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Statistically validated projection of
bipartite signed networks

Check for updates

Anna Gallo1,2 , Fabio Saracco1,3,4 & Tiziano Squartini1,2

Bipartite networks provide amajor insight into the organisation ofmany real-world systems.Oneof the
most relevant issues encountered whenmodelling a bipartite network is that of facing the information
shortage concerning intra-layer linkages. In the present contribution, we propose an unsupervised
algorithm to obtain statistically validated projections of bipartite signed networks, according to which
any two nodes sharing a statistically significant number of concordant (discordant) relationships are
connected by a positive (negative) edge. Our algorithm outputs amatrix of link-specific p values, from
which a validated projection can be obtained upon running a multiple-hypothesis testing procedure.
After testing our method on synthetic configurations output by a fully controllable generative model,
we apply it to several real-world configurations: in all cases, non-trivial mesoscopic structures,
induced by relationships that cannot be traced back to the constraints defining the employed
benchmarks, hence revealing genuine traces of self-organisation, are detected.

Network theory has emerged as a powerful framework to model different
kinds of real-world systems, by representing their units as nodes and the
interactions between them as links. Out of themany types of edges that have
been considered so far, the signed one, offering the possibility of modelling
positive as well as negative interactions, has recently seen its popularity
revived1–4.

Most works on signed configurations have focused on mono-
partite graphs, i.e., configurations with a unique set of nodes each of
which can interact with any other one. The interest towards one-
mode signed networks is ascribable to the so-called balance theory
(BT), introduced by Heider in5 and later formalised by Cartwright
and Harary employing signed graphs6.

BT states that a signed graph is strongly balanced (SB) if all
cycles contain an even number of negative edges: from a mesoscopic
perspective, this implies that the network can be split in two groups
with positive intra-modular and negative inter-modular links; in7,
Davis spoke of weakly balanced (WB) graphs, allowing for more than
two groups: taken together, the SB and WB concepts define what is
called Traditional Balance Theory (TBT)8—a framework that has
found applications in contexts as diverse as the biological, ecological,
economic and social ones8–17.

Since, however, real-world networks often deviate from it,Doreian and
Mrvar have proposed a generalisation named Relaxed Balance Theory
(RBT)8,18 which allows for positive inter-modular and negative intra-
modular links as well.

The concept of balance in the bipartite context
The interest towards two-mode signed networks, i.e., configurations with
two sets of vertices where (signed) connections can be established only
between pairs of nodes belonging to different sets, is, instead, much more
recent. One of the earliest attempts at adapting the notion of structural
balance to the bipartite framework has been carried out in ref. 19, where the
difference between the roles played by ‘subjects’ and ‘objects’ in Heider’s
formulation of the BTwas highlighted. In refs. 20,21, the authors focused on
thebalanceof bipartite cyclesby considering the statistical significanceof the
shortest ones, known as ‘butterfly motifs’, ‘X-motifs’ or ‘2 × 2 bicliques’22.
In23, the authors carried out three different analyses: first, they tested the
degree of balance of real-world bipartite signed networks by employing the
definition of ‘butterfly motifs’ provided in ref. 21. Second, they inferred the
sign of themissing intra-layer edges by connecting any twonodes belonging
to the same set with a ‘plus one’ (‘minus one’) if they established either two
positive or two negative links (one positive and one negative link) with the
same set of vertices on the opposite layer. Finally, they tested the degree of
balance of each layer by comparing the empirical percentages of triangles
and butterflieswith the ones expectedunder a nullmodel, shuffling the links
of the original bipartite network— i.e., implementing the microcanonical
version of the Free-topology Signed Random Graph Model introduced in
ref. 13: as a result, the patterns turned out to be more balanced than
expected. In24, bipartite signed networkswere employed tomodel a group of
individuals’ opinions about certain topics: the authors addressed the pro-
blemof partitioning both types of entities into two groupswhilemaximising
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the number of positive intra-modular links and minimising the number of
negative inter-modular links.

Projecting bipartite unsigned networks
One of the issues of major interest encountered when modelling bipartite
networks is that of inferring the presence of a relationship between nodes
belonging to the same layer in case a direct measurement of such a rela-
tionship is unfeasible (as for data gathering about friendships on social
platforms25). The simplest way of solving the problem is linking any two
nodes belonging to the same layer as long as they share at least one neigh-
bour: however, this often results in a very dense network whose topological
structure is almost trivial. A different recipe prescribes retaining the infor-
mation on the number of common neighbours, i.e., to project a bipartite
network into amonopartite weighted network25: this prescription, however,
causes the nodes with larger degree to have larger strengths, thus masking
the genuine, statistical relevance of the induced connections. Moreover,
such a prescription lets spurious clusters of nodes emerge (e.g., cliques
induced by the presence of—even—a single node connected to all the other
vertices on the opposite layer).

Algorithms for retaining only the significant weights have been pro-
posed to face this problem25. Many of them are based on a thresholding
procedure, amajor drawback of which lies in the arbitrariness of the chosen
threshold26–28. A different approach prescribes calculating the statistical
significance of the projected weights according to a properly defined null
model29: the latter, however, encodes relatively little information about the
original structure, thus being more suited to analyse natively monopartite
networks. A similar-in-spirit approach identifies the backbone of a mono-
partite weighted projection with its Minimum Spanning Tree and its
communities with the trees constituting theMinimum Spanning Forest30,31:
the lack of a comparison with a benchmark, however, makes assessing the
statistical relevance of the outcome difficult.

All the aforementioned approaches validate a projection a posteriori. A
different class of methods focuses on recipes to obtain statistically validated
projections by estimating the tendency of any two nodes belonging to the
same layer to share a certain number of neighbours: all such approaches
definea similaritymeasure that either ranges between0and132,33 or follows a
probability distribution allowing for a p value to be computed34–38.While, in
the first case, the application of an arbitrary threshold is still unavoidable, in
the second case, prescriptions rooted in traditional statistics can be applied.

The approaches discussed so far lead to unsigned projections of
bipartite unsigned networks. In refs. 25,39, instead, the author carried out a
two-sided test of hypothesis to decide whether any two members of the
108th U.S. Senate co-sponsored either enough bills for a political alliance
(positive link) to be inferred or not enough bills for political antagonism
(negative link) to be inferred. The employed null model was named Sto-
chastic Degree Sequence Model, a principled derivation of which was
provided in refs. 22,36 where the benchmark was re-named Bipartite
Configuration Model.

For a comprehensive review of methods to carry out pattern detection
in bipartite networks, see ref. 40.

Projecting bipartite signed networks
The issue of projecting bipartite signed networks has been addressed to a
much less extent. A first example is provided by41, where the authors pro-
jected auser-itemnetworkonto the layer of users: the similarity of any twoof
themwas quantified by calculating the scalar product of the corresponding
rows of the biadjacency matrix42 and its statistical significance evaluated by
comparing the empirical value with the one expected under a null model
defined by randomly swapping two edges having the same sign. Under such
a benchmark—which is the microcanonical version of the Free-topology
Signed Configuration Model introduced ref. 13—the authors found that
both the MovieLens and the Netflix projections were highly balanced—the
degree of balance being proxied by the number of triangles having an even
number of negative edges. A second example is provided by ref. 43, where
the authors obtained signed projections by carrying out a statistical

validation of the number of neighbours shared by any two nodes belonging
to the same layer via a hypergeometric-binomial mixture distribution.

