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Antifragility characterizes the benefit of a dynamical system derived from the variability in
environmental perturbations. Antifragility carries a precise definition that quantifies a system’s output
response to input variability. Systems may respond poorly to perturbations (fragile) or benefit from
perturbations (antifragile). In thismanuscript, we review a range of applications of antifragility theory in
technical systems (e.g., traffic control, robotics) and natural systems (e.g., cancer therapy, antibiotics).
While there is a broad overlap in methods used to quantify and apply antifragility across disciplines,
there is a need for precisely defining the scales at which antifragility operates. Thus, we provide a brief
general introduction to the properties of antifragility in applied systems and review relevant literature
for both natural and technical systems’ antifragility. We frame this review within three scales common
to technical systems: intrinsic (input–output nonlinearity), inherited (extrinsic environmental signals),
and induced (feedback control), with associated counterparts in biological systems: ecological
(homogeneous systems), evolutionary (heterogeneous systems), and interventional (control). We use
the common noun in designing systems that exhibit antifragile behavior across scales and guide the
reader along the spectrumof fragility–adaptiveness–resilience–robustness–antifragility, the principles
behind it, and its practical implications.

Antifragile is a term coined to describe the opposite of fragile, as defined in a
recent book that generated significant interest in both the public and sci-
entific domain1. Although the term has a wide range of applications, it
contains a precise and mathematical definition. Systems or organisms can
be defined as antifragile if they derive benefit from systemic variability,
volatility, randomness, or disorder2. To get an intuition, we provided
examples of a system’s reference behaviors in Fig. 1, where three disruptions
(i.e., in varying amplitude, onset and duration) occur at random times and
inject volatility, randomness, or disorder in a system’s dynamics.

Inmathematical terms, antifragility is a nonlinear convex response to a
well-defined payoff function that a system exhibits in the face of volatility.
This assumes that antifragility is a local property of a dynamical systemover
a defined region of the system’s input space. Beyond that range, the system
may become fragile. This nonlinear response enables the system to not only
withstand perturbations (robust) but even benefit from them (antifragile).
Although the antifragility framework emerged in the context of financial

risk analysis, due to its universal mathematical formalism and principles, it
has recently drawn attention and has been appliedwithin different concepts
across domains including biology3, socio-economics4, urban planning5, and
risk analysis6. Applied antifragility theory extends Nassim Taleb’s anti-
fragility principle to the rank of system design methodology across
disciplines.

Defining terms across technical and natural systems
Herein, we draw from the body of literature on technical systems (e.g., road
traffic and robotics control systems) and biological systems (e.g., cancer
therapy, antibiotics, and agricultural pestmanagement) to define the scales of
antifragility theory and unify definitions from natural and technical systems.
The perspective manuscript describes the scales (Fig. 2) of the applied anti-
fragility spectrum in technical systems: (1) intrinsic, (2) inherited, and (3)
induced antifragility. While this taxonomy has primarily been applied to
technical systems, we will show that each scale of antifragility in technical
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systemshas its analog innatural (biological) systems: ecological, evolutionary,
and interventional antifragility7,8. We provide definitions for each proposed
antifragility scale and review existing literature to provide examples of suc-
cessful practical examples for a broad audience.

Moving along the spectrum (i.e., intrinsic, inherited, induced
antifragility), the response properties of the dynamical system and its
capacity to gain from stressors and anticipate random and volatile
events increase. Intrinsic/ecological antifragility describes the system’s
internal dynamics without external interactions and intervention.
Inherited/evolutionary antifragility describes the system’s dynamics
under external signals that modulate the system’s internal dynamics.
Finally, induced/interventional antifragility introduces the closed-
loop (behavior) dimension of antifragility, where the system is con-
nected to control or driving signals. Antifragility (or its converse,
fragility) defines the association between nonlinearity and variability.
Thus, the benefit (or harm) derived can be defined as a scale measure of
volatility at the level of statistical singularities (divergence of high-
order statistical moments). We note that antifragility can be quantified
under a geometrical analysis of the shape of nonlinearity characterizing
the payoff function (when the function is known). Across these scales,
the recently formed Applied Antifragility Group (https://antifragility.
science/) has proposed three Paths forward for characterizing,
designing, and building systems that behave antifragile in the face of
uncertainty, volatility, and randomness:
• Path 1 to reach intrinsic/ecological antifragility: Mathematical identi-

fication of second-order effects in the system response characterizing
antifragile behavior;

