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Human behavior-driven epidemic
surveillance in urban landscapes
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P. Valgañón 1,2, A. F. Useche3,4, F. Montes4, A. Arenas5 , D. Soriano-Paños2,5,6 &
J. Gómez-Gardeñes 1,2,7

We introduce a surveillance strategy specifically designed for urban areas to enhance preparedness
and response to disease outbreaks by leveraging the unique characteristics of human behavior within
urban contexts. By integrating data on individual residences and travel patterns,weconstruct aMixing
matrix that facilitates the identification of critical pathways that ease pathogen transmission across
urban landscapes enabling targeted testing strategies. Our approach not only enhances public health
systems’ ability to provide early epidemiological alerts but also underscores the variability in strategy
effectiveness based on urban layout. We prove the feasibility of our mobility-informed policies by
mapping essential mobility links to major transit stations, showing that few resources focused on
specific stations yields a more effective surveillance than non-targeted approaches. This study
emphasizes the critical role of integrating human behavioral patterns into epidemic management
strategies to improve the preparedness and resilience of major cities against future outbreaks.

Throughout history, the interplay between epidemics and human societies
has been profound, each significantly influencing and shaping the course of
the other1–3. This interplay, already present during our early hunter-gatherer
days, was notably boosted by the establishment of agrarian societies around
10,000 years ago, when the creation of communities provided fertile
breeding grounds for diseases to thrive. It was during this transformative
period that humanity first encountered diseases such as malaria, tubercu-
losis, leprosy, influenza, and smallpox, which have since significantly altered
the course of human history4.

As human settlements transformed into nowadays vast urban centers,
they also introduced new challenges for contemporary epidemiology5,6.
Urban environments, characterized by dense populations, complex social
interactions, and socioeconomic disparities, create ideal conditions for the
spread of communicable diseases7–9. Moreover, the rapid movement of
people and goods within and across cities sweeps out national and con-
tinental boundaries, thus facilitating the global dissemination of pathogens
between major city centers10.

The advent of big data and advanced modeling techniques offers new
avenues for understanding andmanaging this cocktail of epidemic boosters,
emphasizing the importance of integrating mobility data and demographic
insights into urban epidemic management strategies11. In this line, data

analytics have significantly advanced epidemic modeling12,13, enabling the
mathematical formalization of complexities associated with demographic
segregation, mobility patterns, and heterogeneous contacts-key factors in
disease propagation14.

Utilizing metapopulation frameworks, epidemic models effectively
manage the interaction among the above ingredients by coupling contact-
driven transmission with mobility-related dispersal15–22. In recent decades,
such behaviorally informed metapopulation models have become indis-
pensable for mechanistic forecasting, enabling precise predictions of epi-
demic trajectories across diverse scales-from local communities23,24 through
national25–27 to global levels28–30. Moreover, contemporary epidemic models
extend beyond mapping the spatio-temporal spread of diseases, but also
facilitate the development of data-informed containment strategies with
maximal resource efficiency and minimal socioeconomic disruption31–34.

These efforts highlight the critical role that incorporating social
dynamics into epidemicmodels has on our capacity to respond to infectious
disease threats, an aspect that has recently materialized in research
agendas35–37 aimed at advancing this endeavor. These agendas, among other
problems, specifically highlight the challenge of employing realistic human
contact structures to explore localization behavior in key subpopulations for
epidemic control policies. Addressing this precise challenge, here we
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introduce a data-informed approach tailored for large urban centers,
leveraging their unique demographic andmobility patterns.Our framework
allows identifying critical human flows and leads to actionable surveillance
strategies toobtain valuable earlywarningsof incoming epidemic outbreaks.

Results
Mixing matrixM
Toaddress the formerchallenge,wefirstpresenta formalismaimedat capturing
the complex spatiotemporal structure of human mobility, particularly within
urban environments.Over the last decades, extensive researchhas beendevoted
to reveal the complex and rich spatiotemporal structure of human mobility
patterns38,39. When focusing on urban environments, public surveys reveal that
human flows are mainly dominated by recurrent mobility patterns40,41 con-
necting the residence of individuals with the work place to which they usually
commute. Consequently, recurrent human flows have been incorporated into
theoretical frameworks42–46 as the backbone of metapopulationmodels tailored
to track urban epidemics. This way, the analysis of origin-destination matrices
(OD), either constructed from mobile phone devices or from census surveys,
have been instrumental in shedding light into the vulnerability of cities during
the initial stages of epidemics and the spatially uneven distribution of cases47–49.

Regardless of the former advances, the feasibility and efficiency of
surveillance campaigns and control strategies driven by commuting data
remains to be explored. To tackle this challenge here we leverage the
formalismproposed in ref. 50 for the study of contagion-diffusion processes
with recurrent mobility patterns of distinguishable agents. This model
represents a city as a collectionofP interconnectedpatches (seeFig. 1a), each
one representing a geographical area. The mobility data informs the matrix
n, whose elements, nij, identify subgroups of individuals living inside patch i
and regularly traveling to patch j. Therefore, a generic patch, say i, is
populated by ni residents, divided into subgroups based on their travel
destinations (ni =∑jnij), as schematized in Fig. 1a.

Once constructed the matrix n, we can simulate reactive processes,
such as contagion dynamics, coupled with the diffusion of the population.
To this aim, the model assumes a discrete-time approach, where each time
step consists of fourdifferent stages. First, each individual decides tomove to
the usual destination with probability pd or stay in the residence area. Sec-
ond, (day) interactions take place with those agents sharing the same
location. Third, those individuals thatmoved in thefirst stage return to their
residence and, fourth, another interaction stage takes place when agents
make local contacts inside their subpopulationof origin (night interactions).
These contacts reflect interactions withmembers of their own household or
neighborhood. In any of the two interaction stages occurring in each time
step, contagions can occur. A more exhaustive description of the steps
present in the simulation scheme is found in the Methods section.

The processes described above can be encapsulated into a Mixing
matrix M which contains the expected number of interactions among the
different subgroups of individuals found in an urban environment. We
illustrate in Fig. 1b–e the elements of the mixing matrix associated to a
specific subgroup of individuals with residence in patch i and destination in
patch j. These elements capture all the contagion venues affecting these
individuals as a result of their mobility across the city. Namely, these indi-
viduals can interact with other residents staying there (Fig. 1b) and with
others coming from a different patch (Fig. 1c). In contrast, whenmoving to
their usual destination, they interact with its residents (Fig. 1d) and with
other visitors also moving there (Fig. 1e). The mathematical expression of
the elements of the Mixing matrixM can be found in the Methods section
whereas their derivation from the equations governing the epidemiological
model used here is explained in the Supplementary Information.

Mobility-informed testing and quarantine policies
The leading eigenvector ofMixingmatrices, derived from epidemicmodels
on networked populations, plays a pivotal role in pinpointing key actors in
epidemic outbreaks, whether they are individuals51 or specific geographical
areas32,33. Expandingupon these insights,we introduce a testing strategy that
prioritizes screening of those agents participating in origin-destination trips
with a large contribution to the leading eigenvector of the matrix M. The
operational framework of this policy is the Susceptible-Exposed-Infected-
Recovered-Quarantine (SEIRQ) model, as depicted in Fig. 2a, so that those
agents that test positive are isolated from the population as a control policy.

