3: Examining AMR connectivity within and between habitats.
Fig. 4: AMR connectivity between humans, animals and the environment and trends over time under different scenarios of the control strategy implementation.

Similar content being viewed by others

References

  1. Murray, C. J. L. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).

    CAS  Google Scholar 

  2. Towards Specific Commitments and Action in the Response to Antimicrobial Resistance (Global Leaders Group (GLG) on Antimicrobial Resistance, 2024); https://www.amrleaders.org/about-us/what-we-do/glg-report

  3. Larsson, D. G. J. & Flach, C. F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 20, 257–269 (2022).

    CAS  PubMed  Google Scholar 

  4. Berendonk, T. U. et al. Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13, 310–317 (2015).

    CAS  PubMed  Google Scholar 

  5. One Health Initiative (World Health Organization); https://www.who.int/teams/one-health-initiative/quadripartite-secretariat-for-one-health

  6. Velazquez-Meza, M. E., Galarde-López, M., Carrillo-Quiróz, B. & Alpuche-Aranda, C. M. Antimicrobial resistance: One Health approach. Vet. World 15, 743–749 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. McEwen, S. A. & Collignon, P. J. Antimicrobial resistance: a One Health perspective. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.arba-0009-2017 (2018).

  8. Arnold, K. E. et al. The need for One Health systems-thinking approaches to understand multiscale dissemination of antimicrobial resistance. Lancet Planet. Health 8, e124–e133 (2024).

    PubMed  Google Scholar 

  9. Hernando-Amado, S., Coquet, T. M., Baquero, F. & Martinez, J. L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).

    CAS  PubMed  Google Scholar 

  10. Jin, L., Xie, J., He, T., Wu, D. & Li, X. Airborne transmission as an integral environmental dimension of antimicrobial resistance through the ‘One Health’ lens. Crit. Rev. Environ. Sci. Technol. 52, 4172–4193 (2022).

    Google Scholar 

  11. Amarasiri, M., Sano, D. & Suzuki, S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: current knowledge and questions to be answered. Crit. Rev. Environ. Sci. Technol. 50, 2016–2059 (2020).

    CAS  Google Scholar 

  12. Manaia, C. M. et al. Antibiotic resistance in wastewater treatment plants: tackling the black box. Environ. Int. 115, 312–324 (2018).

    CAS  PubMed  Google Scholar 

  13. Chen, C. et al. Characterising global antimicrobial resistance research explains why One Health solutions are slow in development: an application of AI-based gap analysis. Environ. Int. 187, 108680 (2024).

    PubMed  Google Scholar 

  14. Pehrsson, E. C. et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 533, 212–216 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. Maciel-Guerra, A. et al. Dissecting microbial communities and resistomes for interconnected humans, soil and livestock. ISME J. 17, 21–35 (2023).

    CAS  PubMed  Google Scholar 

  16. Marshall, D. A. et al. Impact of antibiotic administrative restrictions on trends in antibiotic resistance. Can. J. Public Health 97, 126–131 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kirchhelle, C. Swann song: antibiotic regulation in British livestock production (1953–2006). Bull. Hist. Med. 92, 317–350 (2018).

    PubMed  Google Scholar 

  19. Barton, M. D. Antibiotic use in animal feed and its impact on human health. Nutr. Res. Rev. 13, 279–299 (2000).

    CAS  PubMed  Google Scholar 

  20. Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).

    CAS  PubMed  Google Scholar 

  21. Durao, P., Balbontin, R. & Gordo, I. Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends Microbiol. 26, 677–691 (2018).

    CAS  PubMed  Google Scholar 

  22. Allel, K. et al. Global antimicrobial-resistance drivers: an ecological country-level study at the human-animal interface. Lancet Planet. Health 7, e291–e303 (2023).

    PubMed  Google Scholar 

  23. Kim, D. W. & Cha, C. J. Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission. Exp. Mol. Med. 53, 301–309 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Holmes, A. H. et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387, 176–187 (2016).