• Path 2 to reach inherited/evolutionary antifragility: Mapping the
dynamics of the system to physical principles of criticality and evolu-
tion to describe reaching an antifragile state;

• Path 3 to reach induced/interventional antifragility: Nonlinear control
synthesis or learning of optimal driving signals to push dynamical
systems to antifragile regions in their response spectrum.

It is important to note that, technical systems are typically built as
homogeneous systems, i.e., all components share the same properties (i.e.,
spatial, temporal, structural, and functional). However, most natural systems
are heterogeneous, where a few components are closer, faster, or stronger
than others. Even if we analyze across scales, the common denominator is
time. Each scale or property of the systemevolves, be it slower or faster.When
defining antifragility, time plays an important role. The study of natural
systems within the antifragility concept needs special treatment as we typi-
cally use simple, limited models to describe complex, nonlinear natural
phenomena9–11. The study of technical systems differs because we better
understand their design principles. Therefore, before discussing whether a
system is antifragile or not, we need to define the environment in which the
systemoperates and the objectives of the system. Given the environment and
the objectives, theremay bemultiple payoff functions that can be considered
for the quantification of the system’s performance12.

Depending on the indicators or metrics we adopt, the conclusions
regarding the system’s fragility can differ. In the following sections, we will
discuss the differences between intrinsic, inherited, and induced antifragility
and give certain intuitive examples in both technical and natural systems.

Intrinsic and ecological antifragility
Intrinsic/ecological antifragility (or fragility) quantifies the benefit (or harm)
of input distribution unevenness, volatility, or perturbations attributed to
the nonlinearity of the system’s payoff function.This phenomenon is closely
related to Jensen’s Inequality13,14, which states that the expected value of a
convex function is greater than the function evaluated at the expected value:

Eðf ðxÞÞ > f ðEðxÞÞ: ð1Þ

The convex shape of the function determines the inequality. Con-
versely, if f(x) is concave, the inequality is flipped:

Eðf ðxÞÞ < f ðEðxÞÞ: ð2Þ

Fig. 1 | Figure adapted (with permission) from ref.
17—perspective on a dynamical system’s behavior
spectrum: Fragile–Adaptive–Resilient–Robust–
Antifragile responses. Example disturbances have
random onset, duration (i.e., volatility), and ampli-
tude. Each type of system response captures the
predominant traits of the spectrum members.

Fig. 2 | Antifragility-associated terms, defined for
technical and natural (biological) systems. Varia-
tion in the system’s inputs, x, (left panel) leads to
variation in the system’s outputs, f(x) (right panel).
The response to variation can be defined on three
scales: intrinsic (ecological), inherited (evolu-
tionary), and induced (interventional).
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When the payoff function, f(x), representing a system is known, then
the inequality can confirmed by direct observation of f(x). In this section, we
illustrate examples in technical and natural systems, and draw the con-
nection between the nonlinearity of f(x) and the statistical properties of the
distribution of f(x).

Technical systems: intrinsic (anti)-fragility
When considering intrinsic antifragility, the fundamental aspect is
dynamics’ timescale separation describing the input–output coupling. An
example is urban intersections with different characteristics (road width),
where there is a large variation indelays even in caseswhere the traffic state is
not drastically changing, due to fluctuations in arrival and discharge rates.
As shown in the exemplary Fig. 3, empirical findings show that the delays
increase with traffic flow and are bounded by a maximum flow number.
While approaching the flow boundary, delays (output) increase exponen-
tially with flow (input) demonstrating empirically the fragility of the
system15. The convex shape of payoff functions in Fig. 3 relates to Eq. (1),
where theminimization of delays is achieved through decreasing variability,
f ðEðxÞÞ, rather than increasing variability,Eðf ðxÞÞ.Management strategies,
such as those suggested in ref. 16, aim to push the operation of the system
towards the critical density. Such strategies consider the effect of variation in
input (traffic flow) on the outcome (delays), which are modulated by the
shape of the input–output function (exponential), as illustrated in schematic
Fig. 1 schematic.