As illustrated in Fig. 2b, our testing policy hinges on two critical
parameters: the total number of tests ntests at our disposal, and the links in
themobility network L targeted by these tests. By adjusting the parameter L,
our strategy can transition from a focused approach, targeting individuals
taking part in those trips with the largest contributions to the leading
eigenvector ofM, to a more distributed allocation of tests across the urban
landscape.Amore detailed exposition of the strategies for the distributionof
testing resources is provided in the Methods section.

We apply our mobility-informed testing strategy to two real scenarios,
the cities of Bogotá andMiami,whosemixingmatrices are constructed from
demographic and mobility data drawn from public surveys, as detailed in
theMethods section. For this purpose, we simulate several outbreaks caused
by a pathogen with basic reproduction numberR0 ¼ 4 and for which we
have ntests = 2 × 10

5 daily tests to counteract its spread. This way, varying the
number L allows us to evaluate the impact of different testing distributions.

In Fig. 2c we plot the time evolution of the number of infected for
different strategies. Starting froman scenariowhen resources are distributed
quite evenly across the city (L = 5 × 104), decreasing L yields the usual
flattening of the epidemic curves, reducing and delaying the peak of

Fig. 1 | Mobility model and mixing of the popu-
lation. a Illustration of the mobility model here
considered. We assume a metapopulation of P pat-
ches and construct the mobility network from daily
back-and-forth movements recorded in public sur-
veys. Each geographical patch i in the metapopula-
tion is partitioned into different subgroups
according to their usual destination, being nij the
number of residents inside i daily commuting to
patch j. b–eMixing patterns of the subpopulation of
nij residents in i with typical destination in j. When
staying in their residential patch i, these residents
might interact with others staying also there (b) and
also with residents from other patches (c) that have
as usual destination patch i. In turn, when moving,
residents in i will interact with those residents from
other patches: (d) either those that belong to the
usual destination j and that decide not tomove or (e)
with residents of a patch l who also have as usual
destination patch j.
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contagions.However, when tests are concentrated in the individuals of a few
critical links (L = 2 × 103), spreading them out by increasing L also favors
epidemic control. Overall, our analysis for the city of Bogotá reveals the
existence of an optimal number of links L�opt on which testing and isolation
policies should be prioritized to efficiently control an outbreak. Remarkably,
Supplementary Fig. 1 shows that such L�opt value does not exist for Miami,
pinpointing that in this city the concentration of tests on a few subgroups of
individuals, i.e. reducing L, seems to be the best control strategy.

Optimal control policies depend on urban landscapes
To further showcase the effects of targeted testing and quarantine policies,
we now focus on the impact of themobility-informed policies on the attack
rate, defined as the total number of individuals contracting the disease
during an epidemic outbreak. Fig. 3a–b show how the latter indicator
depends on both the basic reproduction number of the diseaseR0 and the
spatial allocation of the ntests across L mobility links in Bogotá and Miami
respectively. Figure 3a reaffirms the existence of an optimal value L�optðR0Þ
of targeted links reducing the long-term impact of epidemics on Bogotá.
Interestingly, such value is not independent of the epidemic process but
strongly varies with the basic reproduction numberR0, yielding a complex
interplay between the extent of an outbreak and the optimal spatial allo-
cation of resources to reduce its burden. Conversely, Fig. 3b shows that, in
Miami, concentrating testing efforts on a few critical links allowsmitigating
an outbreak even for relatively large R0 values. Similar findings are pre-
sented in Supplementary Fig. 2 for other cities retrieving the same behaviors
observed in Bogotá orMiami. The optimalL�opt value is found in the cities of
NewYork andBoston,while the city ofAustin returns the sameoutcomesas
Miami. The results are further reinforced in Supplementary Figs. 3 and 4
where we perform a sensitivity analysis on other parameters, namely the
variables η (the latency probability) and the mobility p, proving the quali-
tative results remain consistent.

Our findings underscore that mobility-informed policies should be
adapted to the unique characteristics of each urban environment52,53. Spe-
cifically, in cities with complex and segregated socio-economic activities,
concentrating resources on the most critical links does not always ensure
community-wide protection and thus proves ineffective. Conversely, this
strategy yields significant benefits in cities where the most relevant links are
primarily confluent towards a few and close patches. These two contrasting
patterns correspond to the two cities under study and can be further elu-
cidated by examining the spatial distribution of cases for a resource allo-
cation characterized by L≳ L?optðR0Þ.

In Fig. 3c, we consider that tests are allocated across the L = 2.8 × 104

most critical links in Bogotá and depict the attack rate in each patch R1
i ,

defined as the total number of recovered agents living in patch i at the end of
the epidemic outbreak. This reveals a widespread penetration of the disease
with varying degrees of impact across different areas. We also represent in
Fig. 3d the spatial allocation of resources, that is, the proportion of tests
conducted on individualsmoving to each patch in this scenario. This spatial
distribution indicates that the mobility-informed policies prioritize acting
over human flows spanning multiple neighborhoods. An in-depth
exploration of the dependence of both cases and test distribution on L is
presented in Supplementary Fig. 5. There, it becomes evident that the
optimal L?opt arises from the trade-off between the spatial allocation of
resources required to address different contagion sources and theminimum
number of tests needed for local outbreak control in each patch. In fact,
when L < L�optðR0Þ, the epidemic is contained in very specific locations but
emerges elsewhere. Conversely, beyond the optimal value, i.e. when
L > L�optðR0Þ, the dispersion of tests across the urban landscape is such that
preventing the spread in the main outbreak becomes totally unfeasible.

The epidemic scenario observed inBogotá starkly contrastswith that of
Miami for L = 6 × 103, where the majority of both cases (Fig. 3e) and the
allocated tests (Fig. 3f) concentrate around a single patch and its immediate

Fig. 2 | Mobility-informed testing and quarantine policies. a Susceptible-
Exposed-Infected-Recovered-Quarantined (SEIRQ) compartmental model used in
the epidemic simulations. In addition to the usual flows governed by the pathogen
infectiousness λ, the incubation period η−1 and the recovery probability μ, we assume
that Infected and Exposed individuals are quarantined after being tested.
b Illustration of the testing strategy implemented in the model. Such strategy
depends on the amount of daily tests available to screen the population ntests and on
how these tests are allocated across the city, governed by L. Small values of L capture

targeted resource allocation on the most vulnerable subgroups defined from the
Mixing matrix M whereas large L values correspond to their random allocation.
c Time evolution of the number of infected individuals in Bogotá when distributing
ntests = 2 × 105 tests every day on the L most critical links (color code). Solid lines
represent the average time evolution and the shadowed region corresponds to 95%
confidence interval over 25 simulations for each L value. The basic reproduction
number of the pathogen responsible for the outbreak is R0 ¼ 4.
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vicinity. In this context, the aforementioned trade-off leans towards max-
imizing local outbreak control, thereby favoring strategies that adopt lowerL
values. Specifically, Supplementary Fig. 5 reveals that as tests become more
evenly distributed (i.e., as L increases), the surge in attack rate shown in
Fig. 3b is attributable to a significant outbreak in the most vulnerable area,
which cannot be contained with the limited resources available there.

