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Social aloofness is associated with non-
social explore-exploit decisions
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How humans resolve the explore-exploit dilemma in decision making is central to how we flexibly
interact with both social and non-social aspects of dynamic environments. However, how individual
differences in the cognitive computations underlying exploration relate to social and non-social
psychological flexibility traits remains unclear. To test this, we probed decision-making strategies in a
cognitive flexibility task, a restless three-armed bandit task, and examined how individual differences
in cognitive strategy related to social and non-social traits measured by the Broad Autism Phenotype
Questionnaire (BAPQ), awell-validated, clinically-relevant, community instrument, in a large (N = 1001)
online sample. In contrast to prior links found between exploratory behavior and cognitive rigidity, we
found that differences in choice behavior and exploration were primarily associated with social
phenotypes as captured by the BAPQ aloof subscale. Higher scores on the BAPQ aloof subscale,
indicative of reduced social interest and engagement, were associated with decreased shift rates,
increased win-stay/lose-shift behavior, heightened sensitivity to negative outcomes, and reduced
exploration. Reinforcement learning (RL) modeling further revealed that reduced exploration in high
aloof individuals was driven by lower decision noise rather than increased cognitive rigidity,
suggesting that decreased exploratory behavior may reflect a reduced tendency for stochastic
exploration rather than an inflexible learning process. Sparse canonical correlation analysis reveals
that the strongest loading for these non-social reward-related measures are in fact socially coded
items. These results suggest that differences in motivation to seek information, especially in social
contexts, maymanifest as decreased exploratory behavior in a non-social decision-making task. Our
findings additionally highlight the potential for using computational approaches to reveal general
cognitive mechanisms underlying social functioning.

The explore–exploit tradeoff is a fundamental component of adaptive
behavior, determining whether an agent seeks novel information
(exploration) or capitalizes on prior rewards (exploitation). This balance is
critical for decision-making across diverse contexts, shaping how indivi-
duals flexibly navigate uncertainty1,2. Explore–exploit behaviors are pre-
dominantly studied in non-social environments, where agentsmust balance
exploration and exploitation in resource foraging, economic decisions, and
learning strategies.However, these behaviors also play a crucial role in social
interactions. In social contexts, individuals must decide whether to engage
with new partners or rely on existing relationships, influencing trust for-
mation, cooperation, and social network dynamics3. Expanding social

connections may provide access to novel resources, whereas maintaining
established relationships ensures stability.

Decision-making tasks, especially bandit tasks, have proven effective at
measuring explore–exploit balance in laboratory and ecological settings4–8.
Bandit tasks require participants to repeatedly choose between options with
uncertain and often changing reward probabilities, forcing them to balance
the short-termbenefits of exploiting known rewardswith the potential long-
term gains of exploring less familiar options. By tracking how individuals
adapt their choices in response to changing reward contingencies, these
tasks offer a computationally precisemethod for assessing decision-making
flexibility. However, it remains unclear what aspects of real-world
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functioning are accessed by laboratory explore–exploit measures such as
these. As these tasks typically involve sequences of repetitive choices in a
single-agent setting, they are often argued to primarily reflect cognitive
flexibility or rigidity, potentially failing to capture the social flexibility
component of explore-exploit behavior.

Yet these tasksmay go beyondmeasuring surface-level cognitive traits,
with evidence suggesting that they often tap into deeper neurocomputa-
tional mechanisms that underlie more complex behaviors9. For example, it
has long been understood that the same underlying cognitive mechanisms
that facilitate flexible decision-making in non-social contexts also play a
crucial role in social interactions10,11. If we can leverage explore–exploit
paradigms to access social flexibility, we can better understand the foun-
dational cognitive processes driving both social and non-social flexibility,
offering a more comprehensive understanding of adaptive behavior in
complex environments12–17.

