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The Ising model celebrates a century of
interdisciplinary contributions

Check for updates

Michael W. Macy 1 , Boleslaw K. Szymanski 2,3 & Janusz A. Hołyst 4

The centennial of the Ising model marks a century of interdisciplinary contributions that extend well
beyond ferromagnets, including theevolutionof language, volatility in financialmarkets,moodswings,
scientific collaboration, the persistence of unintended neighborhood segregation, and asymmetric
hysteresis in political polarization. The puzzle is how anything could be learned about social life from a
toy model of second order ferromagnetic phase transitions on a periodic network. Our answer points
to Ising’s deeper contribution: a bottom-up modeling approach that explores phase transitions in
population behavior that emerge spontaneously through the interplay of individual choices at the
micro-level of interactions among network neighbors.

The centennial of the Ising model offers an invitation to celebrate the his-
torical contributions of interdisciplinary scholarship at the intersection of
the social and physical sciences. Social physics – the study of statistical
regularities in human behavior and social interaction – dates back at least to
Quetelet’s Physique Sociale1. Although individual actions are highly idio-
syncratic, Quetelet introduced the idea, later codified by Durkheim2 as
“social facts,” that population level aggregates – like crime rates, suicide
rates, and marriage rates – vary systematically with other aggregate mea-
sures across cultures, regions, and time periods. This macroscopic quanti-
tative approach to the study of social life was transformative and provides
the backdrop against which the interdisciplinary contributions of the Ising
model can be appreciated3.

The Ising model was invented in 1924 by the physicist Ernst Ising4,
using a concept suggested by his doctoral supervisor Wilhelm Lenz. The
originalmodel assumed an undirected chain-like one-dimensional lattice in
which a single thermal excitation can break the long-range order, hence no
spontaneous magnetization or phase transition can occur at a non-zero
temperature. Twenty years later, Lars Onsager discovered that a phase
transition is possible with a two-dimensional periodic lattice, such that
spontaneous order can arise at low temperatures and the decay of magne-
tization with rising temperature is continuous, as empirically observed5. In
general, phase transitions in physical systems occur when a small change in
an external parameter (such as temperature) causes a system-wide quali-
tative change, and it can be also discontinuous as when liquid water turns
to ice.

Lenz and Ising assumed that atoms possess a quantized dipole mag-
netic moment (a magnetic spin that can be up or down), citing calculations
of Otto Stern from 1920 who had shown that magnetic moments of

molecules in paramagnetic crystals cannot oscillate in all directions since
that would contradict the Curie law for magnetic susceptibility6. Themodel
was limited to a dipole moment directed along one axis, which Renfrey
Potts7 later generalized to any number of mutually orthogonal states. The
level ofmagnetization is the difference between the number of up and down
spins. Lenz and Ising anticipated that spins can interact between nearest
neighbors in a magnetic crystal, in which interaction is limited to sites that
are directly adjacent. Although the nature of these interactions was
unknown to Lenz and Ising, they postulated that the energy of a parallel
configuration (in which adjacent neighbors spin in the same direction) was
lower than the energy of an antiparallel configuration. Energyminimization
tends to align the spins Si in a parallel configuration, while thermal noise
introduces random perturbations that disrupt order, with the potential for
spontaneous transition between ferromagnetic and paramagnetic phases.
Energy is given by

H Sð Þ ¼ �
X

JijSiSj ð1Þ

where Jijquantifies the strength of the interaction betweennearest neighbors
i and j and Si ∈ {−1, 1} corresponds to top/down directions of the
dimensionless spin Si located at the site i.

The physics of social life
Applications of the Ising model are not limited to ferromagnets. Physicists
have used lattice networks with nearest-neighbor influence to model non-
magnetic critical behaviors in a broad variety of materials, from glasses to
gases. Advances in statistical physics attracted the attention of chemists,
biologists, and computer scientists as well, inviting speculation about the
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universality of Ising systems as a lawful regularity in the self-organization of
phase transitions.

Inevitably, that speculation extended to the dynamics of opinion
bifurcation in social systems8. Nevertheless, crossing the disciplinary chasm
between the natural and social sciences confronted two ostensibly crippling
limitations. First, unlike the orderly behavior of identical individual atoms
with binary states, the highly nuanced behavior of heterogenous human
individuals arises out of complex and often poorly understood cognitive,
emotional, and physiological processes. Like temperature in ferromagnetic
systems, these unknowns can produce highly unpredictable and fluctuating
individual behavior but the idiosyncrasies cannot be assumed to be random.
Second, complex social networks hardly resemble the static, undirected,
regular lattice of the Isingmodel or the random or complete graphs needed
to simplify the mathematics of pairwise human interaction.