Mobility-informed surveillance policies
The results shownabovehave illustrated that theMixingmatrixM canguide
the optimal allocation of tests to reduce the long-term extent of epidemic
outbreaks. Regardless of the potential adequacy of the different control
policies here proposed, their timing of implementation also represents a
crucial factor shaping their ultimate benefits to reduce the epidemic burden
on the population54–56. Such timing is closely related to the design of efficient
surveillance strategies, which should provide the authorities with an up-to-
date picture of the evolution of the number of cases for the early diagnosis of
ongoing epidemic crises.

Wenowexplorewhether theMixingmatrixM can inform surveillance
campaigns for an efficient screening of the infected population in an epi-
demic outbreak. In what follows, we restrict our analysis to Bogotá and
consider an epidemic outbreak with R0 ¼ 4. Our surveillance strategy
distributes ntests = 2 × 104 tests across the L most critical mobility links
identified in the matrix M. Unlike the previous analysis, we assume an

uncontrolled scenario, meaning that infected individuals are no longer
quarantined upon detection but, instead, their number is monitored for
surveillance purposes as shown in the compartmental diagram in Fig. 4a.
Thus, our baseline scenario (see Fig. 4b) consists in an uncontrolled epi-
demic wave in which contagions naturally propagate through the urban
environment. This enables us to quantify the temporal evolution of positive
cases as the epidemic unfolds without case detection having any effect on its
evolution.

In Fig. 4c, we present the temporal evolution of the total number of
detected cases for different allocation strategies of testing resources, regu-
lated by L. These results indicate that concentrating testing resources on a
limited number of key mobility links (indicated by a small L) enables sur-
veillance systems todetect an impending epidemicmore swiftly. In addition,
the cumulative number of cases detected 30 days after the beginning of the
outbreak decreases as tests are more evenly distributed across the city, for
different values ofR0 and amounts of testing resources, ntests (see Supple-
mentary Fig. 6).

To more precisely measure this effect, we introduce the concept of
the EarlyWarning Time (EWT), defined as the time needed to declare an
epidemic scenario after detecting nalarm infected individuals (indicated
by the dashed line in Fig. 4c). The increasing trend of the EWT with the
number of links, L, across which tests are allocated is evident in Fig. 4d–e.
This observation aligns with the premise that mobility-informed

Fig. 3 | Urban landscapes and optimal distributions of tests across the mobility
network. Panels a and b show the attack rate of an epidemicwave as a function of the
basic reproduction number R0 of the pathogen (color code) and the number L of
mobility links used to distribute thentests=2× 10

5 daily tests in Bogotá (a) andMiami
(b). The central maps show the distribution of cases across Bogotá (c) andMiami (e)
by plotting the attack rate in each patch after implementing a control strategy that

sets ntests tests across the most important mobility links (L = 2.8 × 104 for Bogotá and
L = 6 × 103 for Miami). Finally, the maps in the right show how the ntests were
distributed according to the destination of the aforementioned most critical links in
Bogotá (d) and Miami (f). In all the maps, brighter colors correspond with higher
values of the represented quantities.
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strategies enhance the preemptive detection of an epidemic by testing
individuals in high-risk transmission flows. Moreover, these two panels
corroborate the persistent benefit of such surveillance campaigns focused
on the most critical human mobility links, irrespective of the volume of
testing resources, ntests, (Fig. 4d) and the basic reproduction number,R0,
of the spreading pathogen (Fig. 4e). This also holds for the other cities
included in the study (Miami, NewYork, Boston andAustin) as shown in
Supplementary Fig. 7.

We further delineate the implications of timely control strategies fol-
lowing the epidemic alarm raised by mobility-informed surveillance cam-
paigns. To do so, we consider that, when nalarm cases are detected,
containment strategies are deployed, halving the reproduction numberR0.
Figure 4f shows the trajectories of the epidemic after the activation of
containment measures at the EWT ascertained through the surveillance
strategies shown in Fig. 4c. Significantly, in all instances, amarked decline in
case numbers is observed, as indicated by the dashed lines in Fig. 4b (that
replicate the evolution of the average values shown in Fig. 4f). Focusing on
the differences among the scenarios presented in Fig. 4c, we note that an
anticipationof roughly 10days in theEWTnot only postpones the epidemic
peak but also substantially curtails peak incidence. Amore granular analysis
of the effects of the containment measures implemented at the EWT is
presented in Supplementary Fig. 8, which showcases a significant reduction
in the size of the epidemicpeakand the attack ratewhenfocusing the tests on
the most vulnerable mobility links, as well as a temporal shift of the
epidemic peak.

Mobility-informed surveillance at Transit Stations
So far,mobility-informed strategies havedemonstrated effectiveness in early
epidemic detection and in palliating their long-term burden on the popu-
lation. However, the granular application of testing based on the anticipated
knowledge of citizen’s residences and workplaces is impractical during an
actual epidemic due to privacy and logistical constraints. Consequently,
other control strategies leveraging critical mobility data obtained from
Mixing matrixM, while still actionable, are necessary. To this aim, here we
seek for alternative targeted strategies based on interventions at the level of
transportation systems.

In Bogotá, the Transmilenio bus rapid transit system accounted for
38% of urban travel in 2022. Its extensive network, shown in Fig. 5a, ver-
tebrates the daily flows through 12 routes that feature 144 stations with
varied geographic distribution. The system’s electronic card check-ins and
check-outs offer a digital trace of users’ travel patterns. This feature, along
with the massive use of the Transmilenio mobility network, facilitates the
implementation ofmobility-informed policies by allocating tests at strategic
transport hubs.

To identify those stations where resources should be prioritized, we
need tomap the critical links identified in themobility network, connecting
two geographical patches, with critical journeys between two stations in the
transportationnetwork. Todo so,we assume that theTransmilenionetwork
is used by those individuals whose residence and workplace are located
within a radius of 800m of distance from their respective nearest stations,
which are considered to be the origin and destination of the trip in the

Fig. 4 | Enhancing epidemic response with targeted surveillance. a The SEIR
model is augmented with a surveillance system that records positive tests from
exposed and infectious individuals. b The solid line represents the natural (without
interventions) epidemic curve. The dotted lines correspond to the epidemic curves
shown in f (commented below). In panel c we show the time evolution of detected
cases for different concentrations of testing resources on critical links. The dashed
horizontal line signifies the threshold, nalarm, which triggers containment actions.
The EarlyWarning Time (EWT) - the interval spanned from the initial infections to

the time when nalarm detections occur - is plotted against the degree of test con-
centration L for d various numbers of available tests, ntests, and for e distinct basic
reproduction numbers, R0. Panel f shows the mitigated epidemic curves upon the
imposition of containment measures that reduceR0 by 50% at time t = EWT (these
curves are also represented with dashed lines in panel b for illustrating themitigation
effect with respect to the uncontrolled scenario). The shaded areas in panels
d–f represent the 95% confidence interval in the results obtained from 100 distinct
simulations.
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transportationnetwork.Overall, the aggregationprocess, sketched inFig. 5b
and further explained in the Methods section, preserves 15% of the human
movements recorded in the mobility network.