Hereby, we build upon previous contributions by extending the
Exponential RandomGraphs framework to include nullmodels suitable for
analysing binary undirected bipartite signed networks and employ them to
obtain statistically validated signed projections. To address such a problem,
we extend the algorithm proposed in36, based upon the idea that any two
nodes sharing a significantly largenumber of neighbours should be linked in
the correspondingmonopartite projection. More precisely, we propose two
variants of it, according to the way ambivalent patterns (i.e. patterns con-
stituted by two nodes and an item, liked by one node and disliked by the
other) and missing ties (characterising patterns constituted by two nodes
and an item, with just one node expressing an opinion about it) are treated.

The rest of the paper is organised as follows. First, we introduce a
quantity to measure the similarity of any two nodes belonging to the same
layer. Second, we derive its probability distribution according to each con-
sidered benchmark. Third, we consider each pair of nodes and quantify the
statistical significance of their similarity. Fourth, we link only the ones
surviving a multiple-hypothesis testing procedure. Fifth, we employ our
methods toobtain signedprojectionsof several differentdatasets. Finally,we
comment on our results.

Results
With the present contribution, we propose an unsupervised algorithm to
obtain statistically validated projections of binary undirected bipartite
signed networks, according to which any two nodes sharing a statistically
significant number of concordant (discordant) relationships are connected
by a positive (negative) edge. Before applying it to a number of real-world
configurations, let us, first, illustrate how it works on a toy model.

Projection of synthetic configurations
In order to illustrate how our algorithm for projecting bipartite signed
networks works, let us construct a generative model as follows. Let us
consider the Bipartite Signed Stochastic BlockModel (BiSSBM), induced by
the finite scheme

biα �
�1 0 þ1

p�gigα p0gigα pþgigα

 !
; i 2 gi; α 2 gα ð1Þ

with i = 1…N andα = 1…M. Figure 1 provides a graphical representation of
three configurations generated via the BiSSBM by considering parameters
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In the first case (left panels), the nodes belonging to gi = 1 (gi = 2) like
the items belonging to gα = 1 (gα = 2) but establish few connections with the
items belonging to gα = 2 (gα = 1); in the second case (middle panels), the
nodes belonging to gi = 1 (gi = 2) like the items belonging to gα = 1 (gα = 2)
but the density of inter-group connections is much larger; in the third case
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(right panels), the nodes belonging to the first (second) group like the items
belonging to thefirst (second) group, the nodes belonging to the third group
dislike the items belonging to the third group and the density of inter-group
connections resembles the one characterising the first case. Irrespectively of
the exact values of the parameters defining them, however, we expect the
first two synthetic configurations to induce projections obeying the statis-
tical variant of the traditional balance theory and the third configuration to
induce a projection obeying the statistical variant of the RBT8,18.

Let us, now, project our synthetic configurations by employing the
BiSRGM-FT, i.e., the global statistical benchmark induced by the zero-
deflated scheme. Following8, one can adopt an ‘agnostic’ attitude and
explore themesoscale organisation of a projectionwithout aligningwith any
specific conceptual framework: a principled approach to achieve such a goal
is that of minimising the Bayesian Information Criterion (BIC) reading

BIC ¼ κ lnV � 2 lnL; ð5Þ

the first addendumproxies the complexity of amodel with the number of its
parameters,κ, the secondaddendumproxies theaccuracyof amodelwith its
log-likelihood, lnL, and V =N(N−1)/2 accounts for the system dimen-
sions. Since we aim at describing a projection mesoscale organisation, a
natural choice is that of adopting the Signed Stochastic Block Model
(SSBM), defined by the likelihood function

LSSBM ¼ Qk
r¼1

ðpþrr ÞL
þ
rr ðp�rr ÞL

�
rr ð1� pþrr � p�rr Þ

Nr

2

� �
�Lrr

Qk
r¼1

Qk
s ¼ 1

s>r

ðpþrs ÞL
þ
rs ðp�rs ÞL

�
rs ð1� pþrs � p�rs ÞNrNs�Lrs

ð6Þ

and a number of parameters κSSBM = k(k + 1), amounting at twice the
number of modules, k, into which the projection can be partitioned.
Naturally,Nr is thenumber of nodes constitutingblock r,Lþrr ¼ pþrrNrðNr �
1Þ=2 is the number of positive links within block r, L�rr ¼ p�rrNrðNr � 1Þ=2
is the number of negative links within block r, Lþrs ¼ pþrsNrNs is the number

of positive links between blocks r and s and L�rs ¼ p�rsNrNs is the number of
negative links between blocks r and s.

What we obtain confirms what we expect, i.e., that any two nodes
within the same bipartite group share a significantly large number of con-
cordantmotifs that, in turn, induces a positive connection in the projection.
On the other hand, any two nodes belonging to different bipartite groups
may share either a significantly large number of discordant motifs that, in
turn, induces a negative connection in the projection or a significantly large
number of concordantmotifs that, in turn, induces a positive connection in
the projection.

Projection of real-world configurations
Let us, now, consider some real-world networks.

U.S. senate and U.S. house of representatives. The first two datasets
that we consider, described in ref. 21 and further analysed in refs. 20,23,
are the output of the GovTrack.us project44 and collect vote records from
the 1st to the 10th Congress of the United States. The nodes on the first
layer are either senators or representatives while the nodes on the second
layer are bills: a positive (negative) link between a senator/representative
and a bill indicates that the senator/representative has voted ‘Yes’ (‘Nay’)
for that bill.

FilmTrust. The third dataset that we consider is the output of the Film-
Trust project45,46 and collects rating data from an online community
whose users assign a score, i.e., 1, 2, 3, 4, to a number ofmovies. The nodes
on the first layer are users while the nodes on the second layer aremovies.
We obtain a binary signed version of this dataset by assigning a−1 to all
the edges whose weight is either 1 or 2 and a + 1 to all the edges whose
weight is either 3 or 4.

From a purely empirical perspective, all the aforementioned datasets
are characterised by a small link density c = L/(N ⋅M): the connectance of
U.S. Senate and U.S. House of Representatives amounts to ≃ 0.1 while the
connectance of FilmTrust amounts to ≃0.01. The percentages of positive
and negative links are, instead, quite different:U.S. Senate andU.S. House of
Representatives have ≃ 55% of positive links while FilmTrust has ≃80% of
positive links (see also Table I in Appendix E).

Fig. 1 | Graphical representation of three synthetic configurations, generated by
considering the values of the parameters reported in the main text. What we
obtain confirms that (i) any two nodes within the same bipartite group share a
significantly large number of concordant motifs that, in turn, induces a positive

connection in the projection; (ii) any two nodes belonging to different bipartite
groupsmay share either a significantly large number of discordantmotifs, inducing a
negative connection in the projection, or a significantly large number of concordant
motifs, inducing a positive connection in the projection.
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naive projection of real-world configurations. The aforementioned
configurations have been, first, naively projected according to the recipes

, valid within the zero-deflated scheme, and

, valid within the zero-inflated scheme.
When considering the unsigned case, the link density of the

projection returned by the naive approach is typically large36. As shown

in Fig. 2, this is especially true within the zero-inflated
scheme–although the naive projections of FilmTrust are both very
dense. Let us also notice that the small link density of FilmTrust causes
the naive projection obtained within the zero-inflated scheme to be
solely populated by positive links. For what concerns the naive pro-
jection obtained within the zero-deflated scheme, instead, its large link

Fig. 2 | Pictorial representation of the adjacency matrices of the projections of
FilmTrust ((a–c), U.S. Senate (d–f) and U.S. House of Representatives (g−i),
obtained within the zero-inflated scheme, i.e., the naive ones (a, d, g), the ones
induced by the BiSRGM-FT b, e, h) and the ones induced by the BiSCM-FT (c, f, i).