The unavoidable puzzle is how anything could be learned about social
life from a toy model of second order ferromagnetic phase transitions on a
periodic network. The puzzle is compounded by what Stauffer and Schulze
call the “scientific segregation” of the social and physical sciences that is
evident in the parallel development of the Isingmodel and Schelling’s classic
model of residential segregation: “[W]e see here not only residential seg-
regation, but also scholarly segregation, with physicists ignoring the
Schellingmodel until recently, and sociologists ignoring the similarity of the
Schelling to the Ising model until now.”9:2

Nevertheless, analogs of atomic spins have yielded important insights
into the qualitative dynamics of cascades and spontaneous phase transitions
in humanpopulations: the criticalmass in influencemaximization (i.e., how
concentrated do influencers need to be in order to trigger an adoption
cascade)10,11, the detection of bot-assisted influence campaigns12, the insti-
tutional procedures for collective decisionmaking13, the temporal dynamics
of co-authorship networks14, the evolution of language15, the spread of tax
evasion16,17, volatility18 and phase transitions19 in financial markets, mood
swings20, the theory of social impact21–23, the dynamics of group
membership24, the persistence of unintended neighborhood segregation25,26,
and the dynamics of political polarization27. Our review is focused on these
last two closely related applications, polarization and segregation, each with
immediate relevance to both basic and applied research.

Neighborhood segregation and the micromotives of
macrobehavior
Working without the benefit of personal computers, Schelling25 used red
and blue poker chips on a checkerboard to explain the self-organization of
residential racial segregation in U.S. cities, even in the absence of exogenous
pressures like housing costs, racial redlining, and vitriolic intolerance.
Although Schellingwas unaware of the Isingmodel, Stauffer28:473 argues that
the differences were superficial “and his model was therefore more com-
plicated than needed.” Nevertheless, his checkerboard model captures
Ising’s essential principles: local attraction to and repulsion from nearest
neighbors on a spatial network, relative to an external field operating on each
individual.

Schelling posited neighbors on a square lattice with a discrete binary
choice to stay or move that is triggered by a critical out-group proportion
among nearest neighbors, which Schelling assumed reflected only a very
modest out-group intolerance. Dissatisfied neighbors move out of the
neighborhood to the nearest empty cell that has an acceptable chromatic
distribution. The departure leaves the previous in-group neighbors more
likely to follow suit, corresponding to the “white flight” observed in real-
world neighborhoods, which Schelling also modeled analytically as a
cascade29. Follow-ups to Schelling showed that segregation could be
obtained even in a multiculturalist population that strictly preferred
diversity, due to the weak stability of multicultural configurations when
there is a small asymmetry in the aversion to having all out-group neighbors
compared to all in-group30,31.

The importance of Schelling’s demonstration goes well beyond the
explanation of residential segregation and highlights the deeper contribu-
tion of the Isingmodel to the science of social behavior—a contribution that

is captured in the title of Schelling’s 1978 book Micromotives and Macro-
behavior in which his earlier 1971 paper on “the interactive dynamics” of
self-organizing segregation is revisited. His segregationmodel illustrates the
book’s title by showing how a macro-behavioral pattern of segregation can
emerge spontaneously among individuals responding to racially tolerant
micromotives.

More broadly, the title encapsulates an approach to the study of social
life that complements Durkheimian “social facts” about the macro-
behavioral properties of populations that can be studied using cross-
cultural comparisons. The Ising model explores the microfoundations of
population behavior by showing 1) how spontaneous order (i.e., a sys-
tematic, observable, macro behavioral pattern) can emerge internally
throughwhat Schelling25 described as “the interplay of individual choices” at
the micro-level of interactions among network neighbors, and 2) how the
emergence of spontaneous order through thedynamics of interaction canbe
highly non-linear, involving phase transitions characterized by qualitative
changes in the macro-behavioral patterns.