Figure 5c–d present the comparison between different strategies for
allocating tests among users of the public transportation network. To this
aimwe show how detected cases (Fig. 5c) and EWT (Fig. 5d) depend on the
pool of the public transport users chosen for testing according to different
criteria. The results, complemented with those presented in Supplementary
Fig. 10, show the same qualitative behavior as before, where concentrating
the tests on a few critical links leads to a much higher positivity rate (or
detections) and lower epidemic warning time. Therefore, even when
restrained to the lower resolution of the transportation network, targeted
surveillance campaigns on vulnerable subgroups of individuals provide a
better early assessment of an epidemic crisis. Note, however, that the loss of
accuracy when projecting the mobility flows onto the transport network
gives suboptimal results compared to the distribution of tests directly using
the mobility network, as shown in Supplementary Fig. 11. This is expected,
as the coarse-graining of the flows into subgroups of diverse exposure levels
results in focusing tests on many individuals that are not at high risk. The
information needed to move from number of links to percentage of
population tested is represented in Supplementary Fig. 12.

To round off our analysis, we compare the performance of the
control policies implemented on the links of the transportation networks
with other simpler, more straightforward strategies focusing on trans-
portation stations. These strategies encompass focusing the resources on
the transport stations with the highest number of users, highest
betweenness centrality and highest eigenvector centrality, as detailed in
the Materials and Methods section. Such strategies, yet more effective
than a complete random selection, do not achieve the same performance
as the policies relying on the critical transportation links, thus showing
the usefulness of the mixing matrix M for surveillance and testing
strategies.

Discussion
In this work, we have explored the intersection of urban mobility and
epidemic surveillance, harnessing the capacity of metapopulation frame-
works to enrich epidemic models with a, often overlooked, layer of beha-
vioral complexity. Our findings contribute to the emerging field of digital
epidemiology37, addressing the challenge of incorporating human beha-
vioral data to construct realistic human mixing models that improve our
preparedness and response to epidemic scenarios35.

We have shown that urban mobility flows and demographic data can be
combined into a Mixing matrix that captures the interactions of residents in
urban environments driven by their daily recurrent mobility patterns. Our
resultsunderscore that thedominanteigenvectorof thismatrixhas thepotential
to streamline testing and quarantine efforts by identifying critical pathways
conducive topathogen transmission.Thus, equippedwith theparticularmixing
matrices of real cities,wehave leveraged the knowledgeof criticalmobility links,
identifying vulnerable subgroups of population with a given origin and desti-
nation, to design targeted mitigation measures (based on test and quarantine
policies) and surveillance campaigns. In both scenarios, we have assumed
limited testing resources, a common situation when facing sanitary crises in
largeurbanenvironments, andstudiedhowtheallocationof testing resources to
the most critical mobility links affects the outcomes of both processes.

For containment purposes, we have demonstrated that an optimal
concentration of testing resources can significantly reduce the impact of an
epidemic outbreak. However, the contrasting scenarios observed in cities
like Bogotá and Miami illustrate that the optimal distribution of tests is
contingent upon the specific socio-economic urban landscape. This insight
is critical for urban planners and public health officials seeking to enhance
the resilience of cities against future outbreaks.

In the realm of surveillance, we have shown that the concentration of
testing resources in critical mobility links results in a considerable antici-
pation of the epidemic wave, allowing for prompt action even with limited
resources. Specifically, the concept of EarlyWarning Time (EWT) emerges

Fig. 5 | Transferring mobility-informed policies into massive transportation
systems. a The spatial distribution of the Transmilenio stations in Bogotá
(Colombia): colored areas correspond to the different patches whereas dots corre-
spond to stations. The alignment of raw mobility flows with Transmilenio journeys
is made by assigning (see Methods) the fraction of population of a patch making use
of a particular station. Different situations of the assignment processes are high-
lighted in b: (I) all the population of a patch is assigned to the same station, (II) three
stations serve a single patch, and (III) a single station serves the population of a
collection of patches. Test positivity (c) and EWT (d) as a function on relative size of

the pool of public transport users targeted for testing (relative to the city’s popula-
tion) following 5 different surveillance strategies: prioritizing critical mobility links
projected on the transportation network (black), the amount of daily users of each
transport station (dark blue), the betweenness centrality of the stations (light blue),
their eigenvector centralities (green) and randomly across all transportation users
(gray dashed line). In these panels, solid lines represent the average quantities and
the shadowed region constitute the 95% confidence interval for the results obtained
for each scenario across 100 simulations.
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as a key metric for assessing the timeliness of epidemic alerts, reinforcing
that targeted testing of individuals within high-risk transmission flows can
lead to more expedient interventions. We have also demonstrated that the
proposed human behavior-informed surveillance campaigns are significant
and actionable by showing that strategic testing at public transport stations -
a more practical approach than widespread testing - can be an effective
method of epidemic control.

Our findings should be considered in light of several limitations of the
model here introduced. First, our model assumes that the population fully
complies with the implemented policies. While this assumption greatly
simplifies the simulations and the data requirements, it neglects the socio-
economic factors leading to heterogeneous adherences to public health
interventions57–59 or the pandemic fatigue effect60,61, reducing the overall
compliance of the population as a result of a prolonged implementation of
control policies. Consequently, our model overestimates the expected
impact of mobility-informed surveillance strategies on the public health of
the population. In addition to this, our model does not account for the
economic constraints or the logistic challenges62,63 associatedwith the spatial
deployment of limited resources to monitor the advance of epidemic out-
breaks. Additional economic metrics such as the cost-effectiveness of
mobility-informed surveillance strategies would be thus needed to obtain a
more informed assessment on their suitability to improve our preparedness
and response to future epidemic outbreaks.

In conclusion, our research highlights the importance of strategically
leveraging human behavior data to design efficient control policies when
facing an epidemic crisis64. While challenges in the implementation of such
strategies persist, particularly regarding data privacy and ethical considera-
tions, the advantages of enhancing epidemic intelligence through astute data
analysis are clear. As globalization advances andurbanpopulations continue
to expand65, the necessity for informed and multidisciplinary approaches
such as the one presented here becomes increasingly vital, providing a shift
from merely reacting to epidemic crisis to an integrative program that
includes, among others, epidemiology and social sciences35,36.

Methods
Construction of real metapopulations
Our framework represents cities asmetapopulationswhosenodes correspond
to residence areas and their links encodes the mobility patterns of the
population.The constructionof ametapopulation then requires demographic
data, capturing how residents are distributed across the city, andmobility data
encoding their commuting patterns. For the cities here analyzed, we can
construct their associated metapopulation by using publicly available data.

Demographic data for the city of Bogotá, Colombia, come from the
2018 National Census of Population and Housing66. The public database
provides household, residence, and individual data at the spatial resolution
of city blocks (manzanas). Moreover, origin-destination data T for com-
muters is sourced from the 2018 Bogotá mobility survey67 with the resolu-
tion of the Transport Analysis Zones (Zonas de Análisis de Transporte or
ZATs). These zones are considerably larger in area than the city blocks. To
matchbothdata sources,weuse available geometric spatial data to aggregate
the populations of the city blocks within each ZAT and use the latter as the
patches of our metapopulation model.