Entries equal to−1 are coloured in red, entries equal to 0 are coloured in white, and
entries equal to +1 are coloured in blue. The rows and columns of these adjacency
matrices are re-ordered on the basis of the mesoscopic structures spotted by mini-
mising BIC (see also Fig. 4).
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density signals that the vast majority of pairs of nodes shares at least
one V-motif (i.e. the absolute value of the difference between the
number of ‘full’ concordant and discordant motifs is at least 1). For
what concerns U.S. Senate and U.S. House of Representatives, the
naive projections obtained within the zero-deflated scheme are
already quite sparse, letting non-trivial mesoscopic patterns emerge—

appreciable even by just looking at the adjacency matrices illustrated
in the first column of Fig. 3 (see also Table 1).

BICminimisation confirms the presence of modules seemingly obeying
the statistical variant of the RBT8,18, as a non-negligible number of negative
links is found not only between clusters but within clusters as well—the vast
majority of links within the second block from the right-bottom angle of the

Fig. 3 | Pictorial representation of the adjacency matrices of the projections of
FilmTrust (a−c), U.S. Senate (d–f) and U.S. House of Representatives (g–i),
obtained within the zero-deflated scheme, i.e., the naive ones (a, d, g), the ones
induced by the BiSRGM-FT (b, e, h) and the ones induced by the BiSCM-FT (c, f, i).

Entries equal to −1 are coloured in red, entries equal to 0 are coloured in white,
entries equal to +1 are coloured in blue. The rows and columns of these adjacency
matrices are re-ordered on the basis of the mesoscopic structures spotted by mini-
mising BIC.
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(adjacency matrix of the) zero-deflated naive projection of U.S. Senate is, in
fact, negative—andanon-negligiblenumberofpositive links is foundnotonly
within clusters butbetween clusters aswell—the vastmajority of links between
the first and the second block from the right-bottom angle of the (adjacency
matrix of the) zero-deflated naive projection of U.S. Senate is, in fact, positive.

As a last observation, let us stress that the large link density of the zero-
inflated naive projections of U.S. Senate and U.S. House of Representatives
does not prevent BIC minimisation from detecting statistically significant
mesoscopic structures: its sensitivity to the density of signed links8, in fact,
makes it capable of revealing the 6 different blocks constituting the zero-
inflated naive projection ofU.S. Senate and the 2 different blocks constituting
the zero-inflated naive projection of U.S. House of Representatives, both
depicted in Fig. 4.

Validated projection of real-world configurations within the zero-
deflated scheme. Although summing motifs while retaining their own
sign is, in a sense, enough to obtain sparse projections, the validation pro-
cedure proposed in this paper (also) aims at enhancing the identification of
patterns encoding non-trivial information about the original structure.

For what concerns U.S. Senate, minimising BIC on the projection
filtered via the global statistical benchmark named BiSRGM-FT refines the
picture provided byminimisingBICon the naive projection, confirming the
presence of a largernumber ofmodules—moreprecisely, 10 as shown inFig.
4. Interestingly enough, all such modules are characterised by (a vast
majority of) positive links, although positive links are found between
modules as well. Finally, minimising BIC on the projection filtered via the
local statistical benchmark named BiSCM-FT returns a picture lying,
somehow, halfway between the naive one and the one filtered via the
BiSRGM-FT, as 8 modules are, now, detected; contrarily to what has been
revealed with the aid of the global filter, however, applying the local filter
returns a picture where negative links are found withinmodules as well.

The entire process is even more evident when considering U.S. House
of Representatives, whose mesoscopic structure gets progressively resolved
into an increasing number of increasingly negative modules (i.e., 2, 5, 6).

Overall, thus, our results confirm that the revealed modular structure
seems to align better with the statistical variant of the RBT than with the
statistical variant of its traditional counterpart (TBT), consistently across the
different projections.

Validated projection of real-world configurations within the zero-
inflated scheme. The considerations above are confirmed by the zero-
inflated projections depicted in Fig. 2. For example, progressively filtering
FilmTrust leads from a fully connected network to configurations whose
connectance practically halves at each step. More in detail, applying the
BiSRGM allows two different blocks to emerge—a result similar in spirit
to the one that has been reported in ref. 36, where the global statistical
benchmark induces a rough partition of the system under consideration.
The filtering induced by the BiSCM is, instead, more severe and quali-
tatively different: the projection obtained is, in fact, much sparser and
populated by a comparable number of positive and negative links.

Interestingly, filtering U.S. Senate with the BiSRGM lets BIC identify
the samenumber ofmodules characterising thenaive projection—they are 6
in both cases—but with a different arrangements of links; this is even more
evident when considering the projection induced by the BiSCM, char-
acterised by just three modules. On the contrary, filtering U.S. House of
Representatives means rising (even substantially) the number of clusters
while cutting half of the edges populating its naive projection.

Discussion
A straightforward approach to project a bipartite network in the unsigned
setting is that of comparing the number of neighbours shared by any two
nodes i and j, i.e.

Vij ¼
XM
α¼1

biαbjα ¼ ½B � BT �ij ¼ ri � ðrjÞT ; ð7Þ
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with the one predicted under a chosen benchmark36. In the signed setting,
instead, twocomplementary approaches canbedevised, treating themissing
ties in a different way: while the zero-deflated projection scheme ignores
them, the zero-inflatedprojection schemeaccounts for themaswell. Loosely
speaking, the zero-deflated projection scheme returns configurations that
are sparser than the configurations returned by the zero-inflated projection
scheme although the latter are populated by a larger number of negative
links; both schemes, however, enhance the detection of mesoscopic
structures, the filtered projections being characterised by a larger number
of modules than the naive ones.

Additionally, we have compared the patterns revealed by minimising
BIC with the ones revealed by minimising the frustration F, defined as

FðσÞ ¼ L�� þ Lþ
°

ð8Þ

according to the traditional balance theory8, i.e., counting the number of
negative links within modules (indicated with a filled dot—see the first
addendum) plus the number of positive links between modules (indicated
with an empty dot—see the second addendum). The differences are high-
lighted in Fig. 5, showing how the optimisation of F basically returns an
oversimplified picture leading, for instance, to partition the projection of
U.S. House of Representatives induced by the BiSRGM within the zero-
inflated scheme into 32modules. The explanation lies in the sensitivity of F
solely towards the signed membership: as the signed density is completely
ignored, the groups of nodes dominated by negative links are split into
singletons—and, by converse, the nodes connected by positive links are
grouped together. Another example is provided by the projection of U.S.
House of Representatives induced by the BiSRGMwithin the zero-deflated
scheme: such a configuration is, now, partitioned into 2modules, the signed
membership leading the algorithm to disregard the (internal) hierarchical
structure of these clusters. Similar results are found when considering the
other kinds of projections.