    CAS  PubMed  Google Scholar 

  25. Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

    PubMed  Google Scholar 

  26. Wang, R. B. et al. The global distribution and spread of the mobilized colistin resistance gene. Nat. Commun. 9, 1179 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. González, S. O., Almeida, C. A., Calderón, M., Mallea, M. A. & González, P. Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations. Environ. Sci. Pollut. Res. Int. 21, 10583–10593 (2014).

    PubMed  Google Scholar 

  28. Xie, Y. et al. Insight into impact of sewage discharge on microbial dynamics and pathogenicity in river ecosystem. Sci. Rep. 12, 6894 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Knapp, C. W., Dolfing, J., Ehlert, P. A. I. & Graham, D. W. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 44, 580–587 (2010).

    CAS  PubMed  Google Scholar 

  30. Zhao, Y. et al. Global soil antibiotic resistance genes are associated with increasing risk and connectivity to human resistome. Nat. Commun. 16, 7141 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilkinson, J. L. et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl Acad. Sci. USA 119, e2113947119 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tozer, L. Water pollution ‘timebomb’ threatens global health. Nature https://doi.org/10.1038/d41586-023-02337-7 (2023).

  33. Wang, X. W. et al. Ecological dynamics imposes fundamental challenges in community-based microbial source tracking. iMeta 2, e75 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, L. G., Huang, Q., Yin, X. L. & Zhang, T. Source tracking of antibiotic resistance genes in the environment—challenges, progress and prospects. Water Res. 185, 116127 (2020).

    CAS  PubMed  Google Scholar 

  35. MacLean, R. C. & San Millan, A. The evolution of antibiotic resistance. Science 365, 1082–1083 (2019).

    CAS  PubMed  Google Scholar 

  36. Pal, A. & Andersson, D. I. Bacteria can compensate the fitness costs of amplified resistance genes via a bypass mechanism. Nat. Commun. 15, 2333 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Che, Y. et al. Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes. Proc. Natl Acad. Sci. USA 118, e2008731118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Djordjevic, S. P., Stokes, H. W. & Chowdhury, P. R. Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiota. Front. Microbiol. 4, 86 (2013).

    PubMed  PubMed Central  Google Scholar 

  39. Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088-17 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gillings, M. R. et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 9, 1269–1279 (2015).

    CAS  PubMed  Google Scholar 

  41. Botelho, J. & Schulenburg, H. The role of integrative and conjugative elements in antibiotic resistance evolution. Trends Microbiol. 29, 8–18 (2021).

    CAS  PubMed  Google Scholar 

  42. Wright, G. D. Antibiotic resistance in the environment: a link to the clinic? Curr. Opin. Microbiol. 13, 589–594 (2010).

    CAS  PubMed  Google Scholar 

  43. Benveniste, R. & Davies, J. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc. Natl Acad. Sci. USA 70, 2276–2280 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Poirel, L., Kampfer, P. & Nordmann, P. Chromosome-encoded Ambler class A beta-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum beta-lactamases. Antimicrob. Agents Chemother. 46, 4038–4040 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Marshall, C. G., Lessard, I. A., Park, I. & Wright, G. D. Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob. Agents Chemother. 42, 2215–2220 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pärnänen, K. M. M. et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 5, eaau9124 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. Lee, K. et al. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance. Microbiome 8, 2 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nadimpalli, M. et al. Combating global antibiotic resistance: emerging One Health concerns in lower- and middle-income countries. Clin. Infect. Dis. 66, 963–969 (2018).

    PubMed  Google Scholar 

  49. Baker-Austin, C., Wright, M. S., Stepanauskas, R. & McArthur, J. V. Co-selection of antibiotic and metal resistance. Trends Microbiol. 14, 176–182 (2006).