We also analyze the mixing matrix corresponding to different
metropolitan statistical areas (also known as core based statistical areas or
CBSAs) in the United States: Miami-Fort Lauderdale-West Palm Beach
(referred to as Miami), Austin-Round Rock-San Marcos (referred to as
Austin), Boston-Worcester-Providence (referred to as Boston) and New
York-Newark-Jersey City (referred to as New York). We extract the
population distribution in each city at the census block level from the 2010
US census68. The census also provides mobility data on the Longitudinal
Employer-Household Dynamics69 (LEHD) database. Specifically, daily
mobility patterns of the population can be extracted from LEHD Origin-
Destination Employment Statistics70 (LODES), which provides commuting
data over the entire country, also at the level of census blocks. As census

blocks represent very small geographical areas, we aggregate both data sets
to ZIP Code Tabulation Areas (ZCTAs) resolution, thus being able to
provide a more coarse-grained description of the locations on which
resources should be prioritized.

For both cities, the constructedmetapopulations are fully characterized
by the number of residents in each patch i, ni and the mobility flows nij
across patches, which can be constructed from the elements of the origin-
destination matrix T as:

nij ¼ ni
TijP
k Tik

; ð1Þ

where Tij is the number of survey respondents commuting from i to j. The
main characteristic of the constructed metapopulation for each city under
study can be found in Supplementary Table 1.

Agent-based simulations
All the epidemiological curves shown in the manuscript are computed
through agent-based simulations combining mobility data nij and the
epidemiological processes driving the evolution of epidemic outbreaks.
These simulations allow tracking the epidemiological state of each indi-
vidual of the population according to a SEIRQD (Susceptible-Exposed-
Infected-Recovered-Quarantined-Detected) dynamics.

We use a discrete-time approach considering that each time step in the
simulations corresponds to a day. For each time step, different processes are
simulated:
• First, we distribute the population according to the mobility flows nij

recorded in the metapopulation, giving rise to a new (temporary)
spatial distribution in which each patch i is effectively populated by
neffi ¼ P

jnji agents.
• Then, day contacts are simulated at each patch. These contacts aim at

capturing interactions occurring atworkplaces, schools etc.Weassume
that all individuals who are concurrently in the same subpopulation
make the same number of contacts. These contacts are proportional to
the effective population density of the patch in which they are located.
Therefore, an individual located at patch imakes zDfi interactions with
randomly chosen individualswithin their temporary patch,where f i ¼
neffi =ai captures the effective population density at patch i, being ai its
area. Likewise, zD is a scaling factor to ensure that the average number
of day contacts is a fixed value 〈kD〉, i.e. zD ¼ hkDi=

P
in

eff
i f i. This

means that, while the number of interactions each agent makes is
different depending on their origin and destination, their average
values in the total population is fixed. Throughout the manuscript, we
assume 〈kD〉 = 8 for all epidemic scenarios. To simulate contagions, we
assume that a susceptible (S) individual becomes exposed (E) with a
probability β for each contact with an infected (I) person.

• Then,we simulate local contagionprocesseswithin their neighborhood
or household members. Those processes add a total number of 〈kH〉
interactions to every susceptible individual, which are established with
randomly chosen individualswithin their residencepatch.Throughout
the manuscript, we assume 〈kH〉 = 3 for all epidemic scenarios. Unlike
the previous case, this number of contacts does not vary across patches.

• The rest of compartments get updated according to their respective
dynamics. Every exposed (E) individual has a probability η of turning
infectious (I), and every infected (I) agent has a probability μ of
becoming recovered (R).

• Finally, depending on the control strategy in question, a specific
number of daily tests ntests are randomly distributed every time step
over agents belonging to the selected links in the mobility network, nij,
or in the transportation network nαγ, where i and j are patches in the
mobility network and α and γ represent stations in the transport net-
work. When enforcing quarantine, every positive test will set the state
of the individual to adifferent compartment, quarantined (Q), isolating
them from the rest of the population.
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The parameters used for all the simulations can be found in Supple-
mentary Table 2 whereas the deterministic equations that describe the
dynamics of the systems are contained in the Supplementary Information.

Construction of the mixing matrix M
As explained in themain text, theMixingmatrixM simplifies themultitude
of mobility-driven contagion processes into a single, mathematically
manageable entity, whose dimension corresponds to the number of dif-
ferent subgroups in themetapopulation under study. In particular, we focus
on the Mixing matrix M when pd = 1, for it captures the essence of
behavioral-driven surveillance in urban landscapes subjected to the baseline
mobility scenario. Note that pd = 1 does not imply that all the individuals
move across the metapopulation, as the mobility network contains self-
loopsnii, capturing individualswhodaily commute to aworkplace located at
their residential patch i.

To construct this matrix, we must take into account the two different
types of contagion processes occurring at each time step in ourmodel. First,
we assume that individuals interact in their destination, being their number
of contacts proportional to the effective populationdensity inside that patch.
In addition, we assume that individualsmake 〈kH〉 contactswith individuals
from their household or neighborhood.

From these assumptions and as shown in the Supplementary Infor-
mation, the element Mijlk, encoding all the interactions of one individual
whose residence (destination) is located in i (j) with the subgroup of resi-
dents in l traveling to k, is given by:

Mijlk ¼ ð1� pdÞ2 zDf l
n eff
l
nlkδil þ hkH i

nl
nlkδil

þð1� pdÞpd zDf k
n eff
k
nlkδik þ zDf l

neffl
nlkδjl

� �

þ p2d
zDf k
n eff
k

nlkδjk :

ð2Þ

whereδildenotes theKroneckerdelta and z
D ensures that anaveragenumber

of 〈kD〉 daily contacts are observed across all destinations,
i.e. zD ¼ hkDi=

P
if in

eff
i .

Mobility-informed testing strategies and the Mixing matrixM
The mixing matrix governs the evolution of the spatial distribution of
infected individuals throughout the city at the initial stages of epidemic
outbreaks, as proven in the Supplementary Information. For a Susceptible-
Infected-Recovered (SIR) dynamics, defining ϵij as the fraction of popula-
tion with residence in i and destination in j in the infected state, the former
time evolution can be approximated as:

μ

β
ϵijðtÞ ¼

X
lk

Mijlkϵlkðt � 1Þ ; ð3Þ

where β and μ denote the transmission and recovery probabilities.
Expressing the former equation in matrix form, the evolution of the epi-
demic state of the population is given by the following linear equation:

μ

β
ϵ!ðtÞ ¼ M ϵ!ðt � 1Þ : ð4Þ

The former expression neglects all nonlinear terms involved in contagions
across the metapopulation, as it assumes a finite but negligible fraction of
infected individuals across the metapopulation at early stages of the out-
break, i.e. ϵij(t) ≪ 1 ∀ i, j. This assumption is no longer valid when the
epidemic prevalence is higher across themetapopulation; however, it allows
us to envisage testing policies relying on the spectral policies of the Mixing
matrixM. In particular, its leading eigenvector ϵ! is expected to capture the
spatial distribution of infected agents at the onset of an outbreak, thus
providing an early estimate of themost vulnerable groups of population. As
this eigenvector corresponds to individuals with different origins and

destinations, wewill refer to its elements as linksL (origin-destination pairs)
of the metapopulation.

