Table 4 One way ANOVA’s with community as the independent variable and each hashtag as the dependent variable demonstrate that the usage of each hashtag was different across communities

From: Strategic attitude expressions as identity performance and identity creation in interaction

 

ANOVA

#genocidebysanctions

F(12, 5324) = 38.56, p < 0.001 ηp2 = 0.08, 95% CI[0.06, 0.09]

#sanctionskill

F(6, 4904) = 54.87, p < 0.001 ηp2 = 0.06, 95% CI[0.05, 0.08]

#cancelhr6600

F(6, 4904) = 56.47, p < 0.001 ηp2 = 0.06, 95% CI[0.05, 0.08]

#ukraineunderattaÑk

NOT SIG

#stoprussia

F(6, 4904) = 15.82, p < 0.001 ηp2 = 0.02, 95% CI[0.01, 0.03]

#stopputinnow

F(6, 4904) = 4.42, p < 0.001 ηp2 = 0.01, 95% CI[0.01, 0.01]

#nato

F(6, 4904) = 3.00, p < 0.001 ηp2 = 0.01, 95% CI[0.00, 0.01]

#peace

F(6, 4904) = 1.55, p < 0.001 ηp2 = 0.01, 95% CI[0.00, 0.01]

#stoprussianaggression

F(6, 4904) = 7.07, p < 0.001 ηp2 = 0.01, 95% CI[0.01, 0.01]

#russianwarcrimes

F(6, 4904) = 3.09, p < 0.001 ηp2 = 0.01, 95% CI[0.00, 0.01]

#kyiv

F(6, 4904) = 1.99, p < 0.001 ηp2 = 0.01, 95% CI[0.00, 0.01]

#kiev

F(6, 4904) = 1.60, p < 0.001 ηp2 = 0.01, 95% CI[0.00, 0.01]

#armukrainenow

F(6, 4904) = 22.54, p < 0.001 ηp2 = 0.03, 95% CI[0.02, 0.04]

#stopputin

F(6, 4904) = 8.86, p < 0.001 ηp2 = 0.01, 95% CI[0.01, 0.02]

#putin

F(6, 4904) = 110.09, p < 0.001 ηp2 = 0.01, 95% CI[0.01, 0.02]

#mariupol

F(6, 4904) = 3.93, p < 0.001 ηp2 = 0.01, 95% CI[0.01, 0.01]

#standupforukraine

F(6, 4904) = 3.66, p < 0.001 ηp2 = 0.01, 95% CI[0.01, 0.02]

#standwithukraine

F(6, 4904) = 47.20, p < 0.001 ηp2 = 0.06, 95% CI[0.04, 0.07]

#ethiopia

F(6, 4904) = 69.20, p < 0.001 ηp2 = 0.08, 95% CI[0.06, 0.09]

#genocideofukranians

F(6, 4904) = 4.15, p < 0.001 ηp2 = 0.01, 95% CI[0.01, 0.01]

#rejects3199

F(6, 4904) = 49.08, p < 0.001 ηp2 = 0.06, 95% CI[0.04, 0.07]