    CAS  PubMed  Google Scholar 

  50. Wales, A. D. & Davies, R. H. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics 4, 567–604 (2015).

    PubMed  PubMed Central  Google Scholar 

  51. Manaia, C. M. et al. The complex interplay between antibiotic resistance and pharmaceutical and personal care products in the environment. Environ. Toxicol. Chem. 43, 637–652 (2024).

    CAS  PubMed  Google Scholar 

  52. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, Y. et al. Antidepressants can induce mutation and enhance persistence toward multiple antibiotics. Proc. Natl Acad. Sci. USA 120, e2208344120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rodríguez-Molina, D. et al. International travel as a risk factor for carriage of extended-spectrum β-lactamase-producing in a large sample of European individuals - the AWARE study. Int. J. Env. Res. Public Health 19, 4758 (2022).

    Google Scholar 

  55. UNEP. Bracing for Superbugs: Strengthening Environmental Action in the One Health Response to Antimicrobial Resistance (United Nations Environment Programme, 2023); https://www.unep.org/resources/superbugs/environmental-action

  56. Rodrigues, J. L. M. et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc. Natl Acad. Sci. USA 110, 988–993 (2013).

    CAS  PubMed  Google Scholar 

  57. Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).

    PubMed  Google Scholar 

  58. Peixoto, R. S. et al. Harnessing the microbiome to prevent global biodiversity loss. Nat. Microbiol. 7, 1726–1735 (2022).

    CAS  PubMed  Google Scholar 

  59. WHO. Global Action Plan on Antimicrobial Resistance (World Health Organization, 2015); https://www.who.int/publications/i/item/9789241509763

  60. WHO. Library of AMR National Action Plans (World Health Organization, 2023); https://www.who.int/teams/surveillance-prevention-control-AMR/national-action-plan-monitoring-evaluation/library-of-national-action-plans

  61. Ikhimiukor, O. O., Odih, E. E., Donado-Godoy, P. & Okeke, I. N. A bottom-up view of antimicrobial resistance transmission in developing countries. Nat. Microbiol. 7, 757–765 (2022).

    CAS  PubMed  Google Scholar 

  62. WHO. Global Database for Tracking Antimicrobial Resistance (AMR) Country Self-Assessment Survey (TrACSS) (World Health Organization, 2023); https://amrcountryprogress.org/#/map-view

  63. Gillings, M. R. Lateral gene transfer, bacterial genome evolution and the anthropocene. Ann. N. Y. Acad. Sci. 1389, 20–36 (2017).

    PubMed  Google Scholar 

  64. Zhao, Y. et al. Antibiotic resistome in the livestock and aquaculture industries: status and solutions. Crit. Rev. Environ. Sci. Technol. 51, 2159–2196 (2021).

    CAS  Google Scholar 

  65. Rousham, E. K. et al. Human colonization with extended-spectrum beta-lactamase-producing E. coli in relation to animal and environmental exposures in Bangladesh: an observational One Health study. Environ. Health Perspect. 129, 37001 (2021).

    CAS  PubMed  Google Scholar 

  66. Li, L. et al. Extended-spectrum beta-lactamase and carbapenemase genes are substantially and sequentially reduced during conveyance and treatment of urban sewage. Environ. Sci. Technol. 55, 5939–5949 (2021).

    CAS  PubMed  Google Scholar 

  67. Worby, C. J. et al. Gut microbiome perturbation, antibiotic resistance and Escherichia coli strain dynamics associated with international travel: a metagenomic analysis. Lancet Microbe 4, e790–e799 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gillings, M. R. & Paulsen, I. T. Microbiology of the Anthropocene. Anthropocene 5, 1–8 (2014).

    Google Scholar 

  69. Jordt, H. et al. Coevolution of host-plasmid pairs facilitates the emergence of novel multidrug resistance. Nat. Ecol. Evol. 4, 863–869 (2020).