A more quantitative comparison can be carried out upon calculating
the Wallace, Rand and Jaccard Index, that sum up the coefficients popu-
lating the confusion matrix to return three compact measures of similarity
between partitions. As illustrated in Appendix F, the three aforementioned

indices confirm that themesoscale structures spotted by the BIC-based and
the F-based recipes are more similar whenever a larger number of positive
links populates a given projection. If, on the contrary, the latter is defined by
a large number of negative links, the F-based recipe outputs many ‘false
negatives’, i.e., pairs of nodes that are separated solely because they are found
to be connected by a negative link. Such a result sheds further light on the
observation made in refs. 13 and 8 about the (potential) ambiguity con-
cerning the variant of the balance theory best supported by the data: if the
intuitive definition of modules as ‘densely connected groups of nodes’ is
extended to the signed case, then the recipe prescribing to minimise BIC
should be preferred. If, on the other hand, one seeks the configuration best
aligning with the TBT, then the recipe prescribing to minimise F should be
preferred—although not specifically designed to spot (statistically sig-
nificant) mesoscale structures.

A very last observation concerns the ‘sign prediction’ problem. In47,
such an issue is addressed within the framework of the TBT, i.e., under the
assumption that signed networks evolve towards balance: within such a
context, sign prediction is carried out by combining the edge-based defini-
tion of Katz centrality with the minimisation of frustration. In48, instead, an
approach based upon the ensemble of random graphs induced by the
hypergeometric distribution is employed. Other methods are based upon
machine learning techniques23,49–53. Our algorithm can, in a sense, be
understood as implementing an unsupervised ‘white box’ method for pre-
dicting the sign of a link: interestingly, the prescription based upon the
signature of its endpoints—summarisable with the motto ‘a significantly
large number of concordant motifs induces a + 1 and a significantly large
number of discordant motifs induces a − 1’—formalises the tendency
towards balance, advocated by other approaches, within the bipartite context.

Methods
Formalism and basic quantities
A binary undirected bipartite signed network is completely defined by its
biadjacency matrix, i.e., a rectangular table B whose dimensions will be
indicated withM andN,M being the number of nodes in the top layer (i.e.
the number of columns of B) and N being the number of nodes in the
bottom layer (i.e. the number of rows of B).

Fig. 4 | Pictorial representation of the projections of U.S. Senate (top panels) and
U.S.House of Representatives (bottompanels), obtainedwithin the zero-inflated
scheme, i.e., the naive ones (left panels), the ones induced by the BiSRGM-FT
(middle panels), and the ones induced by the BiSCM-FT (right panels). Entries
equal to−1 are coloured in red, entries equal to 0 are coloured in white, and entries

equal to +1 are coloured in blue. Minimising BIC lets the naive projection of U.S.
Senate (U.S. House of Representatives) to be partitioned into 6 (2) modules, the one
induced by the BiSRGM-FT to be partitioned into 6 (3) modules, and the one
induced by the BiSCM-FT to be partitioned into 3 (11) modules.
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Each edge can be positive, negative or missing: since we will focus on
binary networks, each edge will be ‘+1’, ‘−1’ or ‘0’. More formally, for any
two nodes i and α, the corresponding entry of the biadjacencymatrix will be
assumed to read biα =−1, 0, +1.

To ease mathematical manipulations, let us define the three quantities
reading

b�iα ¼ ½biα ¼ �1�; b0iα ¼ ½biα ¼ 0�; bþiα ¼ ½biα ¼ þ1�; ð9Þ

where we have employed Iverson’s brackets notation13. These new variables
are mutually exclusive, satisfy the relationship b�iα þ b0iα þ bþiα ¼ 1, ∀ i, α
and induce the three non-negative matrices B+, B0 and B− obeying the
relationships B =B+−B− and ∣B∣ =B+ + B−.

In the following, it will turn out to be useful to identify a biadjacency
matrix with the set of its rows, i.e., B � frigNi¼1, and analogously for B

+ and
B−. Lastly, BT indicates the transpose of the biadjacency matrix B.

Global connectivity and node degrees
The number of positive and negative links, respectively, read

Lþ ¼
XN
i¼1

XM
α¼1

bþiα; L� ¼
XN
i¼1

XM
α¼1

b�iα; ð10Þ

analogously, the positive and negative degree of node i are defined as

kþi ¼
XM
α¼1

bþiα; k�i ¼
XM
α¼1

b�iα ð11Þ

while the positive and negative degree of node α are defined as

hþα ¼
XN
i¼1

bþiα; h�α ¼
XN
i¼1

b�iα: ð12Þ

Naturally, Lþ ¼PN
i¼1 k

þ
i ¼PM

α¼1 h
þ
α and

L� ¼PN
i¼1 k

�
i ¼PM

α¼1 h
�
α . The advantage of adopting Iverson’s brackets

is that of ensuring that each quantity is, now, computed on a matrix with
positive entries, i.e., is positive as well.

The role of ambivalent patterns
The approaches to obtain a projection of a bipartite, signed network con-
sidered so far rest upon the calculation of any two nodes similarity. Eval-
uating such a quantity leads to two related problems, i.e., how to treat
ambivalent patterns and missing ties.

Ambivalence is introduced in54 and defined as a ‘conjunction of positive
and negative relations that are psychologically secondary or derived’; in
ref. 55, Cartwright and Harary suggest that ‘attitudes of ambivalence should
be unstable, changing to positive or negative attitudes so as to satisfy the
criteria of balance’. In the bipartite setting we are considering here,
ambivalence emerges in two, different cases: i) whenever nodes i and j
establish motifs whose signature is either (+/−) or (−/+); ii) whenever
nodes i and j establish the samenumber of (+/+) and (−/−)motifs. In both
cases, devising a recipe to determine the sign of the link in the corresponding
monopartite projection is not immediate.

In ref. 56, two different recipes are proposed. The first one is based on
matrixmultiplication and prescribes to consider the projections induced by
positive and negative links separately. The second one rely on a ‘vertex
duplication’ mechanism, according to which each node belonging to the
layer of interest originates a positive copy, gathering the original positive
links, and a negative copy, gathering the original negative links; these con-
nections are treated as unsigned and the network is, then, projected. Finally,
the sign of the edges populating the monopartite projection is restored
according to a so-called ‘vertex contraction’ rule.

In order to address the problemof the ambivalent patterns, let us define
the ‘full’ dyadic motifs reading

Vþþ
ij ¼

XM
α¼1

bþiαb
þ
jα ¼ ½ðBþÞ � ðBþÞT �ij ¼ rþi � ðrþj Þ

T
; ð13Þ

that counts the number of nodes (belonging to the second layer) to which
the nodes i and j (belonging to the first layer) are both connected via two

Fig. 5 | Pictorial representation of the projections of the U.S. House of Repre-
sentatives, obtained within the zero-deflated scheme (first and second column)
and the zero-inflated scheme (third and fourth column), induced by the
BiSRGM-FT. Entries equal to−1 are coloured in red, entries equal to 0 are coloured
inwhite, and entries equal to+1 are coloured in blue. The rows and columns of these
adjacency matrices are re-ordered on the basis of the mesoscopic structures spotted

by either minimising BIC (top panels) or the frustration F (bottom panels). As the
optimisation of F is solely driven by signed membership, it returns a partition
defined by i) a smaller number of modules than those individuated by BIC when the
majority of validated links is positive and ii) a larger number of modules than those
individuated by BIC when the majority of validated links is negative.
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positive links, and

V��
ij ¼

XM
α¼1

b�iαb
�
jα ¼ ½ðB�Þ � ðB�ÞT �ij ¼ r�i � ðr�j ÞT ; ð14Þ

that counts the number of nodes (belonging to the second layer) to which
the nodes i and j (belonging to the first layer) are both connected via two
negative links. It is quite intuitive to ascribe them to the class of the so-called
concordant motifs, i.e., patterns capturing the ‘agreement’ between any two
users establishing them: our proposal is, thus, that of connecting any two
users establishing a significantly large number of concordant motifs with
a + 1.