In this study, we aimed to examine how explore–exploit balance in a
restless bandit task relates to social andnon-socialflexibility in a large online
sample (n = 1001). To asses distinct components of flexibility, we used the
Broad Autism Phenotype Questionnaire (BAPQ), a well-validated self-
report survey designed to capture dimensional variation in social and non-
social autism-related traits in the general population18–21. The BAPQ
includes three subscales: social aloofness, behavioral rigidity, and pragmatic
language, each measuring different aspects of cognitive and social adapt-
ability.We focused on the aloof and rigid subscales, as both directly relate to
patterns of engagement with dynamic environments and may reflect dis-
tinct forms of flexibility. Importantly, although the BAPQ originates in
autism research, our goalwas not to study subclinical autism, but to leverage
the BAPQ as a dimensional tool to parse social disengagement (aloofness)
and cognitive inflexibility (rigidity) as potential drivers of explore–exploit
behaviors in the broader population.

The social aloofness subscale captures an individual’s tendency to
withdraw or disengage from social interactions, making it highly relevant to
social flexibility. Individuals high in aloofness often show reduced social
motivation22, which could influence exploration tendencies, particularly in
uncertain or changing environments. If exploration in decision-making
reflects an underlying drive for engagement with new opportunities, more
aloof individualsmay be less inclined to seek novel options, favoring amore
exploitative approach that prioritizes known rewards. This aligns with
findings that reduced social motivation is linked to behavioral patterns of
social avoidance23 and lower sensitivity to changing reward contingencies24.
However, it remains unclear whether this tendency generalizes beyond
social settings to influence exploration in non-social decision-making
contexts.

The rigidity scale, on the other hand, measures inflexibility in thought
and behavior, including resistance to change and a strong preference for
routine. This subscale directly aligns with cognitive and behavioral adapt-
ability in non-social contexts, making it particularly well-suited for testing
relationships between decision-making flexibility and explore–exploit
behaviors. A more rigid individual may struggle to adjust to changing
reward contingencies, leading to a greater reliance on previously learned
strategies rather than exploring new possibilities. However, given the
established correlation between rigidity and aloofness25, it is possible that
exploitative individuals exhibit both tendencies, with aloofness contributing
to reduced engagement in novel experiences and rigidity reinforcing reli-
ance on established routines.

By exploring these relationships, we aim to determine whether
explore–exploit laboratory paradigms, such as the restless bandit task,
capture both social and non-social flexibility. If both aloofness and rigidity
reflect a more exploitative strategy, it would suggest that these tasks reflect a
broader profile of cognitive and social inflexibility, with sharedmechanisms
driving disengagement from novelty across domains. Alternatively, if these
traits show distinct relationships with explore–exploit behavior, it may
indicate that social and non-social flexibility are supported by separate
processes, with exploration in decision-making reflecting different under-
lying motivations depending on the context. Understanding these

connections will help clarify whether laboratory paradigms measuring
explore-exploit tradeoffs providemeaningful insights intoflexibility beyond
non-social decision-making, offering amore comprehensive framework for
studying adaptive behavior in dynamic environments.

Methods
Data collection
All experimental procedures were consistent with and approved by the
Institutional Review Board of the University of Minnesota (Study
00008486). 1001 online participants were recruited through Prolific, a
recruiting tool for online experiments. Participation criteria included (1)
being at least 18 years of age and (2) all participants must complete the task
through desktop computers. These criteria were set to allow for a diverse
general population from which to sample, with the device limitation
implemented to mitigate any potential differences that could arise due to
variation in modality used to complete the task. Participants were asked
which gender identity theymost identified with (Male, Female, Other). The
gender identity distribution was 493 female participants, 496 male partici-
pants, and 12 participants who identified as other. Participant ages ranged
from 18 to 75+, with an age distribution as follows. 18–24: 473, 25–34: 339,
35–44: 114, 45–54: 50, 55–64: 18, 65–74: 6, 75+: 1. All participants provided
written informed consent. Participants received $3.10 if they completed the
entire study, $3.50 if they had high accuracy during the task, and an addi-
tional $2.00 for responding to survey questions.

Self-administered assessments
Participants were asked to complete the Broad Autism Phenotype Ques-
tionnaire (BAPQ)26 as well as supply demographic information including
sex assigned at birth, level of education, and household income.

