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Many psychotherapy interventions have a large evidence base and can help a substantial number of
people with symptoms of mental health conditions. However, we still have little understanding of why
treatments work. Early advances in psychotherapy, such as the development of exposure therapy,
built on theoretical and experimental evidence from Pavlovian and instrumental conditioning. More
generally, all psychotherapy achieves change through learning. The past 25 years have seen
substantial developments in computational models of learning, with increased computational
precisionanda focusonmultiple learningmechanismsand their interaction.Nowmight beagood time
to formalize psychotherapy interventions as computational models of learning to improve our
understanding of mechanisms of change in psychotherapy. To advance research and help bring
together a new joint field of theory-driven computational psychotherapy, we first review literature on
cognitive behavioral therapy (exposure therapy and cognitive restructuring) and introduce
computational models of reinforcement learning and representation learning. We then suggest a
mapping of these learning algorithms on change processes presumably underlying the effects of
exposure therapy and cognitive restructuring. Finally, we outline how the understanding of
interventions through the lens of learning algorithms can inform intervention research.

In recent years, the field of Computational Psychiatry has focused on illu-
minatingmechanisms underlyingmental health conditions and response to
pharmacological and neurobiological treatments using computational
models of behavior, decision-making, and biophysiology1–3. A family of
algorithms often applied in computational psychiatry originate from rein-
forcement learning (RL) and prescribe a set of rules for trial-and-error
learning from reward and punishment. Bayesian inference, alsowidely used
in computational psychiatry, accounts for learning through combining
prior beliefs and new evidence. While these computational models of
learning have been applied to studying disorders ranging from depression
and anxiety to schizophrenia, they have been rarely applied to studying
psychotherapy as a means of treating such disorders (but see refs. 4,5). As
psychotherapy embraces many interventions that are directly based on
learning theory, it readily lends itself to be studied and quantified through
the lens of computational models of learning. Expanding on Niv et al.6, this
paper aims to build a bridge between learning algorithms and psy-
chotherapy research and point out ways in which computational models of
learning, together with well-designed behavioral tasks, could enhance psy-
chotherapy research. Within psychotherapy, we will focus on (second
generation) cognitive behavioral therapy (CBT) due to its straightforward
mapping to learning algorithms and its wide clinical use. However, the

principles of our approach can be similarly applied to elucidatemechanisms
underlying psychotherapy interventions fromother schools of thought (e.g.,
psychodynamic therapy and interpersonal therapy).

CBT is a problem-focused collaborative form of psychotherapy that
aims to change maladaptive behavior and thought processes7,8. One core
assumption of the behavioral part of CBT is that people expect (explicitly or
implicitly) that specific situations lead to dangerous outcomes when they
are, in fact, safe. “Exposure therapy” therefore attempts to change people’
maladaptive responses and behaviors through direct new experiences:
people are exposed to feared situations to change previously learned asso-
ciations between the situation and danger, or train new competing asso-
ciations between the situation and safety. Such learning can help reduce
maladaptive emotional and instrumental responses, such as a misplaced
autonomic fear response and/or avoidance behavior.

A core premise of the cognitive part of CBT is that external events do
not cause us to feel and do things; instead, our cognitions offer a subjective
interpretation of events that, in turn, causes feelings and actions. This
interpretation is often automatic and implicit, building on a lifetime of
previous experiences or modeling by others, and is not necessarily a
voluntary or conscious process. The profound implication is that by
changing our interpretations, we can avoid responding maladaptively
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(for examples, see below). “Cognitive restructuring” in CBT addresses these
interpretations by challenging thoughts, exposing their exaggerated or
distorted nature, and listing and practicing alternative interpretations. This,
too, can help reduce or change the emotional response and enable alter-
native behavioral responses.

Below we briefly explain, for each of these interventions (exposure
therapy and cognitive restructuring), what they entail, how they are deliv-
ered in practice by a therapist, and their underlying theoretical assumptions
(and empirical evidence). We then introduce relevant terminology from
reinforcement learning, representation learning and Bayesian inference.
Finally, we map each intervention onto specific learning algorithms and
carve out predictions regarding enduring treatment response and relapse.

Before diving into the details of each intervention, we would like to
point out that these interventions are usually embedded in a therapy fra-
mework that includes a diagnostic assessment, the building of an alliance
between the client and the therapist, psychoeducation about the mental
health condition and planned approach, 5−20 sessions of the primary
intervention(s), and relapse prevention. It is important to keep in mind the
influences of the additional components on therapy outcome, and future
work should integrate themmoreprecisely into the outlined framework (see
Discussion). We would also like to emphasize that we do not suggest
implementing the modified interventions we outline below in the clinic at
this point, rather, we propose these as hypotheses that first must be tested
experimentally and clinically. We hope that testing interventions that are
informed by learning systems in the brain can help elucidate their
mechanisms of action, and suggest refinements to existing treatments.

Furthermore,wenote thatmany verbal learning theorieshave beenput
forward in psychology, and these form the basis of psychotherapy research
(for example, theories of context learning9,10). Additionally, empirical and
neural evidence, e.g., for generalization learning11–13, informs psychotherapy
research (see ref. 14 for an example). Computational models are not alter-
natives to these learning theories, but rather they are mathematical for-
malizations of them. These models make implicit assumptions explicit,
identify gaps in traditional learning theories, andmathematically definehow
and when learning occurs. Thus, they allow for precise and quantitative
prediction of learning behavior over time. As such, they can be used to test,
quantitatively and qualitatively, if theories can indeed account for observed
learning behavior and which theory does so best. This can help identify
explanatory gaps and prompt elaboration of the theory (for example, see
ref. 15). Reviewing all traditional learning theories is beyond the scopeof this
paper, however, we will point the interested reader to relevant traditional
theories throughout.

Exposure therapy
Exposure therapy is the oldest part of CBT. It is a widespread and effective
treatment for anxiety disorders16–19 and especially effective for treating post-
traumatic stress disorder20, specific phobias21,22, obsessive-compulsive
disorder23 and other mental health conditions.