Analogously, it is quite intuitive to ascribe the expressions

Vþ�
ij ¼

XM
α¼1

bþiαb
�
jα ¼ ½ðBþÞ � ðB�ÞT �ij ¼ rþi � ðr�j ÞT ð15Þ

and

V�þ
ij ¼

XM
α¼1

b�iαb
þ
jα ¼ ½ðB�Þ � ðBþÞT �ij ¼ r�i � ðrþj Þ

T
; ð16Þ

that count the number of nodes (belonging to the second layer) towhich the
nodes i and j (belonging to thefirst layer) are connectedwith a positive and a
negative link, to the class of the so-called discordant motifs, i.e., patterns
capturing the ‘disagreement’ between any two users establishing them: our
proposal is, thus, that of connecting any twousers establishing a significantly
large number of discordant motifs with a − 1.

The role of missing ties
Let us, now, address the problemof themissing ties. To this aim, let us define
the ‘partial’ dyadic motifs reading

V00
ij ¼

XM
α¼1

b0iαb
0
jα ¼ ½ðB0Þ � ðB0ÞT �ij ¼ r0i � ðr0j Þ

T
; ð17Þ

that counts the number of nodes (belonging to the second layer) to which
the nodes i and j (belonging to the first layer) are both not connected,

V0þ
ij ¼

XM
α¼1

b0iαb
þ
jα ¼ ½ðB0Þ � ðBþÞT �ij ¼ r0i � ðrþj Þ

T ð18Þ

and

Vþ0
ij ¼

XM
α¼1

bþiαb
0
jα ¼ ½ðBþÞ � ðB0ÞT �ij ¼ rþi � ðr0j Þ

T
; ð19Þ

that counts the number of nodes (belonging to the second layer) to which
node i (node j) is not connected and node j (node i) is connected with a
positive link,

V0�
ij ¼

XM
α¼1

b0iαb
�
jα ¼ ½ðB0Þ � ðB�ÞT �ij ¼ r0i � ðr�j ÞT ð20Þ

and

V�0
ij ¼

XM
α¼1

b�iαb
0
jα ¼ ½ðB�Þ � ðB0ÞT �ij ¼ r�i � ðr0j Þ

T
; ð21Þ

that count the number of nodes (belonging to the second layer) to which
node i (node j) is not connected and node j (node i) is connected with a
negative link.Whilewe are led to considerV00

ij as a signature of concordance
(both nodes have no reason to connect to any of the nodes belonging to the
opposite layer), we are also led to consider V0þ

ij , Vþ0
ij , V0�

ij , V�0
ij as a

signature of discordance (oneof thenodeshasno reason to connect toanyof
the nodes belonging to the opposite layer while the other has (This is also
logically coherent with the following situation: imagine i likes item α, j has
not a connection with it and k dislikes it. Should j be considered as agreeing
with both i and k, they also should for transitivity. But this is definitely not
the case.)). The rightmost members indicate that the same numbers can be
obtained by taking the scalar products of the rows, indexed by i and j, of the
biadjacency matrices B+, B0, and B−.

In summary, while accounting forVþþ
ij ,V��

ij ,Vþ�
ij andV�þ

ij will lead
to a zero-deflatedprojection scheme, where signs are solely determinedby the
‘full’ dyadic motifs, also consideringV00

ij ,V
0þ
ij ,Vþ0

ij ,V0�
ij andV�0

ij will lead
to a zero-inflated projection scheme, where signs are determined by the
‘partial’ dyadic motifs too. For a pictorial illustration of the aforementioned
‘full’ and ‘partial’ dyadic motifs, we refer the reader to Figs. 6 and 7.

A scheme for the statistical validation of bipartite signed
networks
Schematically, our validation algorithm works as follows:
A. Focus on a specific pair of nodes belonging to the layer of interest, say i

and j, and measure their similarity (see Section IV F);
B. Quantify the statistical significance of the measured similarity, with

respect to a properly defined benchmark, by computing the corre-
sponding p value, say pij (see Section IV G);

C. Repeat the step above for each pair of nodes;
D. Apply amultiple-hypothesis testing procedure and connect the nodes i

and j if and only if significantly similar (see Section IV H).

Let us stress that such a scheme is valid for both variants of our pro-
jection algorithm.

Step #1. Quantifying the similarity of any two nodes
Let us divide the next three sections in two subsections each: thefirst onewill
be devoted to devise a recipe for projecting a bipartite network that ignores
the dyadic motifs constituted by, at least, one missing tie (the bipartite
topology is considered ‘fixed’ andonly the signs of the ‘full’dyadicmotifs are
accounted for); the second one will be devoted to devise a recipe for pro-
jecting a bipartite network that accounts for the dyadic motifs constituted
by, at least, onemissing tie as well (the bipartite topology is considered ‘free’
and the signs of both the ‘full’ and the ‘partial’ dyadic motifs are accounted
for). To avoid confusion, the quantities defined within the first framework
will be underlined.

Fig. 6 | Pictorial representation of a bipartite signed network with blue (positive)
and red (negative) edges. The 'full' dyadic motifs, forming the 'bricks' of the zero-
deflated projection scheme, are individuated by ij and in (+/−), il and im (−/+), jn
(−/−), and im(+/+). Edges iβ, jα, and kδ do not contribute to any motif.
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Zero-deflated projection scheme. The first step of our method pre-
scribes measuring the degree of similarity of nodes i and j. To this aim, let
us consider the quantity named signature and defined as:

Sij ¼
PVij

α¼1
biαbjα

¼ PVij

α¼1
½ðbþiαbþjα þ b�iαb

�
jαÞ � ðbþiαb�jα þ b�iαb

þ
jαÞ�

¼ PVij

α¼1
ðCijα � DijαÞ

¼ Cij � Dij

ð22Þ

where the sum runs over the ‘full’ V-motifs (The symbol
PVij

α¼1ð. . . Þ
indicates that the sum runs over the connected pairs of nodes and is
equivalent to

PM
α¼1 jbiαbjαjð. . . Þ.), i.e., Vij �

PM
α¼1 jbiαbjαj. In words, the

signature is the difference between two quantities, i.e., the concordance of
nodes i and j, reading

Cij ¼
XVij

α¼1

Cijα ¼
XVij

α¼1

ðbþiαbþjα þ b�iαb
�
jαÞ ¼ Vij

þþ þ Vij
�� ð23Þ

and counting the number of ‘full’ concordantmotifs, and the discordance of
nodes i and j, reading

Dij ¼
XVij

α¼1

Dijα ¼
XVij

α¼1

ðbþiαb�jα þ b�iαb
þ
jαÞ ¼ Vij

þ� þ Vij
�þ ð24Þ

and counting the number of ‘full’ discordant motifs. As Fig. 6 shows, the
pairs of nodes establishingmotifs that are accounted for in the zero-deflated
scheme are ij and in, establishing a (+/−) motif; il and im, establishing a
(−/+) motif; jn, establishing a (−/−) motif; lm, establishing a (+/+) motif.