Exploration–exploitation paradigm
Exploratory behaviors were measured using a three-arm restless bandit
task27,28. Each trial, participants were presented with three choices, each of
which was associatedwith a reward probability that changed randomly and
independently over time. Rewarded trials resulted in participants earning 1
point. The probabilistic nature of the task necessitates exploratory behaviors
tomonitor changes in reward rates as the taskprogresses, while encouraging
exploitation of a target when the chance of reward is high. Participants were
initially screened with a tutorial section, in which they needed to demon-
strate basic task proficiency over 15 practice trials prior to beginning the
final task. Each participant’s restless “walk”, or the volatility of the reward
probability across 300 trials, was dictated by predetermined parameters for
the likelihood of change in reward probability each trial (hazard rate) and
the subsequentmagnitudeof change in rewardprobability (step size). In this
experiment, we used a hazard rate of 0.6667 and a step size of ±0.2, con-
strained within the range of [0.1–0.9].

Preregistration
This research was conducted without prior registration of the study design,
hypothesis, or analysis plan.

Data analysis
General analytical techniques. Data analysis was performed with
custom PYTHON scripts. Shapiro–Wilks test was performed on relevant
variables, with key variables such as BAPQ subscale scores and percent
explore/exploit found to be non-normally distributed. The relationship
among and between BAPQ scores, explore–exploit metrics, and other
variables was subsequently tested with Spearman’s correlation tests. All
tests assumed an alpha of 0.05. No participants were excluded from our
final data analysis.

Punishment sensitivity. To determine whether shift behaviors were
reward driven, i.e. participants only shift when the previous trial was not
rewarded, we used a measure of punishment sensitivity to assess each
participant’s relative shift probability following rewarded or unrewarded
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trials. If shift behavior is not reward-driven, we will see punishment
sensitivity close to zero.

punishment sensitivity ¼ ðpðshiftjlossÞ � pðshiftjwinÞ=pðshiftÞÞ ð1Þ
Hidden Markov model (HMM). In order to examine how much an
individual explored in the task, we fit a hiddenMarkov model (HMM) to
the choice sequence to infer the latent explore/exploit state5,29,30. The
HMM modeled exploration and exploitation as two latent goal states
underlying choices. Each state is defined by a different emission matrix,
i.e., the probability of making each choice under each state. When the
model is fit to the choice sequence of a subject, it estimates a transition
matrix that dictates the probability of transitioning from one state to
another over time. Since the HMM assumes a Markovian process, states
are time-dependent. The transition matrix is a mapping of past and
future states, which describes the 1-time-step probability of transition
between every combination of states.

In our model, there were four possible states (an exploit state for each
choice, and one explore state). During each exploit state, the probability of
choosing the exploited choice is 1, and 0 for other choices (fixed emission
matrix). Exploration is modeled as a uniform distribution over choices
because the uniform distribution over choices is the maximum entropy
distribution of categorical variables. To accurately estimate the parameters
of themodel with a limited number of trials, the parameters were tied across
exploit states such that each exploit state has the same probability of keep
exploiting or begin exploring. Transitions out of exploration into exploit
stateswere also tied.Themodel also assumed that subjectshad to go through
an explore state in between exploit states, even for a single trial exploration.
The model estimates two unique free parameters—the probability of tran-
sitioning from exploration to exploitation and the probability of transi-
tioning from exploitation to exploration.

To find the optimized transition matrix for each subject, we fit the
model via expectation maximization using the Baum–Welch algorithm31.
The algorithm was reseeded 10 times to avoid local maxima and find the
global maxima. With the HMM transition matrix optimized from subject
choice sequences, we then used the Viterbi algorithm to decode latent states
from choices, allowing us to label each choice as either exploratory or
exploitative.

HiddenMarkovmodels (HMMs) have been identified as an especially
effective method for capturing these explore–exploit behaviors across
species5,30,32,33. By providing a framework for inferring explore–exploit
behaviors and how individuals balance them under varying degrees of
uncertainty, the HMM offers a quantitative measure of cognitive flexibility
in decision-making contexts.