In another example, given the interactions between multiple control
loops (e.g., the internal DC motor control loop and outer robot position
control loop17, the oscillatorsmodels of traffic flow inputs18, and the coupled
traffic dynamics19,20), antifragility is quantified in the context of
input–output mappings of timescale separation performed to handle
uncertainty and high-frequency phenomena. However, note that such
systems employ intrinsic antifragility to achieve their prescribed objectives
by design, given the specifications and constraints imposedby the physics of
the operational space of the system, for example, in driver models21–23 or
traffic dynamics24–26.

When unpredictable fluctuations start developing in a dynamical
system that is on the verge of losing its stability, it is commonly referred to as
criticality. The ability to absorb and respond to stresses, due to the
appearance of scale-free temporal fluctuations, slowing dynamics, and
multistability, are the fundamental indicators of criticality. Here, anti-
fragility canbeviewedas themotionof a system fromanexisting steady state
to a better one in the aftermath of a change in conditions. This transfer

among steady states may be continuous (second-order phase transition) or
discontinuous (first-order phase transition)27.

Natural systems: ecological (anti)-fragility
In biological systems, changes in environmental conditions can decrease
the survival and fecundity of individuals based on a species’ Darwinian
fitness. The rate of change in environmental perturbations may reduce
fitness in response to stochastic fluctuations and seasonal variation14. The
payoff function associated with the system response to environmental
variation may be concave (fragile), convex (antifragile), or linear
(neutral)1,28. An example is shown in Fig. 4, where there exists a dose
distribution mean and variance (panel a) associated with each anticancer
treatment protocol (panel b), where the outcome depends on the concave
(top) or convex (bottom) dose–response function (panel c). To maximize
response, concave functions (red) should employ low-variance protocols,
while concave functions (blue) should employ high-variance intermittent
protocols. Ecological antifragility is the natural systems counterpart to
intrinsic antifragility and may defined as the system benefit derived from
input volatility8. Defining ecological fragility or antifragility is useful for
prediction and control of a biological population. For example, mathe-
matical models describing the response to anticancer drugs measure the
ecological effect of volatile versus continuous treatment schedules7, with
or without drug pharmacokinetics29.

Neuronal processing offers a complex system that recapitulates a
large repertoire of dynamics. Neural networks must keep their stability
under perturbations on timescales from milliseconds to months or even
years10. It seems paradoxical, but neural networks can only remain stable if
they are excitable and able to adapt their response (and structure) in
reaction to outside stimuli. Neuron-level excitability modifications reg-
ulate the functionality of neural networks by absorbing a broad variety of
molecular and cellular parameter changes while preserving their spiking
functionality. For instance, homeostatic activity regulation in single
neurons enables resilience to recurrent state variable alterations that
correlate with resilience to changes in parameters due to the critical
slowing down phenomenon30.

Similar to technical systems, criticality in natural systems also relates to
antifragility. Empirical investigations have suggested that living systems
operate in the proximity of critical thresholds, existing at the delicate
boundary between order and randomness31 demonstrated across various
domains including electrical heart activity and brain function, among
others32–35. Precise measurement of the payoff function for predicting
antifragility plays a key role. López-Corona and coworkers36 applied these
ideas discussed above to the scale of planetary ecosystem antifragility by
integrating well-established principles from nonequilibrium thermo-
dynamics and adopting a system dynamics approach using Fisher’s infor-
mation on Earth’s entropy production37–39.