Abelson’s puzzle
The Ising model of local influence on a spatial network also led to novel
insights into the dynamics of partisan polarization, a problemclosely related
to neighborhood segregation. Polarization refers to a process that divides a
population into nearly disjoint clusters (or “echo chambers”) where com-
munication and agreement are farmore likely within clusters than between,
disagreement is farmore likely between thanwithin, opinions andbeliefs are
relatively extreme, the alignment of opinion spreads from political to cul-
tural differences (including lifestyle choices and consumer preferences), and
partisans identify with their in-group and despise those in the out-group.

Several years before Schelling modeled the emergence of segregation
on a spatial network, RobertAbelson showedmathematically thatmodels in
which agents are influenced by the opinions of others move inexorably
toward convergence around a single opinion. “Since universal ultimate
agreement is an ubiquitous outcome of a very broad class of mathematical
models,” Abelson32:153 pondered, “we are naturally led to inquire what on
earth one must assume in order to generate the bimodal outcome of com-
munity cleavage studies.”

Three decades later, Axelrod33 rehearsed Abelson’s puzzle: “If people
tend to becomemore alike in their beliefs, attitudes, and behaviorwhen they
interact, why do not all such differences eventually disappear?” Axelrod’s
model of “local convergence and global polarization” retained the Ising
model’s regular lattice, but with pairwise adoption of a single neighbor’s
dissimilar trait, an updating rule used in the Voter model34, another equally
prominent application of Ising dynamics. Axelrod also replaced static iso-
tropic nearest-neighbor influence with the widely observed tendency for
homophily in dynamic networks, in which “birds of a feather flock toge-
ther.” The greater the pairwise similarity between agents, the stronger their
social tie, and the stronger the tie, the higher the probability to copy one of
the neighbor’s dissimilar traits. At each time-step, an agent and one of its
neighbors are randomly selected for updating. With a probability equal to
the proportion of shared cultural features, the agent adopts one of its
neighbor’s traits onwhich theydiffer. The process continues until all pairs of
neighbors are either identical or completely different across all cultural
dimensions.

Flache and Macy35:970 highlighted Axelrod’s counter-intuitive insight:
“Homophily generates a self-reinforcing dynamic in which similarity
strengthens influence and influence leads to greater similarity. This might
appear to merely strengthen the tendency towards global convergence.”
Instead, Axelrod found that convergence can remain local, leading to global
diversity, where “the number of stable homogeneous regions decreaseswith
the number of features, increases with the number of alternative traits per
feature, decreases with the range of interaction, and (most surprisingly)
decreases when the geographic territory grows beyond a certain size.”

Axelrod’s model can be interpreted as a process of “cultural specia-
tion,” in which influence is not possible between individuals that have
absolutely nothing in common.However, whenKlemmet al.36 introduced
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epsilon temperature into Axelrod’s model, the results were dramatic:
cultural drift leading to the collapse of diversity, a result also reported by
Castellano37 using an Ising model with Glauber dynamics and by Flache
and Macy35. Temperature in the Ising model corresponds here to beha-
vioral randomness, caused by decision-making that includes an idiosyn-
cratic input along with social influence from network neighbors. The
idiosyncratic input can be partially non-deterministic since it depends on
the complexity of human cognition. These perturbations can create
bridges across the divides that demarcate cultural regions when an agent
randomly adopts a cultural trait that is sharedwith a neighbor with whom
they previously had nothing in common. The shared trait restores a
positive probability of future influence, thereby destabilizing a previously
metastable configuration characterized by multiple cultural islands,
leading to globally stable monoculture. This result shows the importance
of the temperature parameter in the original Ising model, which has
generally been neglected in social science applications that assume sto-
chastic decision making (as in Axelrod’s model of behavioral propensity)
but do not bound choice propensities away from the limits of probability.

Following Klemm et al.36, Centola et al.38 revised Axelrod’s model by
extending the principle of homophily beyond the preference to interactwith
similar neighbors, to include the Schelling-like possibility to interact outside
the confines of the agent’s current location on a spatial network. While
Axelrod’s homophily limits interaction to nearest neighbors based on
threshold values for both cultural and spatial proximity, Centola et al. relax
spatial proximity as a second requirement for interaction. Unlike the
Schelling model, these agents cannot change neighborhoods; nevertheless,
neighborswith nothing in common can break their tie and search randomly
for a replacement from anywhere on the lattice, including a member of a
cultural region that would otherwise be inaccessible due to spatial instead of
cultural distance.