Sparse canonical correlation analysis. We applied sparse canonical
correlation analysis (sCCA), a well-established and popular method
to find associations across multiple sets of multivariate data. The
main goal of sCCA is to find pairs of linear combinations that would
maximize the correlations between two datasets with a sparseness
parameter control, and how many dimensions are required for those
correlations34. The pairs of linear combinations represent canonical
variables, and the correlation between them is defined as canonical
correlations.

In the current study, we have two datasets: BAPQ single-items (B) and
exploration–exploitation indices (E).

B ¼
B11 � � � B1p

..

. . .
. ..
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0
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1
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0
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where n represents the number of participants, p indicates the number of
single items of BAPQ, q indicates the behavioral indices from the explora-
tion and exploitation task.

We aimed to find pairs of linear combinations to maximize the cor-
relation between B and E.

Mathematically, we can have linear combinations like:

X ¼ BxY ¼ Ey

and we have

Var ðXÞ ¼ xT
X
bb

x

Var ðYÞ ¼ yT
X
ee

y

Cov ðX;YÞ ¼ xT
X
be

y

Our aim is

Maxx;yx
T
X
be

y subject to constraintsjjxjj2 ≤ 1; jjyjj2 ≤ 1

P1ðxÞ≤ c1; P2ðyÞ≤ c2

where the P1ðxÞ and P2ðyÞ are lasso penalty functions (i.e., L1 regulariza-
tion), and c1, c2 should satisfy:

1≤ c1 ≤
ffiffiffi
p

p
; 1≤ c2 ≤

ffiffiffi
q

p

The values of c1 and c2 are chosen by K-fold cross-validation (CV),
where the corresponding penalty values are chosen by grid search in
increments of 0.1 between 0.1 and 1.0 to identify the combinations of
parameters to maximize the Cov (Bx, Ey). As previous studies35 did,
we have 10 randomly resampled datasets as replication datasets, each
of which consisted of two-thirds of the dataset with the full sample.
We conducted sCCA in a predictive framework36 to enhance the
generalizability of the model. The L1 penalty for the single-item
BAPQ dataset and behavioral indices from the exploration-
exploitation task were tuned by 10-fold cross-validation, with a
discovery (n = 667) and replication sample (n = 334). We obtained
the best model with a penalty level of 1 on the single-item BAPQ and
0.9 on the exploration-exploitation behavioral indices. Analyses were
implemented in R package PMA37, available at https://rdrr.io/cran/
PMA/man/PMA-package.html.

Reinforcement learning (RL) models. To model decision-making
processes in the restless bandit task, we applied two reinforcement
learning models: a standard delta-rule RL model and an RL model
incorporating a choice kernel (RLCK).

The standard delta-rule RL model assumes that participants learn by
updating value estimates (Q-values) for each option over time based on
rewardoutcomes.TheQ-value for a given choice is updatedaccording to the
reward prediction error (RPE):

Qk
tþ1 ¼ Qk

t þ α rt � Qk
t

� �

where rt is the received reward,Qk
t is the expected value of option k at trial t,

and α is the learning rate, which determines how strongly new information
influences the updated value.

Choice selection was modeled using a Softmax probability function:

p atþ1 ¼ k
� � ¼ eβQ

k
t

P
je
βQj

i
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where β is the inverse temperature parameter, controlling decision noise by
determining the balance between random exploration and exploitation of
higher-value options.

The RLCK model extends the standard RL framework by incorpor-
ating a choice kernel (CK), which accounts for an individual’s tendency to
repeat previous choices independent of reward history. The CK value for
option kk is updated similarly to the Q-value update rule:

CKk
tþ1 ¼ CKk

t þ αCðakt � CKk
t Þ

where akt is a binary indicator of whether option kwas chosen on trial t, and
αC represents the rate at which choice persistence is updated.

The probability of selecting an option at trial t is then determined by a
Softmax function incorporating both Q-values and the choice kernel:

pkt ¼
eβðQ

k
tþCKk

t Þ
P

je
βðQj

iþCKj
t Þ

This model accounts for both value-driven decision-making and
habitual choice biases, allowing for a more nuanced characterization of
explore–exploit behavior. Based on model comparison, the RLCK model
provided a better fit to the data than the standard RLmodel, suggesting that
choice persistence played a significant role in participants’ decision
strategies.