In exposure therapy, people repeatedly encounter real, simulated, or
imagined feared stimuli within safe environments. According to theories of
exposure therapy, they then learn to remain in the presence of the feared
stimulus or situation rather than to escape it, and experience that the feared
outcome does not occur. Subsequently, their fear of the stimulus decreases
and with it the tendency to avoid the stimulus.

Different strategies of exposure therapy include directly facing the
feared stimulus or situation (in vivo exposure), vividly imagining the feared
stimulus or situation (imaginal exposure), using virtual reality to show the
feared stimulus or situation (virtual reality exposure), or purposefully
bringing about a feared physical sensation (interoceptive exposure). In
preparation for exposure therapy, the therapist and client construct a list
organizing fearful stimuli and situations according to the strength of the
client’s fear (“fearhierarchy”). For example, for a client strugglingwith social
anxiety, at the bottom of the hierarchy (less fear) may be situations such as
meeting with 2−3 friends, whereas at the topmay be giving a public talk. In
gradual exposure, exposures start with mildly or moderately feared

situations and subsequentlymove up the hierarchy. In contrast, in flooding,
the client is immediately exposed to themost fearful stimulus or situation24.

Exposure therapy is based on the assumption that avoidance of fearful
stimuli and situations maintains fear and anxiety25,26. The idea is that fear
was learned when a harmful outcome occurred. Due to subsequent avoid-
ance of the fearful situation or stimuluswe donot experience that it rarely (if
at all) leads to the aversive outcome, and thus we miss opportunities to
correct our exaggerated expectation of the fearful outcome and decrease
our fear.

Foa andKozak27 suggested three factors that indicate effective exposure
therapy: (1)Theperson is in a fearful state in response to the stimulus,which
Foa and Kozak termed “fear activation.” In their theory, fear activation
indicates that the fearmemory has been accessed and can be integratedwith
new information to achieve emotional change and is a prerequisite for
learning to occur. (2) The person’s physiological response to the stimulus
decreases within the exposure. That is, the exposure exercise must be long
enough to experience a reduction in subjective distress (note that this factor
is no longer considered required for effective exposure therapy due to a lack
of empirical evidence28). (3) The person’s physiological response to the
stimulus decreases between sessions as a sign of habituation due to repeated
exposure. The latter two arepresumed to occur through thenatural decrease
of the body’s autonomous stress response through habituation to a non-
fearful situation – even absent mitigating actions, stress responses tend to
decrease after 15−20min.

Craske et al.29,30 suggested an alternative tactic for improving exposure
therapy that does not rely on habituation but on “inhibitory learning”.
Rather than modifying the original fear association, inhibitory learning
focuses on forming and strengthening new inhibitory associations between
the stimulus and safety (therefore, the new association is inhibitory to the
fear association). Specifically, Craske and colleagues suggest that max-
imizing the difference between the expected (aversive) outcome and the
actual outcome (expectancy violation) during exposure will increase inhi-
bitory learning. Based on empirical evidence of the role of inhibitory
retrieval in extinction learning, they developed a range of techniques to
improve exposure therapy outcomes14. These techniques include what they
call foundational strategies that enhanceexpectancy violation (e.g., attention
to the feared stimulus, removal of safety signals), advanced strategies
(deepened extinction, i.e., extinction of multiple feared stimuli, first sepa-
rately and then combined, andoccasional pairing of the feared stimuluswith
the aversive outcome) and strategies to enhance the generalization of
extinction learning (using retrieval cues as reminders of the extinction
experience and practicing extinction in multiple contexts or for a variety of
stimuli similar to the feared one).

While exposure therapy is successful in reducing fear for many clients,
fear often returns after some time31. Indeed, the prevention of relapsesmight
remain one of the biggest challenges for exposure therapies. This challenge
provides an opportunity for computational psychotherapy to improve
therapy design such as to reduce return of fear, as we detail below.

Introducing model-free reinforcement learning
Reinforcement learning (RL) arose at the interface of computer science and
psychology as a computational theory of animal learning, specifically Pav-
lovian and instrumental conditioning32. Before introducing RL, we will
therefore introduce Pavlovian conditioning, which is also important for
understanding exposure therapy. In Pavlovian (“classical”) conditioning, a
contingency between two events—one motivationally neutral and one
motivationally relevant—is experienced repeatedly (e.g., a light – a “con-
ditional stimulus,” orCS, followed by a shock – an “unconditional stimulus”
orUS). As a result, through learning, theCS comes to predict the occurrence
of theUS. This prediction is evidenced (and can bemeasured) by behavioral
responses (e.g., quickening heart rate – also called “conditioned responses”)
that automatically accompany said prediction. This type of learning is
ubiquitous and can occur when a CS predicts the occurrence of a US
(excitatory conditioning) or the absence of a previously occurring US
(inhibitory conditioning). When a CS that previously predicted a US is
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repeatedly presented without the US, the conditioned responses decrease.
This process is termed extinction learning. Importantly, although Pavlovian
learning may not even enter awareness, Pavlovian conditioned responses
(which include emotions, increased heart rate, and sweating) are automatic
and veryhard to override. In everyday life, emotional responses (e.g., anxiety
to the sight of a co-worker approaching your desk at noon) are often con-
ditioned in this way (e.g., due to experiencing an aversive lunch interaction
with this co-worker in the past). Here, the co-worker serves as the CS, and
the heightened arousal and anxiety are a conditioned response.

Prediction learning is at the heart of RL theory. In RL models of
Pavlovian conditioning, a stimulus or “state” S (which refers to the con-
stellation of stimuli co-occurring at a specific time, such as background,
location, not an internal bodily or mental state) acquires a value V(S) that
reflects the subjective scalar sum of the motivationally relevant USs it pre-
dicts. This occurs through repeated experience with environmental con-
tingencies and learning through prediction errors. For example, the first
time the light is seen, the value of the “light on” state may be zero as it does
not inherently predict anything of motivational value. When the light is
followed by a shock, the shock’s “reward value”R (negative for aversive USs
such as a shock; positive for appetitive USs such as food) is compared to the
prior expectation Vold Sð Þ to compute a prediction error: PE = R – Vold Sð Þ.
The new value of the state is then updated based on the prediction error:
Vnew Sð Þ ¼ VoldðSÞ þ α � PE, whereα is a “learning rate”parameter between
0 and 1. As the value will now be larger than 0, the light will now partly
predict the shock on the next trial, leading to a smaller prediction error (and
a smaller value update). The learning rule will update the value until the
prediction error is zero (that is, until the prediction is correct). The earliest
version of this model was proposed by Rescorla and Wagner33 to explain
how an association between a CS and a US is acquired.