An even simpler solution to Abelson’s puzzle is the Ising model’s
assumption that local reactions can be negative as well as positive. When
asked to define “social influence,” a naive responsewill point to processes like
persuasion and conformity.However, influence canalsobe aversive, inwhich
the interaction between neighbors who disagree onmost issues leads them to
move farther apart on an issue on which they previously happened to agree.

A signed graph is a key assumption in Hopfield’s Ising-derived recur-
rent neural network model of associative memory39. Like the atoms with up
and down spins in the Isingmodel, Hopfield’s neurons have dipolar states of
1 (when the neuron fires) or−1 (when it does not), and the state of a neuron
dependson the states of itsnetworkneighbors,with theneural analogof both
ferromagnetic and antiferromagnetic properties, depending on a signed
pairwise edge parameter, usually denoted Jij in Ising models and wij in
Hopfield applications. For Jij > 0 in the Ising specification, energyminimizes
in the parallel configuration, but if Jij < 0, neighboring spins prefer to point in
the opposite direction of their neighbors. In both models, neighbors i and j
will either tend to converge (i.e., point in parallel) or to diverge (in an
antiferromagnetic configuration), depending on the sign of the edge-weight
parameter.

Following Hopfield, psychologists have applied the Ising model to
psychopathology, with mental disorders conceptualized as a stable config-
uration of interacting symptoms that are susceptible to phase transitions40.
The Ising approach has also been applied to attitude dynamics, modeled as
an entropy-based dynamic network of feelings, cognitive representations,
beliefs, and behaviors41. Belief networks can be modeled within-individual,
where the edges correspond to an undirected elective affinity, such that
longitudinal change in one node will be associated with change in an
adjacent belief 42,43. Belief networks have also been modeled between-
individual as the cultural projection of a bipartite social network, where the
edges correspond to the co-occurance of attitudes and beliefs, as might be
measured using survey data44.

Xenophobia in dynamic networks
A key difference betweenHopfield and Ising is thatwij is updatedwhile Jij is
not. Unlike the Ising model’s fixed edges between nearest neighbors on a

regular lattice, the Hopfield model assumes a complete undirected graph
with signed dynamic edge weights. Any network node in the Hopfield
model has the potential to be wired to any other, but the synaptic sign and
strength of their connection depends on the states of the two nodes. As with
homophily in social networks, “cells that fire together, wire together” (or
more precisely, “cells that are repeatedly active at the same time will tend to
become ‘associated’ so that activity in one facilitates activity in the other,” an
updating rule introduced by Hebb45:70 and incorporated (along with other
learning algorithms) in models of artificial neural networks.

The adage that “birds of a feather fly together” turns out to be
incomplete. Equally important is the complementary rule that “birds not of
a feather cannot be tethered,” as in the xenophobic reaction to encounters
with those perceived to be different. For theoretical physicist Lawrence
Kraus46, “The question is, what do you do to the people who are wrong
because they’re not part of your group?Well, inmany cases you kill them or
youostracize themoryou send themtohell…the samekindof xenophobia.”
Xenophobia is the mirror image of homophily, in which differences repel.
Just as homophily reinforces social influence by strengthening positive ties
among those who are similar, xenophobia reinforces social differentiation
by strengthening negative ties to those who are different.

The Hopfield model combines the Ising model’s antiparallel differ-
entiation with Axelrod’s dynamic network. The result is a model with both
attraction and repulsion that offers a robust solution to Abelson’s puzzle,
with an important implication for theories of partisan polarization. From a
random start, a connected graph of dipolar nodes tends to gravitate into a
small number of densely connected clusters within which the edges are
mainly positive and anyonewho ventures too closewill be assimilated,while
edges between the clusters are mainly negative, thereby reinforcing cultural
differentiation.

Although bifurcation is the most likely outcome, the number of stable
clusters is not always two. Consider a matrix of binary (e.g. “agree” or
“disagree”) opinions across d dimensions, where each dimension corre-
sponds to a discreet issue, such as whether to legalize marijuana. In the case
d = 2 there are four possible ideological profiles, where a profile consists of
one of the four possible combinations of agreement or disagreement on two
issues. For example, duringmuch of the 20th century, politics in theUSwas
characterized by partisan pluralism in a two-dimensional ideological con-
figuration in which social and economic liberalismwere largely orthogonal,
yielding four equidistant groups. Republicans were internally divided into
roughly equal east coast and west coast ideological wings, and Democrats
were divided between New Deal northerners and Dixiecrat segregationists.