Anaiveway of projecting a bipartite signednetworkwould prescribe to
stop here and apply the sign function to the signature, hence connecting
nodes i and j with a positive link if Sij > 0, i.e., Cij >Dij, and with a negative
link if Sij < 0, i.e., Cij <Dij. More compactly,

ð25Þ

Zero-inflated projection scheme. Let us, now, measure the degree of
similarity of nodes i and j within the zero-inflated projection scheme. To
this aim, let us consider the novel definition of signature reading

Sij ¼
XM
α¼1

ðCijα � DijαÞ ¼ Cij � Dij ð26Þ

where the concordance between nodes i and j, now, reads

Cij ¼
XM
α¼1

Cijα ¼ Vþþ
ij þ V��

ij þ V00
ij ð27Þ

and the discordance between nodes i and j, now, reads

Dij ¼
PM
α¼1

Dijα

¼ Vþ�
ij þ V�þ

ij þ V0þ
ij þ Vþ0

ij þ V0�
ij þ V�0

ij :

ð28Þ

AsFig. 7 shows, the pairs of nodes establishing ‘full’motifs are ij and in,
establishing a (+/−) motif; il and im, establishing a (−/+) motif; jn,
establishing a (−/−)motif; lm, establishing a (+/+)motif.Moreover, node i
establishes a (0/+)motif with node j via nodeα, a (0/0)motif withnodes k, l,
m and n via node α, a (+/0) motif with any other node via node β, a (0/−)
motif with node k via node δ, etc.

Anaiveway of projecting a bipartite signednetworkwould prescribe to
stop here and apply the sign function to the signature, connecting nodes i
and j with a positive link if Sij > 0, i.e., Cij >Dij, and with a negative link if
Sij < 0, i.e., Cij <Dij. More compactly,

ð29Þ

Notice that such a naive projection would be denser than the naive one
induced by the zero-deflated definition of signature, the only possibility of
observing being that of having Cij =Dij.

Step #2. Quantifying the statistical significance of similarity
Zero-deflated projection scheme. The second step of our method
prescribes to evaluate the statistical significance of our nodes similarity.
To this aim, let us find the probability distribution obeyed by Sij, after
noticing that

�Vij ≤ Sij ≤Vij ð30Þ

where Sij ¼ �Vij if Cij ¼ 0 (i.e., if each ‘full’ V-motif is composed by a−1
and a+1) and Sij ¼ Vij ifDij ¼ 0 (i.e., if each ‘full’V-motif is composed by
either two −1s or two +1s).

Let us, now, keep the formalism as general as possible and treat links as
independent non-identically distributed (i.n.i.d.) random variables. This
amounts at considering the finite scheme (Such a notation, introduced by
Khintchine in Mathematical Foundations of Information Theory57, com-
pactly represents a discrete probability distribution, by listing its support on
the first row and the related probability coefficients on the second row.)

biα �
�1 þ1

1� pþiα pþiα

� �
ð31Þ

∀ i, α such that ∣biα∣ = 1, further inducing

biαbjα �
�1 þ1

pþiα þ pþjα � 2pþiαp
þ
jα 1� pþiα � pþjα þ 2pþiαp

þ
jα

 !

¼
�1 þ1

1� qþijα qþijα

 ! ð32Þ

∀ i, j, α such that ∣biαbjα∣ = 1.

Fig. 7 | Pictorial representation of a bipartite signed networkwith blue (positive),
red (negative), and grey (missing) edges. The `full' dyadic motifs include ij and in
(+/−), il and im (−/+), jn (−/−), and im (+/+). Additionally, node i participates in
'partial' motifs such as (0/+), (0/0), (+/0), and (0/−).
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Since Sij is the sum of i.n.i.d. Bernoulli random variables, the prob-
ability distribution obeyed by it is the Poisson-binomial

PðSij ¼ sÞ ¼
X
Ck2Ck

Y
ν2Ck

qþijν
Y
τ=2Ck

ð1� qþijτÞ
2
4

3
5 ð33Þ

where Ck is the set of all possible k-tuples of which ν and τ are instances. As
wewill see in Section IV I, this is precisely the case of a benchmark enforcing
linear local constraints.

The formula above simplifies in the case of a benchmark enforcing
linear global constraints, the links becoming independent identically dis-
tributed (i.i.d.) random variables and the Poisson-binomial above reducing
to a binomial.

For more details about the benchmarks, see Sections IV I 1, IV I 1 and
Appendix A.

Zero-inflated projection scheme. Let us, now, find the probability
distribution obeyed by Sij, after noticing that

�M ≤ Sij ≤M ð34Þ

where Sij =−M ifCij = 0 (i.e. if eachV-motif is composed by a−1 and a+1)
and Sij =M ifDij = 0 (i.e. if each V-motif is composed by either two− 1s or
two + 1s).

As in the previous subsection, let us treat links link as i.n.i.d. random
variables. Within the zero-inflated projection scheme, this amounts at
replacing Eq. (31) with

biα �
�1 0 þ1

p�iα p0iα pþiα

� �
ð35Þ

∀ i, α, further inducing

Cijα � Dijα �
�1 þ1

1� qþijα qþijα

 !
ð36Þ

with

qþijα ¼ qþþ
ijα þ q��

ijα þ q00ijα; ð37Þ

1� qþijα ¼ qþ�
ijα þ q�þ

ijα þ q0þijα þ qþ0
ijα þ q0�ijα þ q�0

ijα ð38Þ
where, for example, the coefficient qþþ

ijα induces the finite scheme

bþiαb
þ
jα �

0 þ1

1� pþiαp
þ
jα pþiαp

þ
jα

 !
¼

0 þ1

1� qþþ
ijα qþþ

ijα

 !
ð39Þ

and analogously for the others.
As a consequence, Sij becomes a sum of i.n.i.d. Bernoulli random

variables obeying the Poisson-binomial reading

PðSij ¼ sÞ ¼
X
Ck2Ck

Y
ν2Ck

qþijν
Y
τ=2Ck

ð1� qþijτÞ
2
4

3
5 ð40Þ

whereCk is the set of all possible k-tuples ofwhich ν and τ are instances.As in
theprevious subsection, if thebenchmark inducedby linear local constraints
is replaced by the benchmark induced by linear global constraints, the links
become i.i.d. random variables and the Poisson-binomial reduces to a
binomial.

For more details about the benchmarks, see Sections IV I 2, IV I 2 and
Appendix B.

Quantifying the statistical significance of similarity. Once we have
calculated the distribution for each pair of nodes belonging to the layer of
interest, we have to calculate the statistical significance of the empirical
signature: as we have a signed quantity, we need both tails of such a
distribution to carry out what is known as two-sided test of hypothesis. In
what follows we will focus on Sij but the same considerations hold true
for Sij.