Spatial allocation of tests
Mobility-informed policies relying on the Mixing matrix M are shaped by
two parameters: ntests, determining the amount of resources available for
testing the population, and L, dictating howmany subgroups of individuals
(links) are prone to be tested. Specifically, for each time step (day) in the
agent-based simulations, ntests are distributed randomly among the pool of
population composing the most critical L links identified by analyzing the
MixingmatrixM. Specifically, followingour analysis in the previous section,
we assume that these links correspond to the L largest entries of the leading
eigenvector of matrix M. This methodology allows us to evaluate whether
concentrating resources on the most critical links or spreading them out
across the city constitutes an optimal strategy to face an emerging epidemic.

Critical mobility links on the public transport network
While quite useful for surveillance purposes and the long-term control of
epidemic outbreaks, mobility-informed policies that rely on the Mixing
matrixM are not feasible due to practical difficulties in identifying specific
subgroups of the population. As explained in the main text, we can take
advantage of the information provided by the Mixing matrix M and
implement a more plausible testing policy by allocating strategically test in
the transport stations, based on the passengers’ entrance and exit. For this
purpose, we need to project the information obtained from M to estimate
the likelihood of a specific subgroup of users in the transportation network
being infected. We focus our analysis on the city of Bogotá, for which we
have extremely fine-grained demographic information from census data,
the daily mobility patterns of the population from public surveys and the
spatial distribution of the Transmilenio network, the Bus Rapid Transit
network of the city.

To aggregate the mobility flows into the transport network, we use
geographical location data of everyTransmilenio station and assumepeople
often use the closest stations to their origin and destination patches, in case
they are located within a radius of 800m from their associated city blocks.
Therefore, we assign a set of weightsWiα to every patch i, representing the
fraction of residents there using a nearby station α to travel to their usual
destination. Note that these weights are indistinctively used to map stations
with patches for both the origin and destination of each trip.

Oftentimes, every person from a patch i has the same nearest transport
station α, i.e. Wiα = 1. Nonetheless, there are also scenarios, as the one
visualized in Fig. 5b, for which patches are surrounded by different nearby
stations, which are chosen disparately by the residents across the city blocks
of those areas. In that case, weights are assigned as the proportion of resi-
dents who choose either of the stations.

Assuming that there is no correlation between the origin and desti-
nation stations, the number of individuals traveling from node i to j using
the transportation line from station α to γ is:

njγiα ¼ nijWiαWjγ ; ð5Þ

which works for the number of infected agents in the same way:

Ijγiα ¼ IijWiαWjγ : ð6Þ

Adding the populations of all the nodes that use a particular pair of
stations gives us the projection of the mobility network onto the transport
network. Therefore, we can compute the fraction of the population infected
at the onset of the outbreak and using the transportation route connecting
stations α and γ, ϵαγ, as

εαγ ¼
Iαγ
nαγ

¼
P

ijWiαWjγnijεijP
ijWiαWjγnij

; ð7Þ
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where nαγ (Iαγ) represents the total number of (infectious) users with origin
at station α and destination at γ. Note that the proposed projection loses
some accuracy in the localization of critical mobility flows because it can
group people fromdifferent links in the same transport line. Nonetheless, as
argued above, it represents a realistic approach that is very useful in diag-
nosing and tackling the progression of an emerging epidemic wave. The
results shown in themain text using this criterionwere obtained in the same
way as previously described: ranking the transport lines according to their
risk εαγ and targeting the most vulnerable ones when distributing the tests.

Control strategies on transport stations
To highlight the advantages of the control policies devised from the mixing
matrix, other public transport-based strategies are also considered and
compared to the main selection criteria from the study. These use infor-
mation from the transport network to assign a certain value of centrality
using differentmetrics in order to rank the transport lines and distribute the
tests accordingly.

Themost straightforwardmetric is focusing on the transit of transport
stations, neffγ , which represents the total number of public transport users
arriving in a transport station γ each day. Namely,

neffγ �
X
α

nαγ : ð8Þ

This quantity is assumed to be equivalent for all users arriving in that
station, i.e. neffαγ � neffγ .

Another strategy here considered is leveraging the betweenness cen-
trality of the transport stations. The betweenness centrality of a station
(node) γ can be calculated with the number of shortest paths, between any
pair of nodes (α,δ) in the network) that go through said node (σαδ(γ)) in
relation to the number of shortest paths (σαδ) that connect them. This can be
expressed as

bγ ¼
X
α≠δ

σαδðγÞ
σαδ

; ð9Þ

where the distance network used to estimate the shortest path between
nodes is definedasdαγ=1/nαγ. This allowsus to rank the transportation lines
by the betweenness centrality of their destination as bαγ ≡ bγ.

Lastly, we also consider the eigenvector centrality pγ of the different
transportation stations γ in the transportation network, as it measures the
transitive influence of nodes in a network and is used as an estimation of
importance in many epidemic scenarios. Note that this eigenvector cen-
trality is computed over the network whose weights correspond to nαγ, i.e.
the number of transportation users with origin at station α and destination
at γ. We can rank the different transportation lines according to the
eigenvector centrality of their destination as pαγ ≡ pγ.

Data availability
Data used to construct the metapopulation of Bogotá have been obtained
from thenational census of population andhousing66 andmobility surveys67

whereas data for the US cities are extracted from the 2010 US census68–70.

Code availability
The underlying code for this study is not publicly available butmay bemade
available on reasonable request from the corresponding author.

Received: 1 July 2024; Accepted: 18 October 2024;

References
1. Diamond, J. Guns, Germs, and Steel: The Fates of Human Societies

(W.W. Norton, 1997).
2. Snowden, F. Epidemics and Society: From the Black Death to the

Present (Yale University Press, 2019).

3. McNeill, W. Plagues and Peoples (Anchor, 1976).
4. Domínguez-Andrés, J. et al. Evolutionof cytokineproductioncapacity

in ancient andmodern europeanpopulations.eLife10, e64971 (2021).
5. Alirol, E. et al. Urbanisation and infectious diseases in a globalised

world. Lancet Infect. Dis. 11, 131 (2011).
6. Lee, V. et al. Epidemic preparedness in urban settings: new

challenges and opportunities. Lancet Infect. Dis. 20, 527 (2020).
7. Brizuela, N., García-Chan, N., Gutiérrez-Pulido, H. & Chowell, G.

Understanding the role of urban design in disease spreading.Proc. R.
Soc. A Math. Phys. Eng. Sci. 477, 20200524 (2021).

8. Bilal, U. et al. Scaling of mortality in 742 metropolitan areas of the
americas. Sci. Adv. 7, eabl6325 (2021).

9. Kache, P. A. et al. Bridging landscape ecology and urban science to
respond to the rising threat of mosquito-borne diseases. Nat. Ecol.
Evol. 6, 1601 (2022).

10. Baker, R., Mahmud, A. & Miller, I. et al. Infectious disease in an era of
global change. Nat. Rev. Microbiol. 20, 193 (2022).

11. Buckee, C., Noor, A. & Sattenspiel, L. Thinking clearly about social
aspects of infectious disease transmission. Nature 595, 205 (2021).