However, there can also be more than two salient controversies,
involving opinionswithmore than twodiscreet states. This in turn implies a
much larger opinionmatrix, withmany sparsely populated profiles that are
therefore susceptible to being pulled into another location in the matrix.
Simulationswith an Ising-likemodel reveal the consequentdestabilizingof a
pluralist equilibrium, allowing pluralism to collapse into bifurcation, as has
happened in the US in recent decades47,48. As pluralism collapses, idiosyn-
cratic correlations can arise between substantively unrelated (and even
logically contradictory) preferences, such as pro-life advocacy of capital
punishment, free-marketer support for government regulation of bedroom
behavior, support for presidential criminal immunity among conservative
critics of government overreach, and endorsement of woke intellectual
intolerance among progressive intellectuals47,49.

Energy minimization in the Ising model can leave the network in an
imbalanced state, with energy trapped in a stable configuration. Triadic
imbalance among positive and negative edge weights incorporates “geo-
metrical frustration” in the nomenclature of statistical physics, “cognitive
dissonance” in psychological models, and “structural imbalance” in social
network analysis. A node’s triadic relations are structurally balanced when
the product of the three signed relations is positive.

The concept of balanced relationships was introduced by Heider in
194650 and later generalized for network structures by Cartwright and
Harary51 as a formalization of the adage, “the friends of my enemies are my
enemies.”The cognitive dissonance experienced by agents in an imbalanced
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triad can lead to changes in node attributes (aswhen two friends disagree on
a political issue), and it can also lead to changes in signed relations (as when
two enemies have a friend in common). The psychological aversion to
cognitive dissonance is an alternative to the assumption of homophily-
weighted local influence in social science applications of the Ising model.
However, these are not contradictory explanations for opinion dynamics.
Rather, Górski et al.52:1 (see also Pham et al.53) show that structural balance
and homophily “are complementary mechanisms thought to shape social
groups leading to, for instance, consensus or polarization.”

An Ising-like model with dynamic edge weights has also been applied
to the investigation of tipping points and hysteresis in the dynamics of
polarization among political elites54. In the past, common threats – like
Spanish Flu, the subprime mortgage crisis, and the attacks on Pearl Harbor
and the World Trade Center – resulted in bipartisan responses by the
representatives of both parties in the U.S. Congress. In contrast, in early
2020, a deadly COVID-19 pandemic threatened massive loss of life and the
collapse of the medical system and the economy, yet common sense public
healthmeasures became a source of bitter partisan division in the U.S., with
protective masks transformed into a political battle crest. Rather than
bridging the divisions, the pandemic became adivisive partisan controversy.
The contentious response to a common threat poses a troublesome ques-
tion: is there a critical point above which polarization becomes difficult or
perhaps impossible to reverse, even in response to a communal threat?

Tofindout, the authors used a computationalmodel of self-reinforcing
opinion dynamics driven by the interplay of attraction and repulsion.
Members of two equal-size parties traverse a multi-dimensional issue space
of positions on ten binary issues. From a random start, each agent updates
their weights and states by moving closer to neighbors with whom they
mostly agree and farther from those with whom they disagree, where the
magnitude of the move depends not only on the level of agreement or
disagreement but also two control parameters: the agent’s tolerance of
disagreement and the strength of party identification relative to their
ideological commitment to the issues. The results revealed critical values for
phase transitions into polarization and recovery,with asymmetric hysteresis
trajectories in which the tipping point for recovery can be far below the
critical value for polarization.

Evenmore disconcerting was the response of the system to exogenous
shocks,modeled as the sudden appearance of anew issue onwhich all agents
were in initial agreement. At low polarization, a shared interest promoted
bipartisan compromise on all ten issues, but above this point the new issue
itself became polarized.

Complex networks
Social scientists have long resisted three simplifications of network structure
that are widely assumed in socio-physics: a regular lattice (as in the Ising
model), a complete network (as in the Hopfield model), or an Erdős–Rényi
random graph (with equal probability of an edge between any two nodes).
These network structures simplify themathbut have never been observed in
large empirical populations. On the contrary, social networks are char-
acterized by complex topologies, with bridge ties that span vast network
distances, unevenmodularity, non-uniform degree distributions, and amix
of directed, bi-directed, and undirected edges with dynamically variable
weight andvalence.Whathappenswhen Ising-likemodels are tested instead
on complex networks? Will order (e.g., bifurcation into spins that differ in
direction) still emerge spontaneously where the translational symmetry of a
regular lattice is absent, hence interactions are not restricted to nearest
neighbors and instead decay in strength with the distance between
neighbors?