This model has one parameter, α, that determines the extent to which
new information about USs is incorporated into future predictions, at the
expense of old knowledge. α can differ between individual learners or for
different situations, explaining differences in the rate of prediction learning.
Note that this learning model is an example of “model-free RL” because it
does not require learning a “world model” – the actual environmental
contingencies. Even without explicitly tracking the probability that the US
occurs, or the size of its reward, correct predictive values can be learned
through trial and error, from prediction errors.

Model-free learning operates on states S that represent meaningful or
relevant configurations of stimuli. Although in the theory states are assumed
to be known, in reality, they are not pre-defined for the learner. States must
also be learned by each individual through what we will call “representation
learning” – discovering what configurations are relevant in the current
situation. For instance, one might learn that each of a specific group of co-
workers approaching around noon represent a state with aversive value (as
they tend tomake offensive remarks about other colleagues at lunch), while
other co-workers represent neutral or even positive-valued states. Even in
simple scenarios as in the light-shock conditioning situation described
above, the light may be relevant for predicting shocks, whereas environ-
mental odors and one’s location in space may not be relevant. However, in
other scenarios, locations may be relevant.

“Latent-cause inference” is a recent computational framework that
addresses the problem of learning a high level representation for an RL
task34. In this theory, learners infer “latent causes” – groupings of events into
clusters, or contexts, in which certain contingencies between events can be
expected. Latent causes can function as the states from traditional RL. For
instance, in the example above, the learner can infer a latent cause C1 in
which both light and shock appear with high probability. When the
environment changes considerably (e.g., the light that once reliably pre-
dicted a shock is no longer followed by a shock, as in extinction), traditional
RL theories of conditioning would suggest new prediction errors and
updating of V(S) to match the new reality. However, according to latent-
cause inference, the learnermay instead infer that there is now a new latent
cause C2 in which lights are likely, but shocks are not. Importantly, in this
theory, separate values are learned for each latent cause, so thenewly learned

value of the light (now zero) doesnot interferewith the high predictive value
of the light learned in C1.

Different factors might promote updating of an old latent cause or the
inference and updating of a new one. According to the theory, in fact, both
options co-exist. For example, on a specific trial,C2may be inferred to be in
effect with some probability (say, 0.2) and C1 assigned the remaining
probability (0.8). Given that the agent does not know with certainty which
latent cause is in effect, the likelihoodof a shockoccurring inboth causeswill
be updated with a learning rate proportional to the probability of that latent
cause. This allows the learner to apportion learning to all likely active latent
causes. Nevertheless, for simplicity, we will refer throughout the remaining
text to “creating a new latent cause”when suggesting that a new latent cause
is inferred with a high probability for the first time, and to “updating the old
latent cause” to indicate that the old latent cause is inferred with high
probability.

Using computational theories to explain exposure
therapy
There is considerable evidence for both RL and latent-cause inference32,35,36.
We now use these theories to explain treatment outcomes in exposure
therapy.

Explaining exposure therapy in terms of the latent-cause
framework
Pavlovian conditioning and extinction learning were key to the develop-
ment of exposure therapy (e.g., refs. 25,26,29,37). One key challenge is to
prevent relapse, or the resurgence of symptoms after successful exposure
therapy. In psychotherapy research, relapse has often been explained by
inhibitory learning, defined in the psychotherapy literature as the formation
of a new association between the CS and no US through therapy. Note that
this is different from inhibitory conditioning or conditioned inhibition,
where the presence of a CS predicts the absence of an otherwise expected
US38. In successful inhibitory learning, the new CS-no US association
competes with the original CS-US association successfully, leading to
reduction of fear. However, if the competitive edge of the CS-US association
is stronger at a later time point, the fear returns and relapse can occur9,29. In
the lab, such return of fear after extinction training has often been observed
after the passage of time (termed ‘spontaneous recovery’), after a context
switch (‘renewal’) or after re-exposure to the US alone (‘reinstatement’).
Several theories have been proposed to explain spontaneous recovery (see
ref. 39 for a review) and context learning10 is the most prominent theory to
account for renewal and reinstatement. RL theory, particularly its extension
to latent-cause inference, provides a computationally formalized explana-
tion for the processes underlying extinction and the return of fear. This
formalization of previous theories, such as10 context learning, within a
mathematical framework that can be quantitatively fit to data, has the
advantage that it allows fitting parameters of the model to the behavior of
participants and in this way quantifying and studying individual differences
across people. As such, RL and latent-cause formalisms can suggest addi-
tional routes to preventing relapse and make testable predictions about
indicators of what would be the best route for each individual, as we will
detail below (see ref. 15 for an example).

According to the theory, a person exposed to a feared stimulus (CS)
in a safe scenario (that is, in the absence of the feared US) could either
update the value of the feared stimulus according to the prediction error,
or infer the existence of a different, “safe” latent cause, and learn a
separate value for the stimulus when that latent cause is active (Fig. 1).
The two types of updates will have different behavioral signatures and
long-term consequences. Updating the old value of the stimulus, e.g.,
through reconsolidation of the retrieved memory of the stimulus40,41,
might require several rounds of exposure, and therefore will lead to a
slow (but long-lasting) reduction of fear. In contrast, creating a new
latent cause can lead to rapid reduction of fear in response to the sti-
mulus, given that the new latent cause was never associated with fearful
events (so their probability under that cause is zero or close to zero).

https://doi.org/10.1038/s44271-025-00251-4 Perspective

Communications Psychology | (2025)3:72 3

www.nature.com/commspsychol


However, creating a new latent cause comes with a risk of return of fear if
the old, unchanged latent cause is inferred to be active again.