    PubMed  PubMed Central  Google Scholar 

  70. Loftie-Eaton, W. et al. Compensatory mutations improve general permissiveness to antibiotic resistance plasmids. Nat. Ecol. Evol. 1, 1354–1363 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Portik, D. M., Brown, C. T. & Pierce-Ward, N. T. Evaluation of taxonomic classification and profiling methods for long-read shotgun metagenomic sequencing datasets. BMC Bioinformatics 23, 541 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zolfo, M., Tett, A., Jousson, O., Donati, C. & Segata, N. MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples. Nucleic Acids Res. 45, e7 (2017).

    PubMed  Google Scholar 

  73. Zheng, W. et al. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science 376, eabm1483 (2022).

    CAS  PubMed  Google Scholar 

  74. Meyer, F. et al. Critical assessment of metagenome interpretation: the second round of challenges. Nat. Methods 19, 429–440 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Forsberg, K. J. et al. Bacterial phylogeny structures soil resistomes across habitats. Nature 509, 612–616 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yin, X. L. et al. Global environmental resistome: distinction and connectivity across diverse habitats benchmarked by metagenomic analyses. Water Res. 235, 119875 (2023).

    CAS  PubMed  Google Scholar 

  77. Calle, M. L. Statistical analysis of metagenomics data. Genomics Inform. 17, e6 (2019).

    PubMed  PubMed Central  Google Scholar 

  78. Diebold, P. J. et al. Clinically relevant antibiotic resistance genes are linked to a limited set of taxa within gut microbiome worldwide. Nat. Commun. 14, 7366 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Davidovich, C. et al. Occurrence of ‘under-the-radar’ antibiotic resistance in anthropogenically affected produce. ISME J. 19, wrae261 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Scott, T. M., Rose, J. B., Jenkins, T. M., Farrah, S. R. & Lukasik, J. Microbial source tracking: current methodology and future directions. Appl. Environ. Microb. 68, 5796–5803 (2002).

    CAS  Google Scholar 

  81. Bansal, M. S., Banay, G., Harlow, T. J., Gogarten, J. P. & Shamir, R. Systematic inference of highways of horizontal gene transfer in prokaryotes. Bioinformatics 29, 571–579 (2013).

    CAS  PubMed  Google Scholar 

  82. Djordjevic, S. P. et al. Genomic surveillance for antimicrobial resistance—a One Health perspective. Nat. Rev. Genet. 25, 142–157 (2024).

    CAS  PubMed  Google Scholar 

  83. Medvecky, M. et al. Interspecies transmission of CMY-2-producing sequence type 963 isolates between humans and gulls in Australia. mSphere 7, e0023822 (2022).

    PubMed  Google Scholar 

  84. D’Costa, V. M., McGrann, K. M., Hughes, D. W. & Wright, G. D. Sampling the antibiotic resistome. Science 311, 374–377 (2006).

    PubMed  Google Scholar 

  85. Wu, Y. et al. Wastewater treatment plant effluents exert different impacts on antibiotic resistome in water and sediment of the receiving river: metagenomic analysis and risk assessment. J. Hazard. Mater. 460, 132528 (2023).

    CAS  PubMed  Google Scholar 

  86. Qian, X. et al. Long-read sequencing revealed cooccurrence, host range and potential mobility of antibiotic resistome in cow feces. Proc. Natl Acad. Sci. USA 118, e2024464118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu, Z. et al. Nanopore-based long-read metagenomics uncover the resistome intrusion by antibiotic resistant bacteria from treated wastewater in receiving water body. Water Res. 226, 119282 (2022).

    CAS  PubMed  Google Scholar 

  88. Che, Y. et al. High-resolution genomic surveillance elucidates a multilayered hierarchical transfer of resistance between WWTP- and human/animal-associated bacteria. Microbiome 10, 16 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Baron, S. A., Diene, S. M. & Rolain, J.-M. Human microbiomes and antibiotic resistance. Hum. Microbiome J. 10, 43–52 (2018).

    Google Scholar 

  90. Maestre-Carballa, L., Navarro-Lopez, V. & Martinez-Garcia, M. A resistome roadmap: from the human body to pristine environments. Front. Microbiol. 13, 858831 (2022).