Model agreement was assessed using negative log-likelihood (NLL),
which quantifies how well the model predicts observed choices. A lower
NLL indicates bettermodel fit, as it reflects a higher probability of themodel
assigning correct choices. Parameters (α; β; αC) were optimized using
maximum-likelihood estimation (MLE) via the truncated Newton (TNC)
method, with 30 replications per participant to avoid local minima.

Permutation test. Permutation testing was adopted to assess the sig-
nificance of canonical variates36.We constructed a null distribution for all
canonical components by shuffling the rows of the BAPQ single items
and holding the behavioral indices vector constant. Thus, the linkage
between BAPQ single items and participants’ behavioral indices has been
broken. We then conducted sCCA using the same regularization para-
meters on the realigned dataset to get canonical variates. If the canonical
variates from the preserved sample are significant than the canonical
variates from the permutated sample, we selected these canonical variates
for further analysis. We performed permutations 5000 times and applied
false discovery rate (FDR) to control for type I error due to multiple
comparisons. The significance level is set at 0.05.

Results
1001 participants over the age of 18were recruited using the online platform
Prolific to examine the relationship between social and non-social flexibility
and latent cognitive processes underlying decision-making. To dissociate
social and non-social cognitive phenotypes, participants were asked to
complete the broad autism phenotype questionnaire (BAPQ) prior to the
task26. TheBAPQ is a commonly used tool to quantify cognitive traits across
three major phenotypic domains, including aloofness, rigidity, and prag-
matism (Fig. 1C). The total BAPQ score ranges from 36 to 216, a sumof the
12–72 score from each subscale, with higher scores associated with more
severe autism-related phenotypes.

To examine individual differences in value-based decision-making
strategies, we employed a restless three-armed bandit task. On each trial,
participants were given three decks of cards to choose from, each of which
was associated with a reward probability that changed randomly and
independently over time (Fig. 1A, B). Participants accrued one point for
every rewarded trial. The goal of the task is to maximize the number of
points obtained over the duration of the experiment (300 trials). The
dynamic reward contingency encourages participants to be flexible in their
decisions, as the current best option may become worse in the future. To

maximize reward, participants must exploit a favorable option when it is
found while flexibly exploring alternatives to gather information. To verify
that participants understood the task, we calculated the probability of
obtaining a reward compared to the probability of reward if choosing
randomly (chance). The results suggest that participants were performing
the task significantly better than chance (t(1000) = 79.14, p < 0.001, Cohen’s
d = 2.50, 95% CI = [0.125, 0.131]) (Fig. 1D).

High aloofness individuals exhibit decreased shift behaviors
Oneway tomeasure cognitiveflexibility is to examine shift behavior38,39.We
calculated the probability of shifting to a different option on a given trial and
examined whether this shifting behavior correlated with BAPQ total or
subscale scores. We found that the probability of shifting away from a
previous choice was correlated with the BAPQ aloof subscale, with higher
aloof scores reflecting decreased shift behavior (Spearman correlation
(df = 999): rho =−0.12, 95% CI = [−0.179, −0.054], p < 0.001) (Fig. 1E).
Despite its theoretical relevance to cognitive inflexibility, the BAPQ rigid
subscale was not significantly associated with shifting behavior (Spearman
correlation (df = 999): rho = 0.01, 95%CI = [−0.052, 0.071], p = 0.789), nor
was the pragmatic subscale (Spearman correlation (df = 999): rho = 0.05,
95% CI = [−0.007, 0.116], p = 0.101) (Fig. S3). These results suggest that
variability in choice flexibility is related to social aloofness, in particular,
highlighting a potential link between social disengagement and reduced
exploration in non-social decision-making contexts.