The answer, it turns out, is a qualified yes. The first indication of the
possibility of spontaneous ordering came from simulations conducted for a
scale-free network. The physicists Albert and Barabási55 showed how scale-
free degree distributions could arise in social networks that grow in size
through a process of preferential attachment. “Degree” refers to the number
of a node’s network neighbors, and a scale-free network is characterizedby a
degree distribution that follows a power-law (at least for large values of the

degree). For example, a newcomer to a social media site is more likely to
follow a well-known celebrity than a relative unknown. Simply put, pre-
ferential attachment exhibits a “Matthew effect”56 in which “the rich get
richer.” The outcome, Barabási and Albert discovered, was a scale-free
degree distribution described by a power law with the characteristic expo-
nent equal to three. Twitter approximates a scale-free network, as do col-
laboration networks, although these extreme degree distributions are
relatively infrequent in social systems57.

When the original Ising model is simulated on a scale-free network, a
bifurcating phase transition occurs spontaneously, qualitatively similar to
what was originally observed on a regular lattice, but with one interesting
difference. On a two-dimensional lattice the critical temperature for phase
transitions at the thermodynamic limit does not depend on network size
(i.e., the number of nodes). In contrast, on scale-free networks, the critical
temperature for bifurcation increases logarithmically with network size, as
shown by Aleksiejuk, Hołyst and Stauffer58. This phenomenon can be
explainedwith a detailed examination of hubs (the highly connected nodes)
in scale-free networks. Compared to nodes with average degree, hubs sta-
bilize spontaneous ordering in the scale-free network and are much more
resistant to thermal fluctuations. The larger the network, the greater the
expected degree of the largest hub.More generally, Leone et al.59 proved that
for the larger class of scale-free networks (with a generic exponent, of which
the Barabási-Albert networkwith exponent three is a prominent but specific
example), the critical temperature is proportional to the ratio of the second
moment of the degree distribution and the first moment (themean degree).
As a consequence, large populations organized in heterogeneous networks,
in which the secondmoment of the degree distribution diverges, will always
fall below the critical temperature and thus show partial order.

The analysis of the Isingmodel on scale-freenetworks has generatedan
important insight into real-world opinion dynamics. The existence of hubs
in complex social networks allows for thepossibility of changing the opinion
of an entire group by applying the societal equivalent of an external field to
themost highly connected nodes. The external impetus could take the form
of disinformation on social media (or even old-fashioned bribery) from a
foreign adversary, or a concerted public health campaign in response to a
global pandemic. Given budget constraints on the intervention, which
nodes should be targeted? Simulations of the Ising model on scale-free
networks reveal the answer: the largest of the hubs58. These nodes play the
role of opinion leaders, and convincing these leaders ismore likely to trigger
a cascading phase transition in the opinion of the entire group compared to
targeting their followers directly. The intuition is that the largest hubs are the
nodes best equipped to convert the critical mass of followers required to
sustain the cascade.

An obvious problem is that social influence can be bi-directed, hence
hubsmay also have high in-degree, inwhich case the externalfield targeting
the largest hubmaybeunable to overcome the combined influenceof a large
proportion of the population. There is a second problem as well: the scale-
freenetwork assumes away the variation in edgeweights. Suppose somehow
the external field is able to flip the largest hub. The largest hubmay have the
most followers, but are they paying attention? Contrary to the intuitive idea
that hubs are themost important “influencers,”Quax,Appoloni, and Sloot60

discovered that this is not generally the case.
Katz and Lazarsfeld’s classic empirical study of pre-internet voter