    PubMed  PubMed Central  Google Scholar 

  91. Lee, K. et al. Population-level impacts of antibiotic usage on the human gut microbiome. Nat. Commun. 14, 1191 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).

    CAS  PubMed  Google Scholar 

  93. Karkman, A., Pärnänen, K. & Larsson, D. G. J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. 10, 80 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, Z. et al. Assessment of global health risk of antibiotic resistance genes. Nat. Commun. 13, 1553 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Christou, A. et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: the knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes—a review. Water Res. 123, 448–467 (2017).

    CAS  PubMed  Google Scholar 

  96. Zhao, Q. & Liu, Y. Is anaerobic digestion a reliable barrier for deactivation of pathogens in biosludge? Sci. Total Environ. 668, 893–902 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Luo, Y. et al. Characteristics of wild bird resistomes and dissemination of antibiotic resistance genes in interconnected bird-habitat systems revealed by similarity of blaTEM polymorphic sequences. Environ. Sci. Technol. 56, 15084–15095 (2022).

    CAS  PubMed  Google Scholar 

  98. Akter, S. et al. Detection of antibiotic-resistant bacteria and their resistance genes from houseflies. Vet. World 13, 266–274 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zurek, L. & Ghosh, A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl. Environ. Microb. 80, 3562–3567 (2014).

    Google Scholar 

  100. Bogri, A. et al. Transmission of antimicrobial resistance in the gut microbiome of gregarious cockroaches: the importance of interaction between antibiotic exposed and non-exposed populations. mSystems 9, e0101823 (2024).

    PubMed  Google Scholar 

  101. Aarestrup, F. M. The livestock reservoir for antimicrobial resistance: a personal view on changing patterns of risks, effects of interventions and the way forward. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140085 (2015).

    Google Scholar 

  102. Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P. & Van Boeckel, T. P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 9, 918 (2020).

    PubMed  PubMed Central  Google Scholar 

  103. Dewulf, J. et al. Antibiotic use in European pig production: less is more. Antibiotics 11, 1493 (2022).

    PubMed  PubMed Central  Google Scholar 

  104. Muloi, D. M. et al. Population genomics of Escherichia coli in livestock-keeping households across a rapidly developing urban landscape. Nat. Microbiol. 7, 581–589 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Castro-Vargas, R. E., Herrera-Sanchez, M. P., Rodriguez-Hernandez, R. & Rondon-Barragan, I. S. Antibiotic resistance in Salmonella spp. isolated from poultry: a global overview. Vet. World 13, 2070–2084 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang, Y. et al. Impacts of farmland application of antibiotic-contaminated manures on the occurrence of antibiotic residues and antibiotic resistance genes in soil: a meta-analysis study. Chemosphere 300, 134529 (2022).

    CAS  PubMed  Google Scholar 

  107. Wang, F. et al. The overlap of soil and vegetable microbes drives the transfer of antibiotic resistance genes from manure-amended soil to vegetables. Sci. Total Environ. 828, 154463 (2022).

    CAS  PubMed  Google Scholar 

  108. Schar, D. et al. Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia. Nat. Commun. 12, 5384 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Aarestrup, F. M. & Woolhouse, M. E. J. Using sewage for surveillance of antimicrobial resistance. Science 367, 630–632 (2020).

    CAS  PubMed  Google Scholar 

  110. Beltran de Heredia, I. et al. Spatio-seasonal patterns of the impact of wastewater treatment plant effluents on antibiotic resistance in river sediments. Environ. Pollut. 319, 120883 (2023).

    CAS  PubMed  Google Scholar 

  111. Wang, J., Chu, L., Wojnarovits, L. & Takacs, E. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview. Sci. Total Environ. 744, 140997 (2020).