12. Althouse, B. M. et al. Enhancing disease surveillance with novel data
streams: challenges and opportunities. EPJ Data Sci. 4, 17 (2015).

13. Scarpino, S. V., Allard, A. & Hébert-Dufresne, L. The effect of a prudent
adaptive behaviour on disease transmission.Nat. Phys. 12, 1042 (2016).

14. Manfredi, P. & D’Onofrio, A. Modeling the Interplay Between Human
Behavior and the Spread of Infectious Diseases (Springer, 2015).

15. Watts, D.,Muhamad,R.,Medina, D. &Dodds, P.Multiscale, resurgent
epidemics in a hierarchical metapopulation model. Proc. Natl Acad.
Sci. USA 102, 11157 (2005).

16. Colizza, V., Pastor-Satorras, R. & Vespignani, A. Reaction-diffusion
processes and metapopulation models in heterogeneous networks.
Nat. Phys. 3, 276 (2007).

17. Colizza, V. & Vespignani, A. Multiscale, resurgent epidemics in a
hierarchical metapopulation model. Proc. Natl Acad. Sci. 104, 12487
(2007).

18. Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation
systems with heterogeneous coupling pattern: theory and
simulations. J. Theor. Biol. 251, 450 (2008).

19. Balcan, D. et al. Multiscale mobility networks and the spatial
spreading of infectious diseases. Proc. Natl Acad. Sci. USA 106,
21484 (2009).

20. Belik, V., Geisel, T. & Brockmann, D. Epidemic spreading in
metapopulation networks with heterogeneous connectivity patterns.
Chaos Solitons Fractals 44, 404 (2011).

21. Meloni, S. et al.Modelinghumanmobility responses to the large-scale
spreading of infectious diseases. Sci. Rep. 1, 62 (2011).

22. Castioni, P., Gallotti, R. & De Domenico, M. Critical behavior in
interdependent spatial spreading processes with distinct
characteristic time scales. Commun. Phys. 4, 131 (2021).

23. Soriano-Paños, D., Lotero, L., Arenas, A. & Gómez-Gardeñes, J.
Spreading processes in multiplex metapopulations containing
different mobility networks. Phys. Rev. X 8, 031039 (2018).

24. Soriano-Paños, D. et al. Vector-borne epidemics driven by human
mobility. Phys. Rev. Res. 2, 013312 (2020).

25. Gatto,M. et al. Spread anddynamics of the covid-19 epidemic in italy:
Effects of emergency containment measures. Proc. Natl Acad. Sci.
USA 117, 10484 (2020).

26. Bertuzzo, E. et al. The geography of covid-19 spread in italy and
implications for the relaxation of confinement measures. Nat.
Commun. 11, 1 (2020).

27. Arenas, A. et al. Modeling the spatiotemporal epidemic spreading of
covid-19 and the impact of mobility and social distancing
interventions. Phys. Rev. X 10, 041055 (2020).

28. Colizza, V., Barrat, A., Barthélemy, M. & Vespignani, A. The role of the
airline transportation network in the prediction and predictability of
global epidemics. Proc. Natl Acad. Sci. 103, 2015 (2006).

https://doi.org/10.1038/s44260-024-00021-z Article

npj Complexity |            (2024) 1:21 9

www.nature.com/npjcomplex


29. Brockmann, D. & Helbing, D. The hidden geometry of complex,
network-driven contagion phenomena. Science 342, 1337 (2013).

30. Zhang, Q. et al. Spread of zika virus in the americas. Proc. Natl Acad.
Sci. USA 114, E4334 (2017).

31. Bosetti, P. et al. Heterogeneity in social and epidemiological factors
determines the risk of measles outbreaks. PNAS 117, 30118 (2020).

32. Zhu, X. et al. Allocating resources for epidemic spreading on
metapopulation networks. Appl. Math. Comput. 411, 126531 (2021).

33. Reyna-Lara, A., Soriano-Paños, D., Arias-Castro, J., Martínez, H. &
Gómez-Gardeñes, J. A metapopulation approach to identify targets
for wolbachia-based dengue control. Chaos 32, 041105 (2022).

34. Mazzoli, M., Gallotti, R., Privitera, F., Colet, P. & Ramasco, J. Spatial
immunization to abate disease spreading in transportation hubs.Nat.
Commun. 14, 1448 (2023).

35. Bedson, J. et al. A review and agenda for integrated disease models
including social and behavioural factors. Nat. Hum. Behav. 5, 834
(2021).

36. Bedford, J. et al. A new twenty-first century science for effective
epidemic response. Nature 575, 130 (2019).

37. Salathé, M. Digital epidemiology: what is it, andwhere is it going? Life
Sci. Soc. policy 14, 1 (2018).

38. González, M. C., Hidalgo, C. A. & Barabási, A.-L. Understanding
individual human mobility patterns. Nature 453, 779 (2008).

39. Barbosa, H. et al. Human mobility: Models and applications. Phys.
Rep. 734, 1 (2018).

40. Jiang, S. et al. The timegeo modeling framework for urban motility
without travel surveys. Proc. Natl Acad. Sci. USA 113, E5370 (2016).

41. Bokányi, E., Juhász, S., Karsai, M. & Lengyel, B. Universal patterns of
long-distance commuting and social assortativity in cities. Sci. Rep.
11, 20829 (2021).

42. Balcan, D. & Vespignani, A. Phase transitions in contagion processes
mediated by recurrent mobility patterns. Nat. Phys. 7, 581 (2011).

43. Belik, V.,Geisel, T.&Brockmann,D.Natural humanmobilitypatternsand
spatial spread of infectious diseases. Phys. Rev. X 1, 011001 (2011).

44. Apolloni, A., Poletto, C., Ramasco, J. J., Jensen, P. & Colizza, V.
Commuting in metapopulation epidemic modeling. Sci. Rep. 4, 4857
(2014).

45. Charaudeau, S., Pakdaman, K. &Boëlle, P.-Y.Commutermobility and
the spread of infectious diseases: Application to influenza in france.
PLoS One 9, e83002 (2014).

46. Gómez-Gardeñes, J., Soriano-Paños, D. & Arenas, A. Critical regimes
driven by recurrent mobility patterns of reaction-diffusion processes
in networks. Nat. Phys. 14, 391 (2018).

47. Rader, B. et al. Crowding and the shape of covid-19 epidemics. Nat.
Med. 26, 1829 (2020).

48. Hazarie, S., Soriano-Paños, D., Arenas, A., Gómez-Gardeñes, J. &
Ghoshal, G. Interplay between population density and mobility in
determining the spread of epidemics in cities. Commun. Phys. 4, 191
(2021).

49. Aguilar, J. et al. Impact of urban structure on infectious disease
spreading. Sci. Rep. 12, 3816 (2022).

50. Valgañón, P., Soriano-Paños, D., Arenas, A. & Gómez-Gardeñes, J.
Contagion-diffusion processes with recurrent mobility patterns of
distinguishable agents. Chaos 32, 043102 (2022).

51. Torres, L., Chan, K. S., Tong, H. & Eliassi-Rad, T. Nonbacktracking
eigenvalues under node removal: X-centrality and targeted
immunization. SIAM J. Math. Data Sci. 3, 656 (2021).