behavior in the 1940 U.S. presidential election found that social influence is
much stronger in face-to-face personal relationships, compared to the
impersonal influence of hub-likemassmedia61. They proposed an alternative
model of the “two-step flow of communication” in which information from
mass media first reaches local “opinion leaders” who then directly influence
their network neighbors through interpersonal communication. The two-
stepmodel has been tested empiricallymany times over the ensuing decades,
with mixed results. For example, a 2011 study of “Twitter lists” found con-
siderable support for the two-step model62, while a 2017 study63 found that
@user mentions in Twitter posts about protest events mainly targeted
intermediate opinion leaders whose follower counts were greater than those
of the average user but far less than those of media outlets.
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Nearly all observed social networks share three common features,
namely transitivity, homophily, and clustering64. Thus, network neighbors
typically have one ormore commonneighbors and common attributes, and
the density of ties within a community greatly exceeds the density between
communities. The Ising model has also been simulated on complex net-
works that exhibit these features65. In these systems, it is possible to observe a
specific ordering (or distribution of node states) with Ising interactions
limited to nearest neighbors. The peculiarity of this ordering lies in the
emergence of different local orders for different communities, such that the
local distribution of dipolar states within a given community differs more
than chance from the global distribution over the entire network.

The emergence of local order in clustered (or modular) networks
invites inquiry into the dynamics bywhich local ordermight collapse.Recall
Abelson’s puzzle about the inevitability of opinion convergence. Abelson
recognized the dependence of global convergence on network structure, but
only for the extreme case of disconnected subgraphs (or network compo-
nents). What happens to local order as we increase the number of bridges
between local communities? Is there a critical point in globalization atwhich
the emergence of spontaneous local order suddenly collapses? If there is a
convergence of views among different communities, which opinion will
become dominant?

Suchecki and Hołyst66,67 found that the process of opinion homo-
genization can exhibit a discontinuous phase transition. Exceeding a critical
density of connections between communities leads to a sudden sub-
ordination of the opinion of one community to the opinion of another.
Surprisingly, the groupwhose opinionwins out is not necessarily the largest
community. On the contrary, holding constant the number of ties within a
community, the larger the community the lower the density, and low in-
group density can increase vulnerability to out-group influence. A group’s
bridge nodes can be the most vulnerable to being converted through out-
group contact, so when a bridge is added to the graph, the flow of influence
will depend on the number of in-group ties at one end of the bridge com-
pared to those of the out-group node at the other end.

The outcome of inter-group competition also depends on the mag-
nitude of fluctuations in average opinions within groups before introducing
bridge ties that enable between-group interactions. Thesefluctuationsmight
be caused, for example, by the introductionof behavioral noise, analogous to
temperature in the Ising model. Linear Response Theory68 suggests that a
group with high fluctuations is more susceptible to changes, thus suc-
cumbing to the influence of the group with the fewest fluctuations.

Six degrees of separation
In 1967, the psychologist Stanley Milgram69 posed “the small world pro-
blem” using a novel letter-forwarding experiment. Milgram found that, on
average, a letter mailed to a friend could reach its final destination in about
six repostings. The startling implication is that any two people on the planet
have “six degrees of separation,” that is, they are separated by five inter-
mediate friends of friends.How is this possible, particularly if people tend to
be clustered in a “small circle of friends”?

The answer was revealed by two applied mathematicians, Duncan
Watts and Steve Strogatz70. They showed that a very small proportion of
random ties spanning large network distances can give a highly clustered
network themeangeodesic of a randomgraph, afinding that resonatedwith
the Isingmodel in physics. “The Ising system,”Gitterman71:8373 noted, “with
a small fraction of random long-range interactions, is the simplest example
of small-world phenomena in physics.” However, the greatest interest has
been in applications of “random rewiring” to human interaction. For
example, Centola and Macy72 used simulations of diffusion over rando-
mized lattice networks to expose a hitherto hidden assumption in nearly all
models of social influence, going back to Granovetter’s classic paper on the
“strength ofweak ties”73– that social contagionsmirror the spread of disease
and information. Centola and Macy classified disease and information as
“simple contagions” for which a single exposure is sufficient: If one learns
sports scores from a friend or is infected with a respiratory virus, there is
usually no need to have the scores confirmed or the viral load enhanced via

an additional independent exposure. In contrast, the adoption of risky
innovations, deviant behaviors, or products with positive network extern-
alities may require social reinforcement through exposure to multiple prior
adopters. The spread of these “complex contagions” requires dense local
structure, with bridges that are “wide” (i.e., composed of multiple short
paths between the communities) rather than “long” (i.e., spanningotherwise
distant regions of the network). The long bridges found in small-world
networks provide shortcuts that facilitate the spread of simple contagions,
butwidebridges areneeded so that nodes adjacent to one activatedneighbor
are likely to have other neighbors that are also activated.