    CAS  PubMed  Google Scholar 

  112. Van Goethem, M. W. et al. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6, 40 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. Qian, X. et al. Metagenomic analysis reveals the shared and distinct features of the soil resistome across tundra, temperate prairie and tropical ecosystems. Microbiome 9, 108 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Delgado-Baquerizo, M. et al. The global distribution and environmental drivers of the soil antibiotic resistome. Microbiome 10, 219 (2022).

    PubMed  PubMed Central  Google Scholar 

  115. Zheng, D. S. et al. Global biogeography and projection of soil antibiotic resistance genes. Sci. Adv. 8, eabq8015 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Xiao, R. et al. Antibiotic resistance in soil-plant systems: a review of the source, dissemination, influence factors and potential exposure risks. Sci. Total Environ. 869, 161855 (2023).

    CAS  PubMed  Google Scholar 

  117. Han, Z. et al. Three-year consecutive field application of erythromycin fermentation residue following hydrothermal treatment: cumulative effect on soil antibiotic resistance genes. Engineering 15, 78–88 (2022).

    CAS  Google Scholar 

  118. McManus, P. S., Stockwell, V. O., Sundin, G. W. & Jones, A. L. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40, 443–465 (2002).

    CAS  PubMed  Google Scholar 

  119. Lorenzini, G. & Nali, C. Plant protection, the Cinderella of the one health strategy? One Health 20, 101080 (2025).

    PubMed  PubMed Central  Google Scholar 

  120. Miller, S. A., Ferreira, J. P. & LeJeune, J. T. Antimicrobial use and resistance in plant agriculture: a One Health perspective. Agriculture 12, 289 (2022).

    CAS  Google Scholar 

  121. Chen, P., Yu, K. & He, Y. The dynamics and transmission of antibiotic resistance associated with plant microbiomes. Environ. Int. 176, 107986 (2023).

    PubMed  Google Scholar 

  122. van Rhijn, N. et al. Aspergillus fumigatus strains that evolve resistance to the agrochemical fungicide ipflufenoquin in vitro are also resistant to olorofim. Nat. Microbiol. 9, 29–34 (2024).

    PubMed  Google Scholar 

  123. Ghaly, T. M., Chow, L., Asher, A. J., Waldron, L. S. & Gillings, M. R. Evolution of class 1 integrons: mobilization and dispersal via food-borne bacteria. PLoS ONE 12, e0179169 (2017).

    PubMed  PubMed Central  Google Scholar 

  124. Yin, Y., Zhu, D., Yang, G., Su, J. Q. & Duan, G. L. Diverse antibiotic resistance genes and potential pathogens inhabit in the phyllosphere of fresh vegetables. Sci. Total Environ. 815, 152851 (2022).

    CAS  PubMed  Google Scholar 

  125. Reid, C. J., Blau, K., Jechalke, S., Smalla, K. & Djordjevic, S. P. Whole genome sequencing of Escherichia coli from store-bought produce. Front. Microbiol. 10, 3050 (2020).

    PubMed  PubMed Central  Google Scholar 

  126. Zhou, Z. C. et al. Association between particulate matter (PM) air pollution and clinical antibiotic resistance: a global analysis. Lancet Planet. Health 7, E649–E659 (2023).

    PubMed  Google Scholar 

  127. Zhu, G. B. et al. Air pollution could drive global dissemination of antibiotic resistance genes. ISME J. 15, 270–281 (2021).

    CAS  PubMed  Google Scholar 

  128. Bai, H. et al. Spread of airborne antibiotic resistance from animal farms to the environment: dispersal pattern and exposure risk. Environ. Int. 158, 106927 (2022).

    CAS  PubMed  Google Scholar 

  129. Xie, J., Jin, L., Wu, D., Pruden, A. & Li, X. Inhalable antibiotic resistome from wastewater treatment plants to urban areas: bacterial hosts, dissemination risks and source contributions. Environ. Sci. Technol. 56, 7040–7051 (2022).

    CAS  PubMed  Google Scholar 

  130. Li, L. et al. Municipal solid waste treatment system increases ambient airborne bacteria and antibiotic resistance genes. Environ. Sci. Technol. 54, 3900–3908 (2020).