52. Roth, C., Kang, S., Batty, M. & Barthélemy, M. Structure of urban
movements: Polycentric activity and entangled hierarchical flows.
PLOS ONE 6, e15923 (2011).

53. Bassolas, A. et al. Hierarchical organization of urban mobility and its
connection with city livability. Nat. Commun. 10, 4817 (2019).

54. Oraby, T. et al. Modeling the effect of lockdown timing as a covid-19
control measure in countries with differing social contacts. Sci. Rep.
11, 3354 (2021).

55. Steinegger, B. et al. Joint analysis of the epidemic evolution and
human mobility during the first wave of covid-19 in spain:
Retrospective study. JMIR Public Health Surveill. 9, e40514 (2023).

56. Morris, D. H., Rossine, F.W., Plotkin, J. B. & Levin, S. A. Optimal, near-
optimal, and robust epidemic control. Commun. Phys. 4, 78 (2021).

57. Valgañón, P., Useche, A. F., Soriano-Paños, D., Ghoshal, G. &
Gómez-Gardeñes, J. Quantifying the heterogeneous impact of
lockdown policies on different socioeconomic classes during the first
covid-19 wave in colombia. Sci. Rep. 13, 16481 (2023).

58. Mamelund, S.-E., Dimka, J. & Bakkeli, N. Z. Social disparities in
adopting non-pharmaceutical interventions during covid-19 in
norway. J. Dev. Societies 37, 302 (2021).

59. Napoli, L., Sekara, V.,García-Herranz,M.&Karsai,M.Socioeconomic
reorganization of communication and mobility networks in response
to external shocks. Proc. Natl Acad. Sci. 120, e2305285120 (2023).

60. Delussu, F., Tizzoni, M. & Gauvin, L. Evidence of pandemic fatigue
associated with stricter tiered covid-19 restrictions. PLOS Digital
Health 1, e0000035 (2022).

61. Lilleholt, L., Zettler, I., Betsch,C. &Böhm,R.Development andvalidation
of the pandemic fatigue scale. Nat. Commun. 14, 6352 (2023).

62. Dasaklis, T. K., Pappis, C. P. & Rachaniotis, N. P. Epidemics control
and logistics operations: A review. Int. J. Prod. Econ. 139, 393 (2012).

63. Mandyata,C.B.,Olowski, L.K.&Mutale,W.Challengesof implementing
the integrated disease surveillance and response strategy in zambia: a
health worker perspective. BMC Public Health 17, 1 (2017).

64. Bubar, K. M. et al. Model-informed covid-19 vaccine prioritization
strategies by age and serostatus. Science 371, 916 (2021).

65. Baker, R. E. et al. Infectious disease in an era of global change. Nat.
Rev. Microbiol. 20, 193 (2022).

66. Colombia’s 2018NationalCensusof Population andHousing, https://
www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-
poblacion/censo-nacional-de-poblacion-y-vivenda-2018 accessed:
20 September 2023 (2018).

67. Encuesta de Movilidad de Bogotá 2018, https://datosabiertos.
bogota.gov.co/dataset/encuesta_movilidad_bogota accessed: 4
August 2020 (2018).

68. TIGER/Line Shapefiles and TIGER/Line Files, https://www2.census.
gov/geo/tiger/TIGER2010BLKPOPHU/ accessed: 30 September
2021 (2010).

69. United States Longitudinal Employer-Household Dynamics (LEHD)
Data, https://lehd.ces.census.gov/data/ accessed: 30 September
2021 (2021).

70. United States mobility data sources are available at: https://lehd.ces.
census.gov/data/lodes/LODES7/ (Accessed: 2021-09-30).

Acknowledgements
P.V. and J.G.G. acknowledge financial support from the Departamento de
Industria e Innovación del Gobierno de Aragón y Fondo Social Europeo
(FENOL group grant E36-23R), and fromMinisterio de Ciencia e Innovación
through projects PID2023-147734NB-I00 and PID2020-113582GB-I00/
AEI/10.13039/501100011033. A.F.Uaknowledges fundingsupport from the
Department of Industrial Engineering, at Universidad de los Andes,
Colombia through the doctoral training program. A.A. and D.S.P acknowl-
edge support from Spanish Ministerio de Ciencia e Innovación (PID2021-
128005NB-C21), Generalitat de Catalunya (2021SGR-00633) and Uni-
versitatRovira i Virgili (2023PFR-URV-00633), theEuropeanUnion’sHorizon
EuropeProgrammeunder theCREXDATAproject.D.S.P. acknowledges the
financial support of the Calouste Gulbenkian Foundation through the
PONTE program and from Ministerio de Ciencia e Innovación through the
Juan de La Cierva program through grant JDC2022-048339-I. A.A.
acknowledges theJointAppointmentProgramatPacificNorthwestNational
Laboratory (PNNL). PNNL is a multi-program national laboratory operated
for theU.S.Department of Energy (DOE) byBattelleMemorial Institute under
Contract No. DE-AC05-76RL01830, grant agreement no. 101092749,
ICREA Academia, and the James S. McDonnell Foundation (Grant N.

https://doi.org/10.1038/s44260-024-00021-z Article

npj Complexity |            (2024) 1:21 10

https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018
https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018
https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018
https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018
https://datosabiertos.bogota.gov.co/dataset/encuesta_movilidad_bogota
https://datosabiertos.bogota.gov.co/dataset/encuesta_movilidad_bogota
https://datosabiertos.bogota.gov.co/dataset/encuesta_movilidad_bogota
https://www2.census.gov/geo/tiger/TIGER2010BLKPOPHU/
https://www2.census.gov/geo/tiger/TIGER2010BLKPOPHU/
https://www2.census.gov/geo/tiger/TIGER2010BLKPOPHU/
https://lehd.ces.census.gov/data/
https://lehd.ces.census.gov/data/
https://lehd.ces.census.gov/data/lodes/LODES7/
https://lehd.ces.census.gov/data/lodes/LODES7/
https://lehd.ces.census.gov/data/lodes/LODES7/
www.nature.com/npjcomplex


220020325). FM aknowledges the financial support of the School of Engi-
neering at Universidad de los Andes.

Author contributions
P.V., A.A., D.S.-P. and J.G.-G. conceived the study. A.F.U. and F.M. provided
data. P.V. developed the methods and performed the simulations. All the
authors contributed to the analysis of the results and the writing of the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s44260-024-00021-z.

Correspondence and requests for materials should be addressed to
A. Arenas, D. Soriano-Paños or J. Gómez-Gardeñes.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s44260-024-00021-z Article

npj Complexity |            (2024) 1:21 11

https://doi.org/10.1038/s44260-024-00021-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/npjcomplex

	Human behavior-driven epidemic surveillance in urban landscapes
	Results
	Mixing matrix M
	Mobility-informed testing and quarantine policies
	Optimal control policies depend on urban landscapes
	Mobility-informed surveillance policies
	Mobility-informed surveillance at Transit Stations

	Discussion
	Methods
	Construction of real metapopulations
	Agent-based simulations
	Construction of the mixing matrix M
	Mobility-informed testing strategies and the Mixing matrix M
	Spatial allocation of tests
	Critical mobility links on the public transport network
	Control strategies on transport stations

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