Basically, we need to answer the two related questions i) is the empirical
value of the signature significantly different from the one expected under the
chosen benchmark? and ii) if so, is the deviation negative (hence, the signature
is significantly smaller than expected) or positive (hence, the signature is
significantly larger than expected)?

The first question can be answered upon calculating the two-sided p
value reading

pij ¼ 2 �min FðS�ijÞ; 1� FðS�ijÞ
n o

ð41Þ

with S�ij being the empirical value of the signature andFbeing the cumulative
distribution function, defined asFðS�ijÞ ¼

P
x ≤ S�ij

PðSij ¼ xÞ: such a number
evaluates the probability of observing a deviation from the expected value in
either directions.

The second question can be answered upon calculating the sign of such
a deviation, by determining if either

FðS�ijÞ < 1� FðS�ijÞ ð42Þ

or

FðS�ijÞ > 1� FðS�ijÞ ð43Þ

holds true. In the first case, FðS�ijÞ < 1=2, the empirical value of the signature
is smaller than the median of the distribution and the deviation is negative;
in the second case, FðS�ijÞ > 1=2, the empirical value of the signature is larger
than the median of the distribution and the deviation is positive. Upon
indicating the threshold individuated by the multiple-hypothesis testing
procedure with pth (It represents the largest p value that satisfies the False
Discovery Rate rejection criterion and is defined as pth ¼ ît=jHj, with î
being the largest integer satisfying the condition p� valuêi ≤ pth, t is the
single-test significance level and ∣H∣ is the total number of tested hypotheses
(see also Appendix C).), the following cases can be met:
• The two conditions FðS�ijÞ < 1=2 and pij ≤ pth indicate that nodes i and j

have established a number of ‘full’ discordant motifs that is so large to
induce a significantly negative signature—and, potentially, a negative
link in the projection (aij =−1);

• The two conditions FðS�ijÞ > 1=2 and pij ≤ pth indicate that nodes i and j
have established a number of ‘full’ concordantmotifs that is so large to
induce a significantly positive signature—and, potentially, a positive
link in the projection (aij =+1);

• The condition pij > pth individuates a value of the signature (i.e. of ‘full’
concordant/discordant motifs) that is compatible with the one pre-
dicted by the chosen benchmark: stated otherwise, the empirical
number of motifs could have been observed in configurations gener-
ated by the benchmark itself—hence, inducing a null link in the pro-
jection (aij = 0).

For a graphical representation of our validation procedure, see Fig. 8.

Step #3. Validating the projection
The second step of our method returns a symmetric matrix of p values.
Individuating the ones associatedwith the hypotheses to be actually rejected
requires a procedure to deal with the comparison of multiple hypotheses at
the same time. In very general terms, a thresholdhas to be set: if the specificp
value is smaller than such a threshold, the associated event is interpreted as
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statistically significant and the corresponding nodes are connected in the
projection.

In thepresentpaper,we apply the so-called FalseDiscoveryRate (FDR)
procedure58, allowing one to control for the expected number of ‘false dis-
coveries’ (i.e. incorrectly rejected null hypotheses or incorrectly validated
links), irrespectively of the independence of the hypotheses tested.

For more details about the FDR procedure, see Appendix C.

Maximum entropy benchmarks for bipartite signed networks
The second step of our method prescribes to quantify the statistical sig-
nificance of the similarity of any two nodes i and j. To this aim, a statistical
benchmark is needed. A natural choice leads to the adoption of models
belonging to the class of the so-calledExponential RandomGraphs, induced
by the constrained maximisation of the Shannon entropy22,59–63

S ¼ �
X
B2B

PðBÞ ln PðBÞ; ð44Þ

the sum running over a properly defined ensemble of configurations.
Within such a framework, the generic bipartite network B is assigned the
probability

PðBÞ ¼ e�Hðθ;CðBÞÞ

ZðθÞ ð45Þ

whose value is determined by the vector C(B) = {Ci(B)} of topological
constraints via theHamiltonian readingHðθ;CðBÞÞ ¼Pi θiCiðBÞ. Inwhat
follows, we will employ linear constraints: beside allowing our optimisation
problem to be analytically solved in these cases—P(B) can be written in a
factorised form, i.e., as a product of pair-specific probability coefficients—
they individuate the ‘right’ amount of information to be accounted for to
obtain a projection: since we are interested in evaluating the statistical
significance of co-occurrences, one must discount the tendency of nodes to
establish connections with many/few neighbours.

In order to determine the unknown parameters θ, the likelihood-
maximisation recipe can be adopted: given an observed biadjacency matrix
B*, it translates into solving the system of equations

hCiiðθÞ ¼
X
B2B

PðBÞCiðBÞ ¼ CiðB�Þ; 8 i ð46Þ

which prescribes to equate each ensemble average, e.g., 〈Ci〉(θ), to its
observed counterpart, i.e., Ci(B

*) 22,61–64.

Zero-deflatedprojection scheme. Thefirst two benchmarks determine
the coefficients of the two variants of the finite scheme defined in Eq. (31).
As already stressed, dyadic motifs constituted by, at least, one missing tie
are ignored, here: the bipartite topology is, thus, considered ‘fixed’. Upon
indicating the total number of connected pairs of nodes with L ¼PN

i¼1

PM
α¼1 jbiαj ¼ Lþ þ L� and considering that any node pair can be

either positively or negatively connected, the ensemble is constituted by
jBj ¼ 2L possible configurations in both cases.

Fixed-topology Bipartite signed random graph model. The Fixed-topology
Bipartite Signed Random Graph Model (BiSRGM-FT) is defined by two
global constraints, i.e., the total number of positive and negative links: the
corresponding Hamiltonian, thus, reads

Hðθ;BÞ ¼ β0LþðBÞ þ γ0L�ðBÞ: ð47Þ
Keeping the topology of the network under analysisfixedwhile (solely)

randomising the edge signs implies that the role of random variables is
played by the entries of the biadjacency matrix corresponding to the con-
nectedpairs of nodes, i.e., the ones forwhich ∣biα∣ = 1.Let us, however, notice
that the Hamiltonian in Eq. (47) can be re-written as

Hðθ;BÞ ¼ β0LþðBÞ þ γ0ðL� LþÞðBÞ ð48Þ

¼ ðβ0 � γ0ÞLþðBÞ þ γ0LðBÞ ð49Þ

and further simplified into

Hðθ;BÞ ¼ βLþðBÞ ð50Þ

where the constant term has been dropped, as it does not affect the com-
putation of the probability coefficients, and the only relevant Lagrange
multiplier has been re-named65. The generic entry, thus, obeys

Pðbiα ¼ þ1Þ ¼ e�β

1þ e�β
¼ pþ;

Pðbiα ¼ �1Þ ¼ 1
1þ e�β

¼ 1� pþ;

in words, each entry satisfying ∣biα∣ = 1 obeys a Bernoulli distribution whose
probability coefficients are determined by the imposed constraints: each
existing link is assigned a ‘plus one’ with probability p+ and a ‘minus one’
with probability p−.