    CAS  PubMed  Google Scholar 

  131. Wu, D. et al. Inhalable antibiotic resistomes emitted from hospitals: metagenomic insights into bacterial hosts, clinical relevance and environmental risks. Microbiome 10, 19 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kormos, D., Lin, K. S., Pruden, A. & Marr, L. C. Critical review of antibiotic resistance genes in the atmosphere. Environ. Sci. Process. Impacts 24, 870–883 (2022).

    CAS  PubMed  Google Scholar 

  133. New, F. N. & Brito, I. L. What is metagenomics teaching us, and what is missed? Annu. Rev. Microbiol. 74, 117–135 (2020).

    CAS  PubMed  Google Scholar 

  134. Forster, S. C. et al. Strain-level characterization of broad host range mobile genetic elements transferring antibiotic resistance from the human microbiome. Nat. Commun. 13, 1445 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Keenum, I. et al. A framework for standardized qPCR-targets and protocols for quantifying antibiotic resistance in surface water, recycled water and wastewater. Crit. Rev. Environ. Sci. Technol. 52, 4395–4419 (2022).

    CAS  Google Scholar 

  136. Ko, K. K. K., Chng, K. R. & Nagarajan, N. Metagenomics-enabled microbial surveillance. Nat. Microbiol. 7, 486–496 (2022).

    CAS  PubMed  Google Scholar 

  137. Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019).

    PubMed  PubMed Central  Google Scholar 

  138. Risely, A. et al. Host-plasmid network structure in wastewater is linked to antimicrobial resistance genes. Nat. Commun. 15, 555 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Chen, X., Yin, X. L., Xu, X. Q. & Zhang, T. Species-resolved profiling of antibiotic resistance genes in complex metagenomes through long-read overlapping with Argo. Nat. Commun. 16, 1744 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Abramova, A., Berendonk, T. U. & Bengtsson-Palme, J. A global baseline for qPCR-determined antimicrobial resistance gene prevalence across environments. Environ. Int. 178, 108084 (2023).

    CAS  PubMed  Google Scholar 

  141. Rhodes, J. et al. Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment. Nat. Microbiol. 7, 663–674 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ferreira, C., Otani, S., Aarestrup, F. M. & Manaia, C. M. Quantitative PCR versus metagenomics for monitoring antibiotic resistance genes: balancing high sensitivity and broad coverage. FEMS Microbes 4, xtad008 (2023).

    PubMed  PubMed Central  Google Scholar 

  143. Carr, A., Diener, C., Baliga, N. S. & Gibbons, S. M. Use and abuse of correlation analyses in microbial ecology. ISME J. 13, 2647–2655 (2019).

    PubMed  PubMed Central  Google Scholar 

  144. Roy Chowdhury, P. et al. Phylogenomic analysis of a global collection of Escherichia coli ST38: evidence of interspecies and environmental transmission? mSystems 8, e0123622 (2023).

    PubMed  Google Scholar 

  145. Kneis, D. et al. Trimethoprim resistance in surface and wastewater is mediated by contrasting variants of the gene. ISME J. 17, 1455–1466 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Gatica, J., Jurkevitch, E. & Cytryn, E. Comparative metagenomics and network analyses provide novel insights into the scope and distribution of beta-lactamase homologs in the environment. Front. Microbiol. 10, 146 (2019).

    PubMed  PubMed Central  Google Scholar 

  147. WHO. WHO Integrated Global Surveillance on ESBL-producing E. coli Using a ‘One Health’ Approach: Implementation and Opportunities (World Health Organization, 2021); https://www.who.int/publications/i/item/9789240021402

  148. Watt, A. E. et al. Parameters for one health genomic surveillance of Escherichia coli from Australia. Nat. Commun. 16, 17 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Xu, X. et al. Ecological connectivity of genomic markers of antimicrobial resistance in Escherichia coli in Hong Kong. Nat. Commun. 16, 7319 (2025).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Muloi, D. M. et al. Exploiting genomics for antimicrobial resistance surveillance at One Health interfaces. Lancet Microbe 4, e1056–e1062 (2023).