In summary, antifragility can be quantified under a geometrical ana-
lysis of the shape of nonlinearity characterizing the payoff function.
Important to note here is that antifragility is a scale measure of the effect of
variation at the level of statistical singularities (divergence of high-order
statistical moments). Here, depending on the type of system (natural or
technical) assessing antifragility is bound to themeasureof benefit (orharm)
of input distribution unevenness, volatility, or perturbations attributed to
the nonlinearity of the system’s payoff function.

Inherited and evolutionary antifragility
Inherited/evolutionary antifragility (or fragility) quantifies the benefit (or
harm) of input distribution unevenness, volatility, or perturbations attrib-
uted to the system’s response to external signals. In many scenarios, a
system’s payoff function may be unknown (or unmeasurable), or it may be
known but external signals introduce additional nonlinearities. Previous
work illustrated the connection8 between convexity (or concavity) of a
payoff function, f(x), and statistical properties of the distribution of f(x). For
example, variation in the input distribution (Fig. 2, left) passing through a
convex response function, f(x), results in a right-tailed outcome distribution

Fig. 3 | Exemplary illustration showing delays (output) at intersections with
different road widths, over traffic flow (input). The long-dashed line indicates a
road with a narrow average width, while the short-dashed line represents a wide-
width road.
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(Fig. 2, right). In contrast, a concave response function results in a left-tailed
distribution. Therefore, everything fragile must be concave to harm.

Technical systems: inherited (anti)-fragility
Antifragility is correlated with increased system heterogeneity40,41. This
aspect comes into playwhen considering the system’s capacity tobuild extra
capacity in anticipation of perturbations. More precisely, to achieve inher-
ited antifragility, a systemdesigner builds upon the timescale separation of a
redundant overcompensation component, as shown in robotics17, traffic
control18, and medical42 applications of applied antifragility.

Similarly, machine-learning systems19 maintain timescale separation
through the formulation of the learning task. More precisely, the system
determines the best action atwhich the systemyields themaximumpossible
discounted future reward. Isolating only the contribution of the timescale
separation and the redundant overcompensation term, the machine
learning inherited antifragility controller gained in the skewness (i.e., con-
vexity) of the disruption magnitude over surging demand. In such systems,
antifragility is quantified as the geometric properties of the anticipated
control actions via the shape of the response to high-magnitude external
perturbations.

Finally, criticality also plays a role in inherited antifragility by allowing a
systemto leave the current steady state, for adifferentone.The trigger for state
switching may come from a change in the (1) parameters of the system, (2)
externally enforced noise, or (3) an increase in the rates of the system from
neighboring entities in a competition of cooperation with the system43,44.

Natural systems: evolutionary (anti)-fragility
Evolution, defined here as the change in heritable traits within a population
over time, is also influenced by environmental perturbations45. In the pre-
vious section, ecological antifragility considered individual species in iso-
lation to quantify the response to perturbation. Evolutionary antifragility
quantifies how a heterogeneous population of interacting species is affected
by perturbations. For example, in cancer, competition between hetero-
geneous populations of cell types modulates antifragility46. In biological
systems, we investigate complexity (which implies maximum computa-
tional capabilities) and how systems reach criticality47–49. Adaptive
mechanisms of living systems do more than merely react to the environ-
ment’s variability through random mutations followed by selection; they
must have built-in characteristics that enable them to discover alternatives
to adapt to adversity, variability, and uncertainty39.

Using theoretical arguments, it has been proposed that systems under
eco-evolution tend to be at criticality, implying maximum complexity and
inferential capabilities; and then they are also atmaximumantifragility39,50,51.
Stability plays a central role in function, in both natural and technical
dynamical systems. Paradoxically, a dynamical system can remain stable
only if it is excitable and able to change its behavior in reaction to outside
stimuli. It is flexible and thus stable; in fact, the organism’s true stability
depends on its modest instability52.