Fig. 8 | Probability distribution of the signature ( ) and its Gaussian approx-
imation ( ). The left panel provides a graphical answer to the question: Is the
empirical value of the signature significantly different from the one expected under
the chosen benchmark? while the right panel provides a graphical answer to the

question is the deviation negative (hence, the signature is significantly smaller than
expected) or positive (hence, the signature is significantly larger than expected)?, the
red (blue) area corresponding to the region of validation of the negative
(positive) links.
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To employ the BiSRGM-FT for studying real-world networks, the
parameters that define it need to be properly tuned. More specifically, one
needs to ensure

Lþ
� �

BiSRGM�FT ¼ LþðB�Þ ð51Þ

with the symbol B* indicating the empirical network under analysis. The
maximisation of the likelihood function LBiSRGM�FT � ln PBiSRGM�FTðB�Þ
with respect to the unknown parameters that define it leads us to find

pþ ¼ LþðB�Þ=LðB�Þ: ð52Þ
For an alternative, yet equivalent, resolution of the problem, see

Appendix D.

Fixed-topology bipartite signed configuration model. The Fixed-topology
Bipartite Signed Configuration Model (BiSCM-FT), instead, is defined by
local constraints, i.e., the positive and negative degree sequences: the cor-
responding Hamiltonian, thus, reads

Hðθ;BÞ ¼PN
i¼1

½β0ikþi ðBÞ þ γ0ik
�
i ðBÞ�

þPM
α¼1

½δ0αhþα ðBÞ þ η0αh
�
α ðBÞ�;

ð53Þ

again, the role of randomvariables is playedby the entries of the biadjacency
matrix corresponding to the connected pairs of nodes and the Hamiltonian
in Eq. (53) can be further simplified into

Hðθ;BÞ ¼
XN
i¼1

½β0ikþi ðBÞ þ γ0iðki � kþi ðBÞÞ� ð54Þ

þ
XM
α¼1

½δ0αhþα ðBÞ þ η0αðhα � hþα ðBÞÞ� ð55Þ

¼
XN
i¼1

βik
þ
i ðBÞ þ

XM
α¼1

δαh
þ
α ðBÞ ð56Þ

with obvious meaning of the symbols65. The generic entry, now, obeys

Pðbiα ¼ þ1Þ ¼ e�ðβiþδαÞ

1þ e�ðβiþδαÞ ¼ pþiα; ð57Þ

Pðbiα ¼ �1Þ ¼ 1
1þ e�ðβiþδαÞ ¼ 1� pþiα; ð58Þ

in words, given any two connected nodes i and α, their link is assigned a+ 1
with probability pþiα and a − 1 with probability p�iα.

To tune the parameters defining the BiSCM-FT, we can maximise the
likelihood function LBiSCM�FT � ln PBiSCM�FTðB�Þ with respect to the
unknown parameters that define it: such a recipe leads us to find

hkþi iBiSCM�FT ¼ kþi ðB�Þ; 8 i; ð59Þ

hhþα iBiSCM�FT ¼ hþα ðB�Þ; 8 α: ð60Þ
The system above can be solved only numerically, along the guidelines

provided in ref. 66.
For an alternative, yet equivalent, resolution of the problem, see

Appendices D and E. Here, we have solved it by employing the SIMONA
Matlab-coded package, available at this URL.

Zero-inflated projection scheme. The other two benchmarks deter-
mine the coefficients of the two variants of the finite scheme defined in
Eq. (35). As already stressed, dyadic motifs constituted by, at least, one
missing tie are accounted for, here: the bipartite topology is, thus, con-
sidered ‘free’. Since the total number of node pairs isN ⋅M and any node
pair can be positively connected, negatively connected or disconnected,
the ensemble is constituted by jBj ¼ 3N�M possible configurations in
both cases.

Free-topology bipartite signed random graph model. The Free-topology
Bipartite Signed RandomGraphModel (BiSRGM)13 is induced by the same
Hamiltonian inducing its fixed-topology counterpart, i.e.,H(θ,B) = βL+(B)
+ γL−(B) but treating the topology as ‘free’ does not allow for any simpli-
fication. The generic entry obeys

Pðbiα ¼ þ1Þ ¼ e�β

1þ e�β þ e�γ
¼ pþ; ð61Þ

Pðbiα ¼ �1Þ ¼ e�γ

1þ e�β þ e�γ
¼ p� ð62Þ

and p0≡ 1− p−− p+. In words, biα obeys a generalised Bernoulli distribu-
tion whose probability coefficients are determined by the imposed con-
straints. Each positive link appears with probability p+, each negative link
appears with probability p− and each missing link has a probability p0.

The maximisation of the likelihood function LBiSRGM ¼
ln PBiSRGMðB�Þ with respect to the unknown parameters that define it leads
us to find

pþ ¼ LþðB�Þ=ðN �MÞ; ð63Þ

p� ¼ L�ðB�Þ=ðN �MÞ ð64Þ

and p0≡ 1− p− − p+.
For more details, see Appendix D.

Free-topology bipartite signed configuration model. The Free-topology
Bipartite Signed Configuration Model (BiSCM)13 is induced by the same
Hamiltonian inducing its fixed-topology counterpart, i.e., Hðθ;BÞ ¼PN

i¼1½βikþi ðBÞ þ γik
�
i ðBÞ� þ

PM
α¼1½δαhþα ðBÞ þ ηαh

�
α ðBÞ� but, as for the

BiSRGM, it cannot be further simplified. The generic entry, thus, reads

Pðbiα ¼ þ1Þ ¼ e�ðβiþδαÞ

1þ e�ðβiþδαÞ þ e�ðγiþηαÞ
¼ pþiα; ð65Þ

Pðbiα ¼ �1Þ ¼ e�ðγiþηαÞ

1þ e�ðβiþδαÞ þ e�ðγiþηαÞ
¼ p�iα ð66Þ

and p0iα � 1� p�iα � pþiα. In words, biα obeys a generalised Bernoulli dis-
tribution whose probability coefficients are determined by the imposed
constraints. Given any two nodes i and α, they are connected by a positive
link with probability pþiα, by a negative link with probability p�iα and are
disconnected with probability p0iα.

The maximisation of the likelihood function LBiSCM ¼ ln PBiSCMðB�Þ
with respect to the unknown parameters that define it leads us to find

kþi ðB�Þ ¼ hkþi i; 8 i; ð67Þ

k�i ðB�Þ ¼ hk�i i; 8 i; ð68Þ

hþα ðB�Þ ¼ hhþα i; 8 α; ð69Þ

h�α ðB�Þ ¼ hh�α i; 8 α: ð70Þ
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The system above can be solved only numerically, along the guidelines
provided in ref. 66.

For more details, see Appendices D and E. Here, we have solved it by
employing the SIMONAMatlab-coded package, available at this URL.

Let us conclude this sectionbymentioning that BiSCMcanbe obtained
as a special case of the Bipartite Score Configuration Model presented
in ref. 67.

Data availability
Data concerning \textit{U.S. Senate} and \textit{U.S. House of Repre-
sentatives} are described in\cite{derr2019balance} and can be found at the
address https://www.govtrack.us/. Data concerning \textit{FilmTrust} is
described in\cite{filmtrust} and canbe found at the address http://konect.cc/
networks/librec-filmtrust-ratings/.

Code availability
We released a Matlab-coded package that implements all the probabilistic
models for a binary undirected bipartite signed network. Its name is
SIMONA, an acronym standing for ‘Signed Models for Network Analysis’,
and is freely downloadable at this URL.
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