Complex contagion was independently incorporated in the Sznajd
model, based on the principle “The power of social validation is undeniably
very strong.”74:9 The model required two neighboring spins to be aligned in
order to influence the spins of their respectively nearest and next-nearest
neighbors. A closed community then evolves toward either a dictatorship or
a collective stalemate, both of which are problematic for democratic insti-
tutions and increasingly evident in contemporary political practice.

Looking forward
This survey of social applications of the Ising model reveals three topics
where more attention is warranted. First, research on homophily and
xenophobia has analyzed the continuous coevolution of weights and states,
but phase transitions have generally been limited to the latter, to the neglect
of research on phase transitions in network topology. Consider for example
the breakup of the Zachary karate club75, or the bifurcation of social media
into disjoint and mutually reinforcing “echo chambers.” A preference to
interact with like-minded neighbors and avoid those who differ can create a
positive feedback loop where shared in-group beliefs promote insulation
from contradictory information or argument, and pressure to differentiate
from the out-group strengthens in-group beliefs. This self-reinforcing
dynamic suggests the possibility that the topological divisionmaynot evolve
gradually but might instead be characterized by a critical tipping point24.

Second, social applications of the Ising model have typically assumed
zero temperature, even when decision-making is assumed to be stochastic,
and despite the familiar assumption of randomness in opinion sampling,
statistical inference, small-world networks, controlled experiments with
random assignment, and regression models with unexplained variance.
Although the strength of social influence is often varied relative to non-
random intrinsic drivers like self-interest, it is rarelymanipulated relative to
the effects of uncertain information, trembling hands, or the unpredict-
ability of idiosyncratic human behavior. Curiously, noise in Ising-like social
science models is generally assumed to be constant but social relationships
vary in strength, while in physics it is often the opposite: interaction
strengths are held constant as noise is changing. Both parameters are
important. The manipulation of temperature is vital not only to ensure the
robustness of analytical results (as demonstrated by Klemm et al.36) but also
because there may be temperature-induced phase transitions that have
theoretical importance for the understanding of social dynamics.

Third, the value of Ising-like models goes beyond the contributions to
theoretical research. The models also yield testable predictions that need to
be confirmedwith empirical research, including controlledexperiments and
longitudinal observational studies. For example, Flamino et al.24. model
group formation and evolutionusing an Ising-derivedmodel of the utility of
interactions in a cluster as the difference between the squares of thenumbers
of members with positive and negative spins. They then test the agreement
with longitudinal observations of student social groups. Galesic and
Stein76:275 also show that “Simple Ising and Potts models can be para-
meterized to resemble actual societies,” and these models “can reproduce
belief dynamics on individual and group levels.” There is also a growing
literature in statistics that addresses empirical estimation of Ising model
parameters in cases with an unknown adjacency matrix, signed continuous
edge weights, and node-specific threshold parameters77–82.

The centennial anniversary of the Ising model is an opportunity to
celebrate a long and growing list of contributions to knowledge that extends
well beyond ferromagnets, including applications to social dynamics
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involving positive and negative reactions to network neighbors. That core
principle has been retained and extended as the models have evolved to
include homophily on dynamic and complex network topologies, with
important qualitative insights into problems like residential segregation and
political polarization.The shared framework is a bottom-up approach to the
study of population behavior that emerges out of the micro-level interac-
tions among constituent individuals.

Celebration, however, is not our intent. Instead, we invite readers to
engage in a very different exercise – to ask how anything can be learned
about human behavior from a toymodel of atomic spins. Humans, after all,
are not atomswith binary states that can be influenced by nearest neighbors
on an undirected regular lattice.

The answerwasput succinctly byFortunato et al.83:3 in an assessment of
social science applications in statistical mechanics: “In many phase transi-
tions, the large-scale behavior of a many-particle system is independent of
particulate details and their microscopic interactions; only a few basic fea-
tures are relevant. Thus, systems that cannot be fully characterized at the
individual level might still display recognizable patterns in the aggregate, if
the number of constituents is sufficiently large.” We hope our review has
helped to bridge the disciplinary divide between the behavioral and physical
sciences by offering quantitative social scientists a deeper appreciation of the
modeling approach of Ernst Ising.
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