Inherited antifragility in natural systems is a consequence of the
interactions among all components through evolutionary processes (e.g.,
genetic inheritance, microbiome inheritance, and social inheritance), con-
strained by external conditions. Antifragile natural systems derive benefits
under uncertainty, stressors, and perturbations in both ecological and
evolutionary scales. Evolution by natural selection itself can be thought of as
an antifragile process, whereby a population is maintained amidst envir-
onmental perturbations through genetic variation. For example, although
individuals within a population may die, the population evolves toward a
more antifragile state, with increasingly higher fitness to address fluctuating
environmental conditions28,53.

Induced and interventional antifragility
Induced/interventional antifragility (or fragility) quantifies the benefit (or
harm) of input distribution unevenness, volatility, or perturbations attrib-
uted to the system’s response to closed-loop controllers.

Technical systems: induced (anti)-fragility
The control-theoretic approach to induced antifragility focuses on the
combination of timescale separation and redundant overcompensation
with variable structure control. A controller guides the system to the anti-
fragile region of its operational domain through a judicious choice of an
external control or regulation signal17. This canbe accomplishedbyproperly
synthesizing a control law, which develops a redundant overcompensation
capacity to handle uncertainty regarding the sensor and actuator failures by
pushing the closed-loop system dynamics to prescribed dynamics. This is
captured in Fig. 5, where the fragile–antifragile behavior is depicted across
spatiotemporal dynamics of a robot in uncertain environments. Here,
antifragility is quantified through the quality of the dynamics tracking and
the speed of reaching the desired region of the desireddynamicsmanifold in
the presence of uncertainty and volatility through adaptive control54, robust
control55, and resilient control56 strategies. In a large-scale traffic control

Fig. 4 | Figure reproduced with permission from ref. 8—example treatment-scheduling protocols. a Example dose distribution with low (top) or high variance (bottom).
b Associated protocols. c Low-variance protocols are optimal to maximize response for concavity; high-variance protocols for convexity.
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application18, the antifragile controller demonstrated statistically significant
gains given increasing traffic disruptions amplitude over time. The sys-
tematic evaluation demonstrates that the control law selection based on the
second-order effects of the signal re-computation may capture the volatile
dynamics of the closed-loop system.

Machine-learning approaches can be used to induce antifragility, for
example, in the design of a traffic reinforcement learning agent that learns to
be conservativewhenregulating the controlled region19.Here,wehave again a
clear quantificationof the system’s antifragility basedon adynamics response
curve to external uncertainty (i.e., amplitude of traffic disruptions) and
volatility (i.e., onset and offset of traffic disruptions) overcoming the baseline
approach (i.e., static police-made traffic light control), a state-of-the-art
model predictive control57, and other reinforcement learning approaches58.

Finally, when considering criticality, the control of multistability deals
with the transition of the system to a more desired steady state and also
preventing it frommoving to an inferior one59. It is beneficial for a controller
to anticipate the tipping points well before they occur so that remedial
actions can be adopted60.

Natural systems: interventional (anti)-fragility
Designing intervention strategies which lead to the eradication of a
heterogeneous population may be exceedingly difficult due to the evo-
lution of resistance to interventional treatments. For example, the
continuous administration of anticancer drugs61,62 or antibiotics63 selects
for resistant sub-populations rendering subsequent treatments ineffec-
tive. Recent work to apply principles learned from agricultural methods
known as Integrative Pest Management has shown some success in the
management of cancer64,65. For example, adaptive cancer therapy uses a
simple rule-of-thumb protocol to adapt treatment administration and
treatment break time intervals based on tumor response66. Importantly,
this adaptive protocol in an increase in dose variance (prolonged periods
of high dose followed by prolonged periods of zero dose)67. This is part of
a broader effort to design treatment protocols using evolutionary

principles that increase the treatment-induced volatility that tumor cells
undergo during the course of treatment tomaximize tumor regression67.
Mathematical models of tumor-immune-drug interactions can drive
chemotherapy optimization regimens to maximize the efficacy/toxicity
ratio42,68.

