Table 3 Details of pairwise comparisons between participant sampling rates in Studies 1 and 3

From: Biased expectations about future choice options predict sequential economic decisions

Condition 1

n

Condition 2

n

Bayes Factor 10 (BF10)

t test

Cohen’s d

Confidence interval

Brown-Forsythe

r = 0.5

r = 0.71

r = 1

Study 1

 Payoff

51

Timing

50

0.28

0.21

0.15

t(99) = 0.07, p = 1

0.01

–0.77

0.81

F(1,99) = 0.36, p = 1

 Payoff

51

Squares

50

0.28

0.21

0.15

t(99) = –0.07, p = 1

–0.01

–0.8

0.76

F(1,99) = 0.60, p = 1

 Payoff

51

Baseline

50

0.29

0.22

0.16

t(99) = 0.33, p = 1

0.07

–0.64

0.79

F(1,99) = 4.25, p = 0.63

 Payoff

51

Full

50

0.68

0.55

0.42

t(99) = –1.47, p = 1

–0.29

–1.49

0.51

F(1,99) = 6.16, p = 0.22

 Payoff

51

Ratings

51

0.4

0.31

0.23

t(100) = 0.92, p = 1

0.18

–0.56

1.06

F(1,100) = 0.02, p = 1

 Timing

50

Squares

50

0.29

0.21

0.16

t(98) = –0.14, p = 1

–0.03

–0.81

0.74

F(1,98) = 0.02, p = 1

 Timing

50

Baseline

50

0.29

0.22

0.16

t(98) = 0.25, p = 1

0.05

–0.65

0.77

F(1,98) = 1.65, p = 1

 Timing

50

Full

50

0.73

0.59

0.46

t(98) = –1.53, p = 1

–0.31

–1.51

0.49

F(1,98) = 8.18, p = 0.08

 Timing

50

Ratings

51

0.38

0.29

0.22

t(99) = 0.85 p = 1

0.17

–0.58

1.04

F(1,99) = 0.18, p = 1

 Squares

50

Baseline

50

0.3

0.23

0.17

t(98) = 0.42 p = 1

0.08

–0.59

0.79

F(1,98) = 1.33, p = 1

 Squares

50

Full

50

0.65

0.52

0.4

t(98) = –1.43, p = 1

–0.29

–1.46

0.52

F(1,98) = 9.24, p = 0.05

 Squares

50

Ratings

51

0.43

0.33

0.25

t(99) = 1.01, p = 1

0.2

–0.53

1.06

F(1,99) = 0.35, p = 1

 Baseline

50

Full

50

1.09

0.91

0.71

t(98) = –1.82, p = 1

–0.36

–1.51

0.37

F(1,98) = 17.35, p = 0.00

 Baseline

50

Ratings

51

0.34

0.26

0.19

t(99) = 0.70, p = 1

0.14

–0.56

0.9

F(1,99) = 2.99, p = 1

 Full

50

Ratings

51

2

1.73

1.4

t(99) = 2.19, p = 0.46

0.44

–0.28

1.75

F(1,99) = 6.05, p = 0.24

Study 3

 14 options

65

10 options

75

1.55

1.29

1.01

t(138) = 2.08, p = 0.04

0.35

0.03

1.33

F(1,138) = 3.55, p = 0.06

  1. All p values and alpha values used in confidence intervals are Bonferroni corrected for 15 tested pairs. r values in the Bayes Factor columns represent the scale factor of the Cauchy prior on the effect size. Compare to Fig. 2.