Hence, according to the latent-cause framework, relapse can occur
when a new ‘safe’ latent cause is created during exposure, but at a later
timepoint, the old ‘dangerous’ latent cause is inferred. The framework thus
predicts two different (and opposing) routes to preventing relapse. One
route targets the original ‘dangerous’ latent cause, reactivating and updating
it.This should cause long-lasting change as once the ‘dangerous’ latent cause
is updated, it no longer predicts danger and relapse is, at least theoretically,
impossible. A second route is to create a new ‘safe’ latent cause and train this
latent cause such that it is preferentially inferred and generalizes as widely as
possible. In a Bayesian framework, this inference depends on both the
probability of each cause being active independent of any observations (that
is, the prior belief in each of the causes) and the probability of the observed
stimuli given each latent cause (the likelihood of the observations, typically
determined by their similarity to stimuli previously linked to the latent
cause). Thus, to strengthen generalization, one could increase the prior
probability of the safe latent cause through many learning experiences in
different contexts and situations14.

Conditions for learning due to exposure
If one does not expect a negative outcome, exposure therapy will not work,
as there will be no violation of expectations and no new learning (updating
of a latent cause and/or inference of a new latent cause). This could happen,
for example, if a personbelieves they are in a safe situationdue to a safety cue
(e.g., the therapist’s office). Signatures that one is expecting a negative
outcome include behavioral or physiological fear responses and verbal
report of emotional arousal, also termed ‘emotional engagement’. Many
types of psychotherapy emphasize the importance of clients’ emotional
engagement during therapy (e.g., ref. 27). We propose that negative out-
come expectations result from inferring that the ‘dangerous’ latent cause is
active. In the latent-cause framework, this inference is based on prior
(learned) beliefs, formalizing the effect of ‘core beliefs’ (a term from psy-
chotherapy) on predictions and expectations. For example, consider a
person whowas bullied and humiliated by others. The formation of a latent
cause that ties people in general (CS in Fig. 1) topersonal harm (US inFig. 1)
embodies a belief that ‘other people are dangerous.’ The person likely also
had positive experiences with other people and had formed the other belief
‘some people can be nice’ (in a separate latent cause). If the dangerous latent
cause is sufficiently “strong” so that it is predominantly inferred when
meeting a newperson (that is, even before observing the unfamiliar person’s
behavior, there is an expectation that theymight cause harm), the person in
question might feel afraid, show anxious behavior and avoid new people.
The dangerous latent cause would then be considered a ‘core belief’ as it is
appliedwidely as a prior evenwithout observing situation-specific evidence.

Latent-cause inference occurs whenever new information is available,
because any new information –whether motivationally neutral or aversive/
appetitive – can help refine inference of the current latent cause. If the
person above meets someone new, they might show anxious behavior and
avoidance due to inferring a ‘dangerous’ latent cause (C1 in Fig. 1). When
they experience no harm, they might infer that, in fact, a ‘safe’ latent cause

(C2) was active, and update that latent cause, leaving the ‘dangerous’ latent
cause unchanged. Therefore, initial fear behavior can be triggered by one
latent cause inferred due to a CS, whereas learning upon receiving the US
may be applied to a different latent cause. This distinction between latent
cause inference before and after outcome observation can account for the
sometimes apparent disconnect between what drives actions and what is
learned. While psychotherapy interventions focus on ensuring that the
dangerous latent cause is initially activated (thefirst prerequisite for learning
according to Foa & Kozak27, and the expectation of a negative outcome
according to Craske et al.29), they seldom ensure that it is activated when
learning takes place after outcome observation. Thus “fear activation”may
occurwhen thepreviously bulliedpersonmeets anewperson in an exposure
exercise.However, if the person attributes the friendliness of the newperson
to the location of the meeting (that is, they infer a latent cause C2 for
meetings around the clinic), fear may not decrease for future meetings
elsewhere.

Avoiding the creation of a new latent cause
According to this theory, relapse can be avoided entirely if the ‘dangerous’
latent cause is updated rather than a separate, ‘safe’, latent cause. Thus, it is
important to understand under which circumstances new latent causes are
inferred or how separate latent causes can be combined into one. One
important determinant of latent cause inference is the difference between
observed events and thosepredictedundereachof the already-learned latent
causes. An outcome that is not predicted under existing latent causes is
referred to as a prediction error in RL and expectancy violation in the
psychotherapy literature. Empirical evidence indicates that the magnitude
of this expectancy violation influences whether a new latent cause is
created42–44. In particular, large expectancy violations mean that the like-
lihood of the observation is small under known latent causes, which favors
inferring that a new latent cause is predominantly active. More moderate
expectancy violations might tilt the balance towards a new latent cause to a
lesser extent, and instead lead to updating of old latent causes. Thus,
exposures that result in smaller expectation violations may promote fear
reduction through updating of existing “dangerous” latent causes, while the
inhibitory learning approach that maximizes expectation violation29 pro-
motes fear reduction through creation of a new “safe” latent cause. In the
latter, care should be taken to ensure the new latent cause generalizes to
many situations and is maintained over time, to prevent relapse due to the
old “dangerous” latent cause resurfacing.

Beliefs about the way latent causes work (that is, their priors for new
latent causes) may also impact individual tendencies to create new latent
causes. A personwho holds the belief that the world ismostly deterministic,
that is, that latent causes emit the same observations every time they are
active, is more likely to infer a larger number of latent causes to explain
varying observations. For instance, someone who (implicitly) assumes that
people are either good all the time or bad all the time (“black-and-white
thinking”)will requiremore latent causes to account for the sometimes good
and sometimes bad behavior of their partner (e.g., a “gooddays” latent cause
and a “bad days” latent cause), whereas someonewhose prior beliefs are that
noone is perfect and everyonehas good andbad sideswillmore readily infer

Fig. 1 | Latent-cause inference.After observing aCS
(e.g., a light) followed by a US (e.g., a shock), the CS
comes to predict the US. The prediction is mediated
by a latent cause C1 that jointly “emits” both CS and
US. In exposure therapy, when the CS is observed
but not followed by aUS, the prediction can be either
weakened through prediction-error driven learning
(Option 1: dashed line signifying lower probability
of the latent cause emitting the US, as per the new
learning) or a new latent cause C2 is created, which
only emits the CS (Option 2). CS = conditioned
stimulus, US = unconditioned stimulus.
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one latent cause for all their partner’s behaviors. The former latent-cause
inference might underlie behavior that resembles that of people with Bor-
derlinePersonalityDisorder45.At the other extreme, someonewhoholds the
belief that the world is very stochastic and not predictable might have only
one latent cause for all people – if they were harmed by others early on, they
might then overgeneralize their expectation of harm to all other people.

Paradoxically, assuming high (but not complete) stability of latent
cause across time can also result in inference of new latent causes. In par-
ticular, simulations of the latent-cause inference model show that people
with a stability prior are more likely to “stick” to the new latent cause that is
always inferred (with some small probability) when contradicting infor-
mation is encountered. Thus, they too will tend to not incorporate the
change into previous latent causes46,47. Both deterministic and stability
beliefs can therefore lead to rapid reduction of fear during exposure therapy,
as the lack of negative outcomes would promote a new latent cause (due to
determinism), which would then be stable throughout therapy (due to
beliefs that the world shows stable relationships between events). But these
beliefs also protect the old dangerous latent cause, which can resurface in a
later phase. Alternatively, selectively maintenance of adverse experiences
can also explain spontaneous recovery, as over time the strength of aversive
memories increases relative to memory for neutral events such as the
extinction experience15.

Rigid beliefs, i.e., believing theworld is either very deterministic or very
stochastic, that it never changes, or it changes all the time, are represented by
extreme parameters in themodel. In the face of such rigid prior beliefs, new
information about the world plays a minor role in the inference process. In
contrast, flexible beliefs might allow for adaptation to different circum-
stances andcontexts and integrationofnew informationas appropriate.The
latter might lead to better outcomes in therapy, while the former might
underlie various mental health issues such as borderline personality
disorder45, anxiety disorders48 and obsessive-compulsive disorder49.

Note that these prior beliefs about the world in general are another
instance of core beliefs (Is the world reliable or not? Can previous experience
be trusted to be useful in the future? Etc.), which are most likely shaped by
early life experiences. That is, in theory, prior beliefs about latent causes can
also be learned from experience, and one can imagine this learning is more
pronounced in childhood, with priors becomingmore entrenched later in life.

Refining treatment
The latent-cause framework explains why behavioral measures such as
speed of fear reduction cannot reliably predict response to exposure therapy
or long-term relapse (as reviewed in ref. 30). This is because fear reduction
might result from the creation of a new latent cause or fast updating of an
existing cause, two mechanisms that can lead to similar behavior. Instead,
we suggest that quantifying individuals’ priors over latent causes, tendency
to create new latent causes and selectivemaintenance of negative events can
help determine forwhomexposure therapywill bemore effective in the long
run, and what specific form of exposure therapy (e.g., with small or large
expectation violations) should be applied. To do this, one can construct
learning tasks to which models of latent-cause inference can be fit to
determine individual parameters of the inference process (see ref. 15).
Specifically, we predict that people who more readily create new latent
causes and have a strong tendence to selectively remember emotionally
relevant events will have a higher risk of relapse after exposure therapy (see,
e.g., refs. 15,50). In contrast, those who create very few latent causes that
generalize across a wide array of experiences will show slow learning during
exposure therapy (their fear might even seem resistant to change), but this
learning will be more long-lasting.

Poor outcomes of exposure therapy could be mitigated by targeting
differences in latent-cause inference before exposure therapy. For example, a
person’s deterministic/dichotomous beliefs about the world can be targeted
with cognitive restructuring before exposure. Those who overgeneralize in
the interpersonal domain might benefit from the interpersonal dis-
crimination exercise in Cognitive Behavioral Analysis System of Psy-
chotherapy (CBASP)51, which emphasizes the differences between oneself

and other significant people in one’s life and thus can help create new latent
causes and new expectations about behavior of others.

We can also combine our knowledge of mechanisms underlying
response to exposure therapy with individual differences to design inter-
ventions that match clients’ learning. For example, if a client has the ten-
dency to update old ‘dangerous’ latent causes, ensuring that the ‘dangerous’
latent cause is activated during exposure by creating a situation that closely
maps the situation of fear acquisition is important. In contrast, if a client
tends to create new latent causes, it would be crucial to enhance the gen-
eralization of the new latent causes. This is achieved by increasing their prior
probability through, for example, variability of context and stimuli during
exposure as suggested by Craske and colleagues29.

Cognitive restructuring
Cognitive therapy is based on the assumption that events trigger cognitions,
also referred to as automatic thoughts, which trigger negative emotions.
Based on this causal sequence8,52, Beck suggested that correction of distorted
automatic thoughts is a crucial step in reducing negative emotions. These
corrections are at theheart of cognitive restructuring, the core interventionof
cognitive therapy.

Initiating the cognitive revolution of psychotherapy, rational emotive
therapy53 (now known as rational emotive behavioral therapy) and Beckian
cognitive therapy for depression7,8,52,54 were based on empirical evidence and
clinical observations that clients with depression suffer from negative cog-
nitive distortions about their experiences and predictions of the future.
Although cognitive restructuring was developed as a treatment for
depression, it can be also used for treating many mental health conditions
that show signs of distorted cognitions, such as anxiety, obsessive-
compulsive disorder and psychosis (for example55,56).

Cognitive restructuring includes four steps: (1) identifying the auto-
matic thought, (2) identifying in what ways the automatic thought is dis-
torted, (3) challenging the distortions (e.g., by listing evidence for and
against a specific interpretation to showcase that the thought is likely an
incorrect interpretation of the event), and (4) rebuttal of the thought (for
instance, by challenging the client to defend the new interpretation). These
steps are often supported by handouts. Clients are asked to write down the
triggering situation, the automatic thought, and their emotion in different
columns. They are then asked to detail the evidence for the thought, the
evidence against the thought, suggest at least one alternative thought, and
rate their emotion given the alternative thought (see example in Box 1).
Automatic thoughts are often specific to a situation but are assumed to be
drivenbyunderlying core beliefs about the self that aremore general, suchas
‘I ama failure’. As discussedabove, such core beliefs are often formedduring
childhood and aremore resistant to change. Cognitive restructuring aims to
address core beliefs aswell, either through changes in automatic thoughts or
by tackling them directly at an advanced stage of the treatment57.

This procedure aims to make explicit and change the client’s own
underlying assumptions and discrepancies between their assumptions and
experiences from the real world. To achieve this, therapists employ dialectic
techniques such as the Socraticmethod,with the goal of having clients arrive
at the solution or alternative view on their own, while the therapist only
guides them through questions.

Cognitive therapy and cognitive restructuring have empirical
support58–60. However, an early component study found no advantage of
enhancing behavioral therapy with cognitive therapy for patients with
Major Depressive Disorder61. A recent large component network meta-
analysis of internet-delivered CBT for people with depressive symptoms
also found weaker effects of cognitive restructuring compared to other
interventions62. As with exposure therapy, it seems that cognitive restruc-
turingworks for some, but not for everyone63. Here, too, we propose that we
might be able to improve interventions and identify who stands to benefit
from cognitive restructuring by using our understanding of the change
processes involved in cognitive restructuring and their necessary pre-
requisites. Below, we use RL theory to identify the change processes and
hypothesize prerequisites for response to cognitive restructuring.
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Model-based decision making
Above,we describedmodel-freeRL,where values for states are learned from
experience. Another way to estimate the predictive value of a state is to learn
amodel of the environment: how states follow one another given each action
(the state “transition structure”), and what states are rewarding or punish-
ing. Armed with this model, the learner can mentally simulate the con-
sequences of different actions (or, in Pavlovian scenarios where actions are
irrelevant, the unfolding of events over time) to calculate their value. This
alternative algorithm has been termed “model-based learning,” because it
relies on a model of the environment, in contrast to the “model-free” trial-
and-error learning algorithm64. Model-free and model-based learning can
be seen as formalizations of 65 ‘law of effect’ and66 ‘cognitive maps’, respec-
tively. This distinction also relates to dual-process theories of cognition67,
with model-free learning and decision making associated with the more
‘impulsive’ System I and model-based decisions related to the more
‘deliberative’ System 2.

Model-based action selection has been associated with deliberative,
so-called goal-directed behavior. This kind of behavior is more flexible
than actions based on model-free values (which are considered more
habitual), as the model (and therefore, the action values) can incorporate
new information without extensive experience. For instance, if you meet
a new person and a shared acquaintance tells you this person is trust-
worthy, you can immediately update your model and interact accord-
ingly, even if your prior had been that people are not to be trusted.
However, using cognitive deliberation (e.g., simulation of future out-
comes for different courses of action in RL terms) requires mental effort,
and there may be limits to how deeply one can search a tree of future
options. As such, we often rely on habitual, model-free behavior rather
than employ “expensive” model-based decision making. Neural and
behavioral evidence indeed shows that both systems operate in the brain
in parallel, with one or the other system controlling behavior at any point
in time64. For example, you may use model-based decision making to
plan how to have a conversation with your partner about an issue that
has been bothering you, without it devolving to the usual argument.
However, as the conversation proceeds and you are confronted with
unplanned responses from your partner, you feel attacked, triggering
your “danger” response. As a result, your model-free system takes over
your emotional and verbal actions.

Mapping cognitive restructuring onto reinforcement
learning
Cognitive restructuring presumably updates the internal world model used
to make deliberative, goal-directed decisions64. For example, in Box 1, after
the cognitive restructuring exercises, the client knows that their expectation
that their boss will fire them when they tell them about a small mistake is
unwarranted. They can therefore change the probability of ending up in the
“fired” state in their internal model to be much lower, which will immedi-
ately result in a higher computed value for the action of disclosing the
mistake to their boss. This change can occur despite not yet experiencing
that situation, and the prediction errors it may entail.

Nevertheless, the client may feel afraid and avoid discussing their
mistake with their boss because their model-free valuation of disclosing
has not changed. In particular, model-free values are thought to be
implicit, not necessarily available to awareness, and not modifiable at will
through explicit cognitive processes64,68,69. While some people may be able
to deploy model-based decisions despite model-free values suggesting
these actions are dangerous, others may not be able to override their
model-free values as readily. Therefore, for cognitive restructuring to be
maximally effective, it is important for clients to translate changes in
explicit, model-based beliefs into changes in implicit, model-free values.
Cognitive theories of psychotherapy indeed assume a direct influence of
changes in cognition on changes in emotions. However, they remain
elusive about the underlying mechanisms. We suggest that mental
simulation is one mechanism by which cognition (i.e., the model-based
system) may influence model-free values. Mentally simulating a situation
with the new cognitive information embedded in it (e.g., playing the
conversation with the boss in your mind), can offer “pseudo-experiences”
from the model-based system to train model-free values32,70. Such mental
simulation has been shown to affect future decisions in humans71. The
effect of mental simulation on model-free values could be enhanced by
encouraging clients to engage mental imagery so that neural activations
more closely mimic real experience36,72.

Like with exposure therapy, although model-based (explicit) chan-
ges in cognition might, at first glance, lead to a rapid improvement, this
improvement may not last. Rapid improvement may be due to using
model-based decision making to act on the updated model or transient
updates in working memory73, without changes to model-free values. If
that is the case, when experiencing stress or when cognitive resources are
limited—situations in which decisions rely more on model-free (implicit)
values74–77—old response patterns that are embodied in the model-free
system may resurface. This suggests a possible mechanism of relapse due
to stress and underlines the importance of translating model-based
(explicit) knowledge to model-free (implicit) values to achieve enduring
change. Figure 2 illustrates the proposed model of updating and action
selection.

We accordingly hypothesize that encouraging mental simulation and
mental imagery could increase the effect of cognitive restructuring by
enhancing model-free learning absent direct experience, and that people
whomore readily translatemodel-based learning tomodel-free changeswill
show a more enduring response to cognitive restructuring. This ability can
be potentially assessed experimentally to predict enduring treatment
response.

A second type of learning can be (and often is) engaged by cognitive
restructuring: acquiring the ability to identify cognitive distortions and
apply the questioning and change procedure to new thoughts. This is also
termed ‘meta-learning’. The relevance of a person’s capacity for meta-
learning and ways to assess it have been outlined by Reiter et al.78. One
important aspect of meta-learning is metacognition, the ability to
monitor and appraise one’s cognitive experiences. People with symptoms
of anxiety and depression often show a metacognitive bias, i.e., a reduced
confidence in their own performance79. Anxious-depressive symptoms
have been shown to reduce after internet-delivered CBT. This reduction
was accompanied by increased confidence in one’s performance (a
reduction of the metacognitive bias)80. Both meta-learning and

Box 1 | Example of cognitive restructuring

A client presents with worries and anxiety related to doing their job, as
well as a resulting loss of interest in the job.

Situation:
I made a mistake at work.
Automatic thought:
When my boss learns about my mistake, they will fire me.
(Core belief:
I am terrible at my job and deserve to be fired.)
Emotional response and mood:
Afraid, worried, loss of interest in task in job, sad
Evidence for thought:
When my last boss found out about mistakes I made, I was
punished.
Evidence against thought:
My current boss gave me positive feedback in my last meetings.
They offered me a promotion three months ago.
When my colleague reported a mistake, they were not fired.
My boss says they want to be informed about mistakes and the
mistakes will have no personal negative consequences.
Alternative thought:
My boss might ask me to correct the mistake but will not fire me.
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translation of changes in the model-based system to model-free values
are relevant for the ability to apply learned cognitive strategies to new
thoughts outside or after the end of therapy.

Finally, cognitive restructuring might not only target the model of the
world as discussed above, but also latent-cause inference. Changing cog-
nitive beliefs may influence which state is inferred in a specific situation, or
how boundaries between states are drawn.

Discussion
CBT has its roots in decades of experiments on animal learning and
corresponding theory. Harnessing ideas from contemporary computa-
tional models of learning might help develop even more effective treat-
ment protocols. Towards this goal, here we mapped terminology from
computational models of learning onto concepts and interventions
applied in psychotherapy. We outlined the relevant formulations of
reinforcement learning theory and latent-cause inference, as well as the
implementation and development of exposure therapy and cognitive
restructuring. Mapping these fields onto each other allowed us to make
two proposals. First, we propose that quantification of individual dif-
ferences in inference about the structure of the world (i.e., latent-cause
inference) may be used to predict response to exposure therapy and
refine treatment protocols for those who are at risk for relapse. Second,
we suggest that the ability to generalize model-based (explicit) knowledge
to model-free (implicit) values may be predictive of better response to
cognitive restructuring therapy.

Testing the predictions
Weso far provided a theoreticalmapping between computationalmodels of
learning and psychotherapy research. To test the hypotheses generatedwith
this approach, we need to measure learning tendencies and abilities in
individuals. In Fig. 3, we illustrate this approach using a behavioral task that
measures learning during extinction training, which emulates exposure
therapy. We fit a version of the latent-cause model introduced above to
behavior elicited by the task in order to quantify underlying learning ten-
dencies (for details on the technical steps involved in fitting models to
behavioral data, see Wilson et al.81). Our results suggested that some indi-
viduals show spontaneous recovery of fearwith time, while other donot and
that this difference couldbe related todifferences in selectivemaintenanceof
adverse events in themodel15. This task, and its related computationalmodel
allows us to ask new questions, e.g., whether we can predict who will be at
higher risk of spontaneous recovery (relapse) of fear after exposure therapy
for anxiety, and whether the model’s insights into the mechanism of
spontaneous recovery canhelp tomodify treatments so as to prevent relapse
from occurring.

As shown in the example in Fig. 3, tasks, models, and parameter
estimates can be used to address such questions in two ways: First, we can
train a machine-learning algorithm to predict relapse using model-derived
parameter estimates of selective maintenance. We can then test using data
from new individuals whether selective maintenance predicts relapse to a

Fig. 3 | Measuring learning tendencies that may underlie psychological inter-
ventions through a behavioral task. a Task design. In acquisition, participants
learned that one stimulus (CS+ ) is followed by an aversive scream (US) on half the
trials, and another stimulus (CS-) is not followed by a scream. Following a short
break, in an extinction phase, participants saw both stimuli again without the
scream, analogous to exposure therapy for anxiety. After a break of ~15 min, par-
ticipants were shown the stimuli again to test for spontaneous recovery of fear of the
scream. b Behavioral data (predictions of scream for the CS+ (red), and CS- (blue))
reveal that some participants show spontaneous recovery of scream predictions at

the test phase (left) while others do not. In black are data simulated by the selective
maintenance model using the best-fit parameters for each participant, illustrating
that the model can account for these individual differences. Shading indicates 95%
bootstrapped confidence intervals. Dashed lines indicate breaks. cMedian estimates
of the selective maintenance parameter were larger for participants who showed
spontaneous recovery (SR; left) than those who did not (No SR; right), suggesting
that selective maintenance might drive spontaneous recovery. d Examples of
research questions that can be addressed with the combination of the task and the
model. Figure adapted from Berwian et al.15.

Fig. 2 | Intuitive depiction of a model with interacting model-free and model-
based components. The environment provides information about the current state
(s), the reward (r) received, and the transition to the next state (s’). This information
can be used to update state and action values in themodel-free (MF) system through
computing prediction errors (1a), and to learn reward and transition matrices in the
model-based (MB) system (1b). Using the latter, which correspond to a ‘model’ of
the environment, the model-based system can compute state and action values (1c).
The model-based system can use this information to train the model-free system by
simulating experiences, however, simulations may exert weaker influence than real
experiences (2). Actions are selected (3) based on a combination of the model-free
system’s values and the model-based system’s values. In case of stress or time
pressure, the model-free system influences action selection more strongly, as indi-
cated by the thicker arrow. The selected action is then executed and influences the
environment (4). We propose that one target of cognitive restructuring is changing
the reward and/or transition matrix in the ‘model’ stored in the model-based
system (5).
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clinical useful degree. Second, we can use tasks (and/or computational
models) to emulate (simulate) learning during different variations of psy-
chological interventions and test for reduction of spontaneous recovery (see
ref. 15 for an example).

Two points are crucial for testing such predictions: (1) the tasks must
have very good psychometric properties in measuring individual
differences82, and (2) they need to be employed in longitudinal studies83,84.
To obtain predictive validity, high task reliability and convergent validity
need to be achieved first, as they set an upper bound for predictive validity.
Whilemany currently used tasksdonothave sufficiently goodpsychometric
properties for clinical usefulness, this issue has recently received more
attention in thefield of Computational Psychiatry, and solutions to improve
psychometric properties and their implementations are emerging82,84. Test-
retest reliability refers to consistentmeasurements by a task across time.The
key to increasing test-retest reliability is decreasing noise inmeasurement of
quantities of interest. This can be done through modeling choices such as
hierarchical fitting of model parameters, joint fitting of different sessions
and/or choices and reaction times and avoidance of difference scores84. It
can also be achieved through task design choices such as including explicit
practice trials to avoid early practice effects in task data, including breaks to
minimize changes over time due to fatigue, including more trials to allow
more precise estimates of quantities of interest, and othermodifications that
enhance the experimental effect and adjust the task difficulty to the popu-
lation of interest82. Sufficient reliability has also been achieved for some tasks
and models (e.g., refs. 85,86) indicating that while challenging, this is an
obtainable goal. Task reliability is particularly importantwhenusing tasks to
track changes due to interventions, e.g., in parameters such as reward or
effort sensitivity78.

Longitudinal studies are important because our hypotheses make
predictions about how people with symptoms respond to specific
treatments, not individual differences between people with and without
a diagnosis or symptoms. We would like to stress that we believe that it
is crucial to address questions relating to understanding and predicting
treatment response, in order to help people seeking treatment and
clinicians in their practice. This is because the question ‘what treatment
would be most helpful for this individual?’may be harder to answer (and
more consequential for clients) than the question of ‘what diagnosis
does this individual have?’. In particular, for very heterogeneously and
descriptively defined mental disorders such as depression, identifying
subgroups with different longitudinal disease courses after treatment is
likely to be clinically useful. Difficulties in recruiting participants with
clinical diagnoses often impede the implementation of appropriate
studies. Psychotherapy is also often not delivered in line with manuals87,
and even if manuals are used, they vary, are often tailored to the client
and therapist, and not delivered exactly as described, making it difficult
to tease apart individual variability from treatment variability as sources
of differences in treatment outcomes. Finally, although we described
exposure therapy and cognitive restructuring separately, these inter-
ventions are not always applied serially. For example, we described
cognitive restructuring in line with recent manuals57,88, but in his early
manual of cognitive therapy for depression, Beck suggests “collaborative
empiricism” – testing new thoughts and their predictions in behavioral
experiments in the real world89. Such testing is sometimes included
explicitly in the therapy alongside cognitive restructuring or might be
done spontaneously by the client between sessions. Behavioral testing
adds experiential, model-free learning to cognitive restructuring and
likely supports the translation of model-based values to model-free ones,
and thus would influence our predictions for treatment response.
Internet-delivered CBT (iCBT) is one way to ensure that interventions
are delivered in isolation and uniformly across study participants62.
Hence, more manualized and structured therapies or iCBT might be
useful to test predictions of learning theory for CBT, at least in a first
instance.

Extensions to other interventions and treatment effects
We believe that computational models of learning can be used to formalize
all psychotherapy interventions that aim to achieve change. While it is
beyond the scope of this manuscript to review all relevant theories and
empirical evidence, we illustrate a few examples of applications of compu-
tational models to interventions beyond CBT. Transference, a psychody-
namic intervention, refers to the idea that clients generalize from their
experience with significant others to the therapist90. According to psycho-
dynamic theories, clients create expectations that the therapist will behave
similarly to those significant others. If the therapist recognizes this expec-
tation, they can respond differently, for example, intentionally contrasting
their response to the expected one. Ideally, this would help the client change
their expectations about other relationships. We suggest that working with
transference is based on model-free learning through experience with
people in therapy. Thus, the underlying learning mechanisms may be
similar to exposure therapy. As we described, according to the latent-cause
framework, the client canupdate an existing latent causeor infer anewcause
to predict how people will act towards them in the future. Which route is
taken might depend on how strongly therapists counteract the clients’
expectation, in line with the role of the magnitude of expectancy violations
in updating old versus inferring new latent causes42,91. Crucially, formalizing
the learning processes underlying psychotherapy interventions can help to
illuminate similarities between interventions that are often considered dif-
ferent and separate due to their historical development in specific schools of
psychotherapy.

Indeed, overall impaired learning can suggest that both CBT and
psychodynamic therapy may not be effective methods for a given person,
and perhaps pharmacological treatment should be the first line of action.
Thus, parameters of formal learning models might be also useful to predict
differential responses to psychotherapy versus pharmacotherapy more
generally. Alternatively, as we suggested above, one can take advantage of
hierarchical models that account for higher-level parameters such as prior
beliefs about stochasticity of the world or reliability of experience that
influence the rate or type of learning from interventions, and begin with
interventions that change high-level parameters to allow better responsivity
to later psychotherapy interventions.

Finally, computational models might also help to explain the strong
effect of ‘common factors’ on treatment outcomes after different psy-
chotherapy interventions92. One ‘common factor’ is the empirically well-
supported finding that the alliance between the client and therapist is
associated with treatment response93,94. The importance of this factor could
be accounted for computationally by an increase in learning rates during
therapy when the relationship is good and the client trusts the therapist.
Formulated in Bayesian terminology, increased learning rates would be the
result ofmoreprecision (less variance) around thenew information received
in therapy due to the trust towards the therapist.

Conclusion
Advances in computational models of learning, together with a set of
tasks used to measure parameters of the learning process, might help to
explain and predict psychotherapy intervention effects. Of course, the
predictions we outlined must be tested in longitudinal clinical studies.
Training researchers to speak both the language of psychotherapy and of
computational modeling is crucial for the advancement of this approach.
Hopefully, this research can lead to better-informed assignment of people
to the treatment most likely to be effective for them. When it comes to
the integration of such assignments into the clinical setting, it is
important to keep in mind that client wishes should always be kept
paramount, as they strongly affect the client’s motivation to learn and to
do the work required for psychotherapy treatment to succeed. By laying
out the relevant theories of learning and psychotherapies, we hope to
move towards this goal and contribute to developing theory-driven
‘Computational Psychotherapy.’
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