Furthermore, a series of recent papers have shown that dietary patterns
might influencenetworkcommunicationalong thebrain-gut axis, especially
at the age that both systems go through maturation processes69,70. From an
ecological perspective, an adequate level of connectivity dissipates the effect
of perturbations in the distribution of species and enhances ecosystem
stability. A loss in connectivity leads to a loss in gut microbiota ecosystem
antifragility. The basic rationale is that a system’s response to perturbation
requires an efficient flow of information. For maximum antifragility, this
flow must be optimal, implying maximum connectivity39,70.

Discussion
In this perspective, we have reviewed efforts to apply antifragility
theory to both technical/physical systems as well as natural/biological
systems. We provide a conceptual framework to unify the language
across both systems and define the relevant scales of fragility, sum-
marized below.

Intrinsic and ecological antifragile systems benefit from internal
dynamics distribution unevenness, based on the convexity of the response
function of the system without external input and solely based on the
internal components’ heterogeneity and resilience. Features such as stability
describe the most simple system response with minimal antifragile char-
acteristics. Within this scale, precise characterization of the payoff function
describing the relationship between system inputs and outputs is of fore-
most importance.

Homogeneity and heterogeneity play a crucial role in the design and
synthesis of inherited and evolutionary antifragile systems. From criti-
cality and multi-level interactions of multiple timescales to quantifying
criticality margins, such a design scheme leverages local interactions of

Fig. 5 | Figure reproduced with permission from ref. 17—spatial and temporal
dynamics of fragile and antifragile behaviors of a robot in uncertain environ-
ments. The spatial dynamics (inset left) describe the robot’s trajectory, in Cartesian
(x,y) space, in the presence of uncertainty (i.e., several types of unexpected faults in
the robot’s motion). Red describes the strong (i.e., fragile) deviation from the goal of
moving as fast as possible from point P1 to point P2 in the presence of faults. Green
marks the antifragile trajectory which absorbs the uncertainty and gains a smoother
trajectory. The temporal dynamics (inset right) describe the robot’s trajectory
tracking in the presence of uncertainty from the perspective of travel time. Travel
time is implicit in the relation between the control signal sent to the robot’s actuators

and the curvature of the trajectory of the robot given that signal. In this case, the
fragile behavior is characterized by longer executions away from the prescribed
dynamics whereas the antifragile behavior has a more straight convergence in the
presence of faults. Closed-loop dynamics in the presence of stressors and volatility.
The planes describe possible system dynamics motions from various initial con-
ditions in the presence of stressors and volatility and the convergence to antifragile
behavior. The redundant overcompensation refers to geometrically longer paths to
reach the antifragile region (i.e., the green curve between the planes). These longer
paths ensure that the system’s response can cope with jitter in reaching prescribed
dynamics in the presence of faults.
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the system to make it benefit from perturbations. In other words,
inherited and evolutionary antifragile systems benefit from input dis-
tribution unevenness, based on the emergent system dynamics and its
interactions with the operating environment (i.e., disturbances, noise,
modulated perturbations).

Inducing a desired behaviorwithin interventional antifragility requires
an innovative, control-theoretic, design and synthesis approach. Here,
nonlinear dynamics across both space and time can promote the system’s
capacity to absorb internal and external disruptions. Induced and inter-
ventional antifragile systems benefit from input distribution unevenness
basedon emergent systemdynamics in closed-loopwith a controllerdriving
the system towards prescribed dynamics in the presence of modulated or
non-stationary disturbances, noise, and volatility.

It is also important to note that we need not constrain ourselves to
search only for systems that are antifragile. First, a systemmay be fragile on
the intrinsic or inherited scales yet still be amenable to interventions that are
antifragile throughcleverdesignof feedback controllers. Second, fragility (or
antifragility) is a measurable quantity: the response of a system to volatility.
Some systems (e.g., tumors) may respond in a fragile manner to given
perturbations (e.g., chemotherapy) and thus it is critical to characterize the
system along the fragile–antifragile spectrum to intervene appropriately.
Finally, though we consider a discrete layering of antifragility types, we are
aware that this structure can be applied systematically across scales. In other
words, even the simplest systems can be subject to all three types of
antifragility.

Received: 7 January 2024; Accepted: 25 June 2024;
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