    PubMed  Google Scholar 

  151. Anjum, M. F. et al. The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment. Curr. Opin. Microbiol. 64, 152–158 (2021).

    CAS  PubMed  Google Scholar 

  152. Holcomb, D. A. & Stewart, J. R. Microbial indicators of fecal pollution: recent progress and challenges in assessing water quality. Curr. Environ. Health Rep. 7, 311–324 (2020).

    PubMed  PubMed Central  Google Scholar 

  153. Horesh, G. et al. A comprehensive and high-quality collection of genomes and their genes. Microb. Genom. 7, 000499 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Karp, Peter et al. The EcoCyc database. EcoSal Plus 11, eesp-0002 (2023).

    Google Scholar 

  155. Shi, X. et al. Microbial risk assessment across multiple environments based on metagenomic absolute quantification with cellular internal standards. Nat. Water 3, 473–485 (2025).

    Google Scholar 

  156. Yang, Y. et al. Establishing reference material for the quest towards standardization in environmental microbial metagenomic studies. Water Res. 245, 120641 (2023).

    CAS  PubMed  Google Scholar 

  157. Zhu, Y. G. et al. Microbial mass movements. Science 357, 1099–1100 (2017).

    CAS  PubMed  Google Scholar 

  158. WHO. UN General Assembly High-Level Meeting on Antimicrobial Resistance 2024 (World Health Organization, 2024); https://www.who.int/news-room/events/detail/2024/09/26/default-calendar/un-general-assembly-high-level-meeting-on-antimicrobial-resistance-2024

  159. Lacroix, M. Z. et al. Residues of veterinary antibiotics in manures from pig and chicken farms in a context of antimicrobial use reduction by implementation of health and welfare plans. Environ. Res. 238, 117242 (2023).

    CAS  PubMed  Google Scholar 

  160. Van Epps, A. & Blaney, L. Antibiotic residues in animal waste: occurrence and degradation in conventional agricultural waste management practices. Curr. Pollut. Rep. 2, 135–155 (2016).

    Google Scholar 

  161. Chen, Z. Y. et al. Unraveling the influence of human fecal pollution on antibiotic resistance gene levels in different receiving water bodies using crAssphage indicator gene. J. Hazard. Mater. 442, 130005 (2023).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the General Research Fund (17202522), the National Natural Science Foundation of China (22193062) and the Theme-based Research Scheme of Research Grants Council of Hong Kong (T21–705/20-N).

Author information

Authors and Affiliations

Authors

Contributions

T.Z., L.L., B.L., X.Y. and E.T. conceptualized the study. T.Z. provided supervision and guided the overall direction. L.L. designed the figures and wrote the manuscript, with input from all authors. Y.X., Y.Y. and X.X. contributed to visualization. M.R.G., W.G., M.J.B., C.M.M., D.G., K.S., S.P.D., A.P., P.V., E.C., E.D., N.A., G.C., D.F.-K., F.W. and T.U.B. contributed to discussion of the content, and writing and editing of the manuscript. P.J.J.A., M.v.L., P.H.N., R.H., B.F.S., D.F., T.T.-Y.L., K.M.Y.L., F.X., X.Z., J.G., H.S., G.D.W., J.M., C.B., R.C.P., S.Z.A., C.-J.C., G.Y., Y.L., Y.W., J.S., Y.Z., M.Y., X.L., B.H., L.Z., Y.W., S.T., B.K. and Y.-G.Z. commented on the paper. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Tong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Davida Smyth and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, B., Yin, X. et al. Assessing antimicrobial resistance connectivity across One Health sectors. Nat Water 3, 1100–1113 (2025). https://doi.org/10.1038/s44221-025-00514-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00514-8

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene