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Feature identification learning both
shapes and is shaped by spatial object-
similarity representations

Check for updates

Jonathan K. Doyon 1,2,3 , Sarah Shomstein 1 & Gabriela Rosenblau 1,2

Object knowledge is bound together in semantic networks that can be spatially represented. How
these knowledge representations shape and are in turn shaped by learning remains unclear. Here, we
directly examined how object similarity representations impact implicit learning of feature dimensions
and how learning, in turn, influences these representations. In a pre-experiment, 237 adult participants
arrangedobject-pictures in a spatial arena, revealing semantic relatedness of everyday objects across
categories: activity, fashion, and foods. The subsequent experiment assessed whether these
semantic relationships played a role in implicitly learning specific object features in a separate adult
participant group (N = 82). Participants inferred themeanings of twopseudo-words through feedback.
Using computational modeling, we tested various learning strategies and established that learning
was guided by semantic relationships quantified in the pre-experiment. Post-learning arrangements
reflected object similarity representations as well as the learned feature. We directly show that
similarity representations guide implicit learning and that learning in turn reshapes existing knowledge
representations.

Humans are shaped by experience, yet how these experiences dynamically
aggregate into knowledge structures to guide future experiences is not well
understood. How do we acquire knowledge, and how does this knowledge,
in turn, shape future learning? One intriguing notion is that the brain’s
primary function is to extract statistical structure from discrete experiences
with the extracted structure forming the basis for learning1–5. This process,
coined implicit learning, has been investigatedacross domains ranging from
perceptual decision making6,7 to social learning8. While studies have shown
the aggregation of rules through repeated interactions with the environ-
ment, it remains unclear how new rules are integrated into pre-existing
knowledge representations, such as knowledge of how objects relate to one
another or category belonging.

Preexisting knowledge structures often coined cognitive schemata9–12

have been mostly investigated in category or prototype learning. Typically,
studies investigated a small and discrete set of semantic categories and
showed that these semantic structures group items and facilitate the
deployment of attention and learning across perceptual decision-making
tasks13,14. Conversely, having to group items that are semantically unrelated
or incongruent is more effortful and error prone15. While this literature
establishes the importance of semantic categories for humanperception and

cognition, newer studies show that semantic knowledge structures may be
finer-grained and more flexible.

Fine-grained semantic knowledge in the form of similarities or tran-
sition probabilities between events has been shown toplay an important role
in visual perception3,16, learning abstract information17,18, and language
processing19,20 as well as in social inferences21–23. Spatial representations of
semantic relationships, captured though clever semantic relatedness rating
tasks, have been shown to correspond to patterns of brain activity24–28. These
findings corroborate that the brain encodes the multivariate statistical
structure of object configurations, from fine-grained similarities between
objects to coarser feature representations.

While a substantial body of work has focused on the structure of
conceptual knowledge, suchas semantic relatedness across various cognitive
domains, less is known about how pre-existing conceptual knowledge
shapes and is in turn shaped by active learning. In the perceptual attention
and priming literature, studies have shown that the similarity of objects
influences categorization performance and that vice versa, perceived object
categories can change with selective attention to a feature in question29–31.
The current study examinedwhether object similarity guided learning in the
reinforcement learning (RL) framework, specifically, and whether, in turn,
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learning to correctly identify a feature based on task feedback influenced the
representation of object similarity.

In the reinforcement learning (RL) framework, an agent learns through
environmental feedback by updating prediction errors (PEs)—the differ-
ence between expected and received feedback. RL models constitute robust
algorithms that characterize learning processes across a wide range of tasks
on the behavioral and neural levels32–35. The simplest RL rule,
Rescorla–Wagner learning, posits that agents acquire information through
trial-and-error. This simple, model-free rule requires fewer resources but
can be quite inefficient because the agent has to experience all possible states
to learn from them36.

A more efficient but computationally taxing form of RL, model-based
learning, assumes that a learner abstracts from the learned material to the
underlying task structure. This allows the learner to flexibly generalize
knowledge to unseen items or situations32,36. For example, in a study by
Kahnt and colleagues, people generalized task feedback across similar
features18. A simpler formalization of task structure is scalingmodel free PEs
based on the similarity of stimuli, for instance-, similarities between faces8 or
between mental states (e.g., inferred from traits and preferences for items).
In previous studies, wehave demonstrated that adults and adolescents apply
similarity-based PE updating to learn about other people’s traits and
preferences21,22,37. It is an open question whether this type of similarity
learning generalizes across cognitive domains.

Recent advances have allowed studies investigating semantic similarity
to rely on multidimensional scaling tasks, such as the multi-arrangement
task (MAT), to establishfine-grained representational dissimilaritymatrices
(RDMs, e.g.,38. In the MAT, item (dis)similarities are captured spatially, by
asking participants to place similar items close to one another, and dis-
similar items proportionately further apart, thereby using spatial distance as
ameasure of semantic relatedness.The resultingRDMsconvey the semantic
relationships between all item-pairs in a task set and can be reduced to the
core underlying dimension(s).

The current study asks an important question: to what degree object
semantic similarity (quantified by spatial maps derived from the MAT)
guides implicit feature identification learning (i.e., mapping nonwords to
specific predefined item features). By integrating computational modeling
of learning task behavior and comparing direct assessments of semantic
relatedness in the absence of learning and after learning, this study directly
examines the influence of semantic relatedness on learning and the dynamic
shifts in semantic relatedness induced by the learning process.

In the pre-experiment, we investigated the object semantic similarity
structurewith theMATtask. In themain experiment,we testedwhether and
how a separate group of participants used object-to-object semantic simi-
larity structure, established in the pre-experiment, to implicitly learn about
wordmeanings. Specifically, participantswere asked tomapanon-word to a
specific feature (i.e., how colorful or large objects are). They could learn
about the meaning of the nonword (i.e., the feature in question) through
trial-by-trial feedback. The same objects were used in both experiments;
therefore, we could directly assess the degree to which the semantic rela-
tionships among real-world objects assessed in the pre-experiment shifted
as a function of learning in the main experiment. To directly test whether
participants relied on object semantic similarity during learning, we used a
computational modeling framework. Based on the previous literature, we
predicted that learning activates semantic similarity maps as they represent
important conceptual knowledge. Lastly, we predicted that learning, in turn,
changes these preexisting knowledge representations. To this end, we
compared the object semantic similarity maps after learning in the main
experiment to those that were established in the absence of learning in the
pre-experiment.

Methods
Participants
Four hundred young adults (age range: 18–25 years, 300 for the pre-
experiment and 100 for the main experiment) were recruited from the

online Prolific research participation platform (https://www.prolific.co/).
Sixty-three participants began but did not complete the experimental tasks
andwere excluded (55 in thepre-experiment and8 in themain experiment).
Further exclusions weremade due to excessivemissing data (more than two
standard deviations above the average number ofmissing trials, 8 in the pre-
experiment and 10 in the main experiment).

The final sample size for the pre-experiment was 237 adults (126
identified as female participants, 109 identified as male participants, and 2
preferred no response; mean age = 22.26 years, SD = 2.24).

The final sample for the main experiment comprised 82 adults (61
identified as female participants and 21 identified as male participants;
mean age = 21.61 years, SD = 2.02). The sample size rationale, exclusion
criteria, and missing responses criteria can be found in the supplement.
Participants provided informed consent before participating. The study
was approved by the Institutional Review Board (IRB#: NCR191133) and
was conducted in accordance with the Declaration of Helsinki. Partici-
pants were compensated $10 USD per hour of participation (pre-
experiment mean duration = 59.64 min, SD = 22.42; main experiment
mean duration = 67.10min, SD = 21.01).

Pre-experiment—inferring spatial similarity representations via
multidimensional scaling
The pre-experiment used a set of 120 images of objects belonging to one
of three categories, each of which contained four subcategories: 49
activity items (arts and crafts; music; sports; toys, gadgets, and games), 29
fashion items (accessories; bags; cosmetics; shoes), and 42 food items
(fast food; healthy savory food; raw fruits and vegetables; sweets; see
supplement for stimuli details). To capture and quantify semantic rela-
tionships among objects (e.g., an apple is more associated with a cake
than a purse), we employed multidimensional scaling. In an online study,
participants performed the MAT (see supplement for a detailed task
description and experimental design). In brief, objects were positioned
around a circular arena (Fig. 1A) and participants were asked to place
each object into the arena according to how similar each pictured object
was to one another (i.e., similar objects should be placed near one
another, and the position of any given object represents its similarity/
dissimilarity to every other object present in the arena). Some study
materials are publicly available (https://meadows-research.com/
documentation/researcher/tasks/multiple-arrangement). After the task,
they rated how colorful, expensive, and large the items were (see sup-
plement for details on the item rating task). No aspects of the study were
preregistered.

Statistical analysis
To investigate how participants represented item-level semantic relation-
ships, we first used a validated multidimensional scaling approach38,39

yielding multidimensional representations of object dissimilarities in the
form of representational dissimilarity matrices (RDMs; Fig. 1B, left, see
supplement for a description of the item-level dissimilarities). The RDM
entailed the average dissimilarity of each object to all others in the set
(n = 120 averaged dissimilarities) for each participant (N = 237 participants
or observations). In order to test whether object arrangements entailed the a
priori category structure, we fit two linear models to predict the z-scored
averaged dissimilarities (DIS) with category and subcategory information.
Here, and in subsequentmodels, statistical assumptions were checked prior
to each analysis. We used generalized least-squares estimators to yield
unbiased estimates where data were non-normal and weighted versions
when variances were not constant.

DIS � category þ ε ð1Þ

DIS � subcategory þ ε ð2Þ
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We performed a PCA analysis to validate the a priori defined coarse
semantic structure of the item set (i.e., category and subcategory assignment
of items). To this end, we tested whether the a priori defined object cate-
gories and subcategories couldbe recovered fromthePCAcomponents, and
howmany principal components were needed for this recovery. To do this,
we fit a binomial generalized linear model40 and predicted item-pair

category and subcategorymembershipusing thedata reconstructedwith the
first principal component (k1), then thefirst two components (k1 þ k2), and
so on (k1 þ k2 . . .þ kk). We selected the number of components k that
significantly improved themodel by comparing each simplermodel with kn
components to the onewithknþ1 componentswith theANOVAfunction in
R. This function tests whether the more complex model is significantly
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better at capturing the data than the simpler model.

category � k1 þ k2 . . .þ kn þ ε ð3Þ

subcategory � k1 þ k2 . . .þ kn þ ε ð4Þ

Category and subcategory predictors were coded as binary variables
with 1 corresponding to item-pairs belonging to same categories and 0 to
different categories.

Another aimof the PCAwas to identify the key dimensions underlying
item placements in theMAT.We hypothesized that participants’ similarity
ratings would reflect the a priori defined semantic category structure, while
finer-grained item relationships across categories would also account for
significant variance in item placements. We hypothesized that successful
learning not only recruits coarse category representations but rather item-
to-item relationships.

Finally, our goal was to probe whether the two selected features for the
learning task in the main experiment were among the most relevant
dimensions for item arrangements. We wanted to ensure that the learning
task dimensions were not among the main dimensions. This would make
sure that participants would have to learn the task, shifting representations
from semantic knowledge (e.g., category, preferences, etc.) to the feature in
question based on trial-by-trial feedback.

Main experiment—modulation of spatial similarity representa-
tions via implicit concept learning
Having establishedandquantified the components of the semantic space for
our real-world items, the main experiment tested our main hypothesis that
knowledge structures, here spatial representations of object similarity, are
flexibly deployed during feature identification learning and are, in turn,
updated as a result of learning. We surmised that this process of deploying
and updating knowledge constitutes a basic principle of how knowledge
structures are formed and refined across cognitive contexts.

In an online study, we asked participants to first complete an implicit
feature identification learning task (in short: feature identification task)
involving a subset of the itemsused in the pre-experiment. In this task, a new
set of participants was presentedwith a non-word, which corresponded to a
specific object feature (e.g., how colorful objects are). Participants could
learn about the respective word meaning and object feature through trial-
by-trial feedback. Note that implicit learning in this context was defined as
extracting regularities from situations without verbal explanations or
rules4,5. Our task was inspired by implicit language acquisition tasks, in
which learners engage with an unknown language without being provided
with the grammar rules or asked to attend to these rules41.

The feature identification task introduced in this study represents a
generalization of the previously introduced social learning framework21,22.
This task will be used in the context of a larger project on social and non-
social learning, as detailed in our preregistration (https://osf.io/wvb8n). The
task procedures and computational modeling approach used here, along
with our hypotheses for the non-social learning task, were pre-registered
before analyzing the data. The analysis plan and current sample were not
preregistered.

After the feature identification task, participants completed the MAT,
whichwas also used in the pre-experiment (experimental design procedures
are described in the supplement).We tested participants’ learning strategies

via computational modeling and also how object similarity representations
changed during learning. If representations of similarity were dynamically
updated following learning, then representations generated post-learning
should differ from those established outside of the learning context. To this
end, the averagedRDMgenerated in thepre-experiment servedas a baseline
object similarity structure. This baseline RDM was then compared to the
post-learning averaged RDM from the main experiment. We hypothesized
that (1) participants learn about the feature in question, (2) item-level
similarity representations guide learningduring the task, and (3) the features
that participants learned about are reflected in their post-learning item-level
representations.

Feature identification task. Participants were introduced to a robot-
language word (either “soaf ” or “ation”), and asked to rate 42 objects per
task run according to how “soaf ” or “ation” they believed the depicted
object to be (Fig. 2A). Unknown to the participant, the non-words either
indicated how colorful or large the objects were. The association of non-
words to the two features was counterbalanced across participants. One-
half of the participants were presented with the word-feature combina-
tions soaf-colorful and ation-large, while the other half of the participants
were presented with ation-colorful and soaf-large. We chose the two
features, colorful and large, that were not significantly related to themain
semantic features of the object similarity space and also not significantly
related to each other (r =−0.138, p = 0.21). This was done for two rea-
sons: (1) we wanted to test whether participants represented semantic
structure during learning even when the features in question were largely
independent from the semantic relatedness structure and (2) in order to
test whether learning induced a shift in the semantic similarity structure
towards the learned feature, it was important for this feature to be
independent, i.e., orthogonal to themain dimensions of the feature space.

Participants were instructed to use a Likert scale ranging from1 “not at
all” to 10 “very much” to indicate the extent to which the non-word (and
assigned feature) applied to each object. After providing a rating, the par-
ticipant received feedback about how much the non-word and assigned
feature actually applied. The feedback that participants received was the
averaged feature ratings from the pre-experiment (e.g., how colorful did
participants in the pre-experiment rate this object on average). To add some
variability in feedback given and ensure the use of awider rating scale range,
normally distributed randomnoise (one-half standarddeviation)was added
or subtracted from the average feedback ratings. The feedback values were
then rounded to the nearest integer.

Participants completed two runs of the learning task. Participants
either rated how colorful (e.g., soaf) or large (e.g., ation) the objects were.
Run order (i.e., colorful or large first) and word-to-concept mapping (i.e.,
soaf meaning colorful or large) were counterbalanced across participants.
No item was repeated in the task. In each run, participants completed 42
trials per run (84 total trials and items across the two runs).After completing
each learning run, participants completed the MAT (see supplement for
details). There were significantly more female than male participants in the
final sample of the main experiment (χ2(2) = 54.69, p < 0.001). Concept
learning and item-similarity arrangements did not differ significantly
between male and female participants (learning task performance as
explained by sex: st.β = 0.02, SE = 0.10, p = 0.58, 95% CI = [−0.13, 0.18];
sorting task performance as explained by sex: st.β =−0.001, SE = 0.0002,
p = 0.54, 95% CI = [−0.007, 0.004]).

Fig. 1 | Overview of the pre-experiment. A Sample multi-arrangement task (MAT)
trial. Objects (n = 120) begin at the periphery of the arena (left). Participants
(N = 237) then spatially arrange objects by using a mouse (right). Red arrows (not
depicted during the experiment) indicate dissimilarities measured by the Euclidean
distances between objects’ positions. B Left panel: Average representational dis-
similarity matrix (RDM) obtained from the pre-experiment. Objects in their a priori
category assignment are depicted along the axes. Each cell corresponds to the dis-
similarity (Diss.) between the intersecting objects. The diagonal identity line
represents zero dissimilarity. Right panel: Object similarity matrix for activity and

food items only. This was obtained by first computing item similarity from the
dissimilarity values. Second, values were rescaled into the 0 (most dissimilar) to 1
(most similar) range. This similaritymatrix was used in the computationalmodels in
the main experiment. C Results of the principal components analysis (PCA). RDM
reconstructed using the first principal component (left) and the first two compo-
nents (right) recover the object categories. The first two components of the PCA
recover category and subcategory information. The first component differentiates
food items from non-food items, while the second component differentiates activity
and fashion items.
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Statistical analysis
Feature identification learning. Participants were expected to learn
about the feature in question. Here, learning is defined as a significant
reduction in task-based prediction errors (PEs, i.e., the difference
between participants’ ratings and subsequent feedback, over the course of
a task run. To this end, we computed bivariate correlations between PEs
and the trial number for each of the learning runs.

The sample of the main experiment consisted of more female than
male participants. There were no significant sex differences in PEs across
conditions andno significant interactionsbetween sexand feature condition
(sex differences in PEs: st.β = 0.02, SE = 0.10, p = 0.58, 95% CI = [−0.13,
0.18]; sex by condition interaction: st.β =−0.04, SE = 0.15, p = 0.63, 95%CI
= [−0.19, 0.12]). There were also no significant differences in learning (sex
by trial interaction: st.β =−0.01, SE = 0.004, p = 0.31, 95% CI = [−0.04,

Fig. 2 | Overview of the main experiment.
A Schematic trial sequence from the feature identi-
fication task. Participants (N = 82) rated the mean-
ings of pseudo-words (e.g., “soaf ”) based on how
much they apply to objects. The Rescorla–Wagner
updating rule postulates that individuals update
their estimates of the word in question based on the
trial-by-trial feedback. This updating is leveraged by
incorporating prediction errors (PEs), i.e., the dif-
ference between initial ratings and feedback, into
subsequent ratings. The learning rate α is a free
parameter, which captures the speed of learning
(higher learning rates correspond to a faster inte-
gration of PEs). Following the learning task run,
participants completed the multi-arrangement task
(MAT). Participants completed two learning task
runs, each followed by the MAT. B Upper panel:
task-based PEs significantly decreased over trials in
both task runs, evidenced by a negative correlation
between PEs and trial numbers. Shaded regions
indicate ±1 standard error. Lower panel: Partici-
pants’ notions of the non-word meanings in
response to open-ended questions about the non-
words after each learning run. C Dissimilarities in
colorfulness and largeness of object pairs (n = 861)
predict object placement dissimilarities for objects
of the same versus the different category. For
instance, after the ‘large’ learning block, participants
place objects of the same category (i.e., activities or
foods) closer together if they are similarly large.
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0.01]) or in post-task item pair arrangements (sex differences in post
arrangements: st.β =−0.002, SE = 0.0001, p = 0.41, 95% CI = [−0.007,
0.003]).We therefore aggregated acrossmale and female participants for the
following analyses.

Learning-related changes to object similarity structures. Following
each learning run, we assessed how participants perceived the similarity
of the learning items. For this purpose, participants completed the MAT
used in the pre-experiment with the same subset of items seen in the
immediately preceding learning run. We then computed individual and
average RDMs for the subset of items used in the two separate learning
blocks. The procedure was identical to that reported in the pre-
experiment (see Fig. 2A).

To assess how learning about the feature in question changed object
similarity perception post-learning, we computed a feature dissimilarity
regressor and assessed its effect on object placement. Feature dissimilarity
(DIS) of two items i and jwasdefinedbasedon the relationships between the
feature ratings for these items (i.e. the correlation coefficient ρi;j indicating
how similar the objects i and j were with respect to how colorful and large
they were rated by an independent sample in the pre-experiment).

DISi;j ¼ 1� ρi;j

Assessing differences in object dissimilarity structures based on
learning task features
To investigate whether the learning task influenced post-learning item-
dissimilarity representations, two separate general linear models (GLMs)
were constructed. Model 1 predicted item-pair dissimilarities post-learning
based on item category, and additionally feature dissimilarity.

DIS � category × featureþ ε ð5Þ

Model 2 predicted the item dissimilarity representations in the main
experiment with the dissimilarity representations from the pre-experiment.
Tomake theMATdissimilarities comparable between the two experiments,
we first created relative values by subtracting the average dissimilarity from
item-level dissimilarities in each experiment. We included the additional
predictors itemcategory (same/different), item feature dissimilarity (i.e., the
dissimilarity of colorfulness/largeness between item-pairs in respective
colorful or large task blocks), and the interaction between these two pre-
dictors.

DISexp 2 � DISexp 1 × category × featureþ ε ð6Þ

Computational modeling
To investigate how participants learned the meaning of the non-words, we
employed the use of computational modeling. In recent work21,22, we
developed a computational modeling framework to describe how people
learned about social information such as other people’s preferences and
character traits. These models use standard Rescorla-Wagner learning and
or prior knowledge about the concept at hand. This framework can be
applied to implicitly learning the non-word meaning by updating initial
expectations about the feature in question through trial-by-trial feedback.
Similar to social learning, we surmised that participants would learn the
meaning of the non-word (i.e., learning about the feature in question)
through trial-by-trial feedback scaled by item (dis)similarity.

Computationalmodels.We introducedmodels of varying complexities,
from simple regressions that capture a direct feature to non-word
mapping, to more sophisticated hybrid Rescorla-Wagner learning
models with additional knowledge about the feature in question. The
computational models are described in detail in the supplement.

The standard Rescorla–Wagner learning model describes an agent’s
tendency to update prediction errors (PEs), the difference between feedback

(F) and the prediction (P) of the agent on a certain trial (t).

PEt ¼ Ft � Pt

The model that best described how participants learned about other
persons in our previous studies21,22, expanded the Rescorla–Wagner rule
with pre-existing knowledge about the peer group. This prior knowledge
was formalized as considering two sources of information: the Reference
Point and Granularity of knowledge (described in more detail below). We
surmise that the same information sources may be relevant while learning
the word meanings (i.e., identifying the feature in question).

Granularity
Granularity refers to the level of detail with which participants represent
previous knowledge. Coarse granularity assumes that a person applies the
PE during learning to all items that fall within a (sub)category (e.g., all fast-
food items). Fine granularity assumes that a person applies the PE to each
individual item, but that the magnitude of this update depends on how
similar the items are to the one they have received feedback about.

The similarity (SIM) between two items (i,j) is derived based on the
item-level dissimilarity values (DIS) obtained from the MAT in the pre-
experiment:

SIMij ¼ 1� DISij

SIM was rescaled to the range of 0 (maximally dissimilar) and 1
(maximally similar). A depiction of SIM has been included in Fig. 1B
right panel.

Reference points
Reference points refer to a priori expectations of an object’s rating. This
means that a person uses aggregated prior knowledge to infer what the non-
word means. This a priori expectation may correspond to the true feature
rating by either themselves (e.g., howcolorful they think that the object is) or
a representation of how people may rate this feature on average (e.g., how
colorful do people think that the object is on average).

Here, we tested whether individuals relied more on self-ratings or
population averages during learning. To this end, we investigated partici-
pants’ own ratings of these features (i.e., self-ratings) and the mean feature
values for each object from the pre-experiment (i.e., mean ratings) as
potential reference points. A detailed description of our model fitting and
model comparison approach, as well as model and parameter recovery, is
included in the supplement.

Results
Results of the pre-experiment
The principal components analysis PCA yielded 69 components that
cumulatively explained 90% of the variance of the original 120-item space.
Components 1 and 2 reflected the distinction between the three main
categories (i.e., activities, fashion, and food; Fig. 1C). Component 1 corre-
sponded to a food-non-food contrast, while component 2 differentiated
between activities and fashion items. The first two components or dimen-
sions accounted for 19% of the total variance. The third dimension con-
trasted stationary, fitness equipment, and games against music and sound
accessories (e.g., headphones); the fourth dimension represented the dis-
tinction between a healthier versus less healthy lifestyle; the fifth dimension
contrasted an active outdoor lifestyle and fast food with less active, indoor
activities and healthy foods. Descriptions and illustrations of components
3–10 extracted by the PCA can be found in Fig. S1. Overall, the PCA shed
light on the rich semantic structure between objects based on theMAT task
that extends beyond category and subcategory information.

A priori assigned categories and subcategories significantly predicted
participants’ arrangements of objects in the arena (item-pair dissimilarities
predicted by category: adjusted R2 = 0.467, F(1,14398) = 12,630, p < 0.001);
standardized betas (st.β) =−0.68, 95% CI [−0.70, −0.67]; and by
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subcategory r: adjusted R2 = 0.259, F(1,14398) = 5,028, p < 0.001), st.β =
−0.51, 95% CI = [−0.52, −0.49]). The category and subcategory infor-
mation could be recovered from the reconstructed data based on the first
two components (category: β = 5.00, SE = 0.083, p < 0.001, odds ratio =
16.99, 95% CI = [15.51, 18.65]; R2

McF = 0.562, χ2(2) = 3883.6, p < 0.001;
subcategory: β = 6.14, SE = 0.28, p < 0.001, odds ratio = 17.04, 95% CI =
[13.92, 21.24]; R2

McF = 0.394, χ2(2) = 1659.7, p < 0.001), but these compo-
nents only explained 19%of the total variance in participants arrangements.
The pre-experiment thus revealed a fine-grained semantic relatedness
structure that cannot be sufficiently captured by the a priori defined coarse
semantic structure (i.e., category and subcategory assignments). In themain
experiment, we directly tested whether individuals relied on coarse category
information or on fine-grained representation of object-level relationships
during implicit learning.

Results of the main experiment
Changes in task-based prediction errors over time. Participants
successfully showed learning for word meanings, evidenced by a sig-
nificant reduction in their PEs over time and a negative correlation
between PEs and trial number (colorful: Pearson’s r =−0.61, CI =
[−0.77, −0.38], p < 0.001; large: Pearson’s r =−0.84, CI = [−0.91,
−0.73]; p < 0.001; see Fig. 2B). Word clouds depicted the participants’
notion of the concept in question, which was queried in an open answer
question after eachword run. Remarkably, some participants were able to
explicitly label the feature in question (21% of participants correctly
labeled the feature “colorful”, and 6% correctly reported “large” as the
feature in question).

Learning induced shifts in object similarity representations
In model 1, we investigated whether the learning task influenced post-
learning item-dissimilarity representations by predicting item-pair dis-
similarities post-learning based on category and, additionally, item-by-item
concept dissimilarity. Replicating ourfindings from the pre-experiment, the
category significantly predicted the proximity of item dissimilarity repre-
sentations. Items of the same category (i.e., activity and foods) were placed
closer together (adjusted R2 = 0.743, F(7,1714) = 711.7, p < 0.001); stan-
dardized beta (st.β) = 1.67, p < 0.001, 95% CI = [1.62, 1.72], ηp

2 = 0.716).
Moreover, item-level dissimilarity of features (colorful and large) addi-
tionally predicted item placement in the MAT (color: st.β = 0.12, p < 0.001,
95% CI = [0.09, 0.15], ηp

2 = 0.005; large: st.β = 0.076, SE = 0.018, p < 0.001,
std. β = 0.18, p < 0.001, 95% CI = [0.14, 0.22], ηp

2 = 0.014), indicating that
objects were placed further apart if they differed in the level of colorfulness
and largeness. A significant interaction between category and feature dis-
similarity meant that objects within the same category were additionally
sorted by how colorful and large they were (color: st. β =−0.14, p < 0.001,
95% CI = [−0.19, −0.09], ηp

2 = 0.005; large: st.β =−0.12, p < 0.001, 95%
CI = [−0.17,−0.07], ηp

2 = 0.004; Fig. 2C).
Model 2 (adjusted R2 = 0.645, F(4,1714) = 447.7, p < 0.001) tested

whether feature dissimilarity influenced item (dis)similarity judgements in
the main experiment (post learning) more than in the pre-experiment (in
the absence of learning). To this end, we set up a GLM, which predicted
item-pair dissimilarities in the MAT of the main experiment with those
from the pre-experiment and additionally with category and feature dis-
similarity information (item-pair dissimilarity of colorfulness and large-
ness). The pre-experiment arrangements significantly predicted those in the
main experiment (β = 0.52, p < 0.001, st. β = 0.30, 95% CI = [0.20, 0.40],
ηp

2 = 0.624), confirming that object arrangements were robust across
experiments. A significant three-way interaction between the pre-
experiment arrangements, category, and feature dissimilarity (β =−0.14,
p = 0.04, st. β =−0.11, 95% CI = [−0.21, 0] ηp

2 = 0.001) indicated that for
item-pairs of the same category, feature dissimilarity exerted additional
influence on item placements. This means that the greater the difference
between item-pair dissimilarities in the pre-experiment was, the greater the
influence of feature dissimilarity on item placements in the main experi-
ment. To provide more detail on the interaction effect between pre- and

main experiments,we tested thedifferential effects of the features used in the
learning tasks on item placements in both the pre- and main experiments
(see supplement). In summary, these results show that feature similarity is
only applied in the main experiment in the expected direction. when items
are semantically unrelated.Only in themain experiment is feature similarity
used in the expected direction—the greater the feature similarity, the closer
items are placed together (see Fig. S4 in the supplement).

Computational modelling results
We tested five models and additional variations. The models and para-
meters were recoverable. Please refer to the supplement for a detailed
description of the main models and their additions. Bayesian model com-
parisons revealed Model 4 [Fine Granularity] as the best fitting model
according to the random-effects analyses (see Fig. 3A).WhileModel 5 [Fine
Granularity and Self Reference Point] was the best model using the fixed
effectsmodel comparisonmethod, the random effects comparison takes the
frequency of a model providing the best fit for participants’ data into
account. Model 4 provided the best model fit for participants’ data com-
pared to Model 5 (see Fig. 3A). The best fitting model, Fine Granularity,
assumesno reliance onprevious knowledge about the object featuresprobed
in this task. The model, however, scales the extent to which participants
updated their estimates based on feedback by the fine-grained similarity
between items in the set. In line with our previous findings on social
learning, these results indicate that participants used a representation of
item-level similarities during feature identification learning21,22. Impor-
tantly, participants’ strategies deviated from theprescribed strategy,which is
to rely on colorful and large estimates directly. The difference between the
best-performing model in the set and the one that best describes partici-
pants’ behavior stems from participants’ implicitly learning about the fea-
ture in question. Participants were initially asked to rate how much a non-
word applied to objects without being told the meaning of the nonword.
Through task feedback, they could map the feature in question to the non-
word they were asked to learn about (see supplement for more details).

Discussion
Using a multi-dimensional scaling approach, we discovered that the spatial
representation of object similarity captured both broader predefined
semantic categories and more nuanced semantic dimensions, such as one
associated with a healthy, active lifestyle. Even finer-grained item-level
similaritymaps played a significant role in implicitly learning about specific
object features. Interestingly, the features introduced in the learning task
were recovered from participants’ post-learning similarity arrangements,
showing how knowledge representations can be refined through learning.

Spatial similarity representations reflect semantic relationships
Semantic relationships, also knowledge structures or cognitive schemata,
play a crucial role in human experiences across various cognitive
domains12,42,43. In our study, we observed that themost prominent semantic
dimensions alignedwithour predefined object categories and subcategories.
Notably, furtherdimensions representedholistic aspects of various lifestyles,
unveiling intricate connections between objects. We found a distinction
between a less active lifestyle encompassing stationery, music, board games,
junk food, and desserts, versus a fitness-oriented and healthy meals
dimension. Our findings align with previous studies, which highlight the
ability of multi-dimensional scaling tasks to reveal rich semantic structure
that ties in participants’ personal experiences, which are deeply rooted in
social context24,25,27,44. The existence of spatial “cognitive maps” which effi-
ciently organize knowledge is well-documented in the literature45–49. These
maps guide attention and learning across different domains45,46,50. While
two-dimensional representations are often emphasized in cognitive tasks,
research suggests that cognitive representations are multi-dimensional and
can be compressed or unfolded based on task demands17,51. Our study
confirmed the utility of spatial representations in organizing cognitive
structures. Subsequently, we investigated how this spatial representation is
utilized during the learning process.
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Object-similarity representations guide implicit feature identifi-
cation learning
The current study directly shows that previous knowledge, also coined
cognitive schemata, plays a crucial role in actively learning about object
features. Our study, therefore, extends previous research that showed the
relevance of knowledge structures or cognitive schemata in visual
perception16,52,53, reward learning54,55, and the social domain8,56. Specifically,
this study extended the computational modeling framework for social
learning21,22 to non-social, semantic knowledge.

Individuals relied on a fine-grained Similarity Model to learn word
meanings through trial-by-trial feedback. Learning was driven by the pre-
diction error (PE signal, i.e., the learning signal in reinforcement learning
models across social and non-social domains56,57. Participants also repre-
sented fine-grained knowledge about object similarity during learning and
utilized this knowledge to scale PE updating. This highlights the role of
semantic relationship structure in inferring word meaning. Our findings
align with the language learning literature, which has demonstrated that
knowing the meaning of a word through a word-to-concept mapping does
not replace the necessity of representing semantic knowledge58,59. Semantic
relatedness, measured by word co-occurrence patterns in text corpora,
can be learned through experience via unsupervised statistical learning60,61

and plays an important role in language acquisition and reading
comprehension60,62.

Notably, participants’ learning strategy deviated from the best-
performing model in the set, which was the simple mapping of the fea-
ture in question to the respective non-word. The fact that participants did
not show this direct mapping of feature to non-word means that partici-
pants did not know the meaning of the non-word from the beginning and
instead learned by integrating PE signals into future inferences. Significant
PE reductions over the course of the task and the open-answer question
post-learning corroborated that participants indeed learned themeanings of
the non-words throughout the task. Someparticipantswere able to correctly
report on the feature inquestionafter learning.This verbal report is evidence
for an explicit representation of the feature in question.While building such
an explicit representation by inferring the actual feature in question is a
desirable task outcome, we conjecture that reporting a different feature is
not, per se, evidence that participants did not learn the task. Given that
overall participants significantly reduced PEs over time, and a body of
literature that describes implicit and explicit learning and mental

representations as largely independent1,63–65, we take significant reductions
in prediction errors as evidence for successful implicit learning, which, in
line with this literature, may not necessarily transfer into detailed explicit
representations of the feature in question.

Object-similarity maps serve as flexible knowledge frameworks
In this study, we demonstrate that object similarity, i.e., semantic related-
ness, is utilized during learning, and the learned features are reflected in
item-level arrangements after learning. Object similarity maps are based on
object co-occurrence16. In statistical learning, objects that occur most fre-
quently together are those that share semantic featureswith each other. This
co-occurrence information is deeply ingrained in the visual system16. Object
similarity representations scaffold knowledge to aid learning of new infor-
mation, aswell as aiding associative inference.Associative inference refers to
the ability to derive new information by forming links between known and
related information. For example, if two stimuli share one property, it can be
inferred that they also share another property11,66.

Highlighting the importance of object co-occurrence and semantic
relationships, neurons within the visual system, including in object- and
scene-selective visual cortices, are tuned to the natural statistics of object
contexts and frequencies67. The spatial representation of knowledge is
supported by both the hippocampus and the medial prefrontal cortex
(MPFC). Recent studies on the neural encoding of knowledge representa-
tions found that the hippocampus and the MPFC represent the underlying
dimensions that organize complex abstract stimuli17,68.

Flexible updating of the object-similarity structure observed in our
study may depend on hippocampal–prefrontal integration. Recent theore-
tical models69,70 and empirical work17,70 suggest that the hippocampus
encodes specific events and represents relationships between events at
various levels of detail. This is in line with the logic of the Similarity learning
framework that we applied in this study. Similarity models employ repre-
sentations of coarser and fine-grained knowledge dimensions during
learning (see ref. 51).

The short learning blocks induced a shift in individuals’ object simi-
larity representation post-learning. This is in line with previous findings
showing that recurrent connections between the hippocampus and the
prefrontal cortex facilitate access and updating of already acquired
knowledge11,71. As new events are encoded, prior memories are re-encoded
and reshaped by current events72. The current study probed whether
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Fig. 3 | Bayesian model comparisons of the five main models’ performance. The
worst-performingmodel is used as the baseline. Smaller Bayes factors (BF) indicate a
better fit. Left panel: Model comparison using fixed-effects analysis as the com-
parison metric. Middle panel: Random effect model comparison via posterior
exceedance probability of themodels. Right panel: the frequency of eachmodel being
the best model. A Model comparison on participants’ data (N = 82 participants)

using fixed-effects and random effects reveals that Model 5 [Fine granularity] per-
forms best. This learningmodel usesfine-granularity information (item-similarities)
to generalize across objects.BBest performingmodel or strategy to perform the task.
Given that participants were learning about the feature ratings, the simple no-
learning model that applies the feature rating to a specific item in question was the
best-performing strategy.
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learning to deduce abstract features in question relied on the same cognitive
mechanisms as social learning—such as inferring others’ preferences or
traits from feedback21,22,37. In these prior tasks, participants learned about
different people or task profiles and various items. Indeed, we found that,
similar to learning in social contexts, participants relied on a reinforcement
learning model that weighed feedback based on item similarity. From this,
we can conclude that the learning mechanism generalizes across stimulus
sets (trait-, preferences, non-social features), and social versus nonsocial
contexts. Another important next step will also be to corroborate the key
regions involved in the flexible deployment and updating of object-
similarity structures during learning.

Limitations
Wehave assessed semantic relationshipswith theMATtask,whichhas been
extensively used and validated against othermeasures of semantic similarity
such as pairwise judgements (see ref. 73 e.g.,). However, all measures of
semantic similarity have an important caveat –they are context dependent,
meaning that the similarity ratings depend on the specific item set in
question31. It is therefore important to test the generalization of our results
across various tasks and item sets to establish more accurate concept
similarity measures.

Due to the short learning intervention, there was a small effect of the
learned concept on pre-existing knowledge representation. While we show
that the learning modeled in the RL framework produced a shift in object
similarity representation post-learning, we cannot conclusively dis-
ambiguate the roles of attentional shifts to a feature in question during the
learning task (i.e., priming) and trial-by-trial learning as the primary con-
tributor to the observed shifts in similarity representations. Future studies
should corroborate these learning-induced shifts inmore extensive learning
interventions. An intriguing possibility is that the reorganization of item
similarity structures through learning or priming represents a general
mechanism for increasing our prior knowledge and behavioral adaptation
across task contexts51,74–77).

Conclusion
In conclusion, this study elucidates how humans organize semantic
knowledge. Participants’ spatial representations of semantic relatedness, i.e.,
their semantic relatedness map, guided implicit learning of object features.
Moreover, item-level relationship structures were flexibly rearranged
through learning, possibly reflecting a broader mechanism of how knowl-
edge is activated for learning and flexibly reorganized as a function of the
learning content.

Statement of relevance
Humans possess the remarkable ability to retain both generalized
knowledge about categories of items (e.g., apples and bananas are fruits)
and detailed item-specific similarities (e.g., peaches resemble applesmore
than bananas). Generalizations or schemata and fine-grained knowledge
for specifics profoundly impact our decision-making and learning.
Schemata, as mental shortcuts, expedite decisions, thereby enhancing
efficiency. Simultaneously, preserving detailed item-level similarities
enables us to efficiently zoom in on specific features in question. The
current study reveals the interplay between the structure of semantic
knowledge and learning. We show that individuals represent item-level
similarity information during implicit feature identification learning and
that learning dynamically updates the existing item similarity repre-
sentations. These results carry far-reaching implications for how humans
access and build knowledge across a variety of cognitive and social
domains. By adapting and fine-tuning representations of object simila-
rities through learning, we continuously refine cognitive frameworks,
enabling more effective decision-making and knowledge integration. In
short, the current study establishes that semantic relatedness is used in
implicit learning and that learning, in turn, produces shifts in semantic
relatedness representations.

Data availability
Data can be found on the lab’s GitHub account (https://doi.org/10.17605/
OSF.IO/6NWQU).

Code availability
Analysis scripts can be found on the lab’s GitHub account (https://doi.org/
10.17605/OSF.IO/6NWQU).
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