Aloofness-related stay behaviors are outcome dependent
To determine if shift behavior was outcome-dependent, we examined
measures of win-stay (repeating a choice following reward), lose-shift
(shifting to a different choice following no reward), and a measure of
punishment sensitivity that considers the ratio of shifts as a result of no
reward relative to reward while controlling for overall amount of shift
behavior (Eq. (1)). We find a positive correlation between BAPQ aloof
scores and win-stay (Spearman correlation (df = 999): rho = 0.11, 95%
CI = [0.044, 0.172], p < 0.001), as well as a negative correlation between
BAPQ aloof scores and lose-shift (Spearman correlation (df = 999): rho =
−0.09, 95% CI = [−0.152, −0.026], p = 0.004) behaviors, consistent with
decreased shift behaviors with increases in aloofness (Fig. 1F, G). We also
find a positive correlation between punishment sensitivity and BAPQ aloof
(Spearman correlation (df = 999): rho = 0.09, 95% CI = [0.030, 0.151],
p = 0.004), indicating an increased sensitivity to no reward relative to reward
as aloofness increases (Fig. 1H).This suggests thathighaloofness individuals
showed decreased shift behaviors due to higher sensitivity to no reward,
rather than a general strategy of increased choice repetition.

Aloofness is correlated with decreased frequency of exploratory
behaviors
Previous studies have shown that win-stay and lose-shift behaviors are not
constant throughout the session; rather, they are elevated only during
periods of exploration5,30. Therefore, we ask whether changes in outcome-
dependent behaviors in high aloofness individuals are due to changes in
exploratory strategy over time. To infer when exploration happens or how
much individuals explore, we adopted ahiddenMarkovmodel (HMM) that
models exploration and exploitation as two latent goal states underlying
choices. Previous studies have found that labeling explore-exploit states
using anHMMconsistently and accuratelymodeled choice behavior across
species5,7,30. To examine how much individuals explore, we calculated the
frequency of exploratory choices as labeled by the HMM. This analysis
revealed that aloofness was correlatedwith exploratory behaviors, with high
BAPQ aloof scores reflecting decreased probability of exploring on a given
trial (Spearman correlation (df = 999): rho =−0.13, 95% CI = [−0.200,
−0.069], p < 0.001) (Fig. 2B).

Decreased exploratory choices could result from decreased frequency
of exploratory bouts and/or shorter exploratory bouts. We therefore
examined the transition probabilities between states, i.e., how likely an
individual was to stop exploiting and start exploring, continue exploiting,
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etc. The results revealed that individuals with higher aloofness were less
likely to continue exploring after exploring in a previous trial, indicating
shorter bouts of exploration (Spearman correlation (df = 999): rho =−0.14,
95% CI = [−0.200, −0.077], p < 0.001) (Fig. 2C). However, they were not
increasing the length of their exploitative bouts (Spearman correlation
(df = 999): rho = 0.05, 95% CI = [−0.007, 0.115], p = 0.091) (Fig. 2D). This
suggests that the decrease in exploratory behaviors in high aloofness indi-
viduals is a product of their committing to a specific optionmore rapidly but
not sticking to that option for a longer period compared to less aloof
individuals.

High aloofness is associated with reduced learning rate, lower
decision noise, and increased choice stickiness
Previous studies, including our own, have demonstrated that changes in
exploratory strategies can arise frommultiple cognitive processes that canbe
captured by reinforcement learning (RL) parameters4,5,29,30. Specifically,
exploratory behavior can be influenced bydecision noise, which governs the
randomness of choices, as well as by learning rates, which determine how
strongly past outcomes influence future decisions. To better characterize the
mechanisms underlying explore–exploit behaviors in relation to social
aloofness, we fit several RL models to the choice data. We compared a base

RLmodel to anRLmodelwith a choice kernel term (RLCK) (Fig. 2F), which
accounts for choice biases and perseveration effects. The RLCK model
provided a substantially better fit (ΔAIC = 14,818.6), suggesting that,
beyond reward learning, choice repetition independent of outcome is an
important feature of the behavioral patterns demonstrated in this study.
This model is especially useful for capturing the exploitative behavior
observed in our HMM analysis, which revealed shorter exploratory bouts
and persistent exploitation in high aloofness individuals. These patterns
suggest that some of the exploitative behavior may arise not purely from
stable reward expectations, but from increased choice perseveration.

Several key findings emerged from our RLCK analysis. First, we
observed a trend-level relationship between aloofness and lower learning
rates (Spearman correlation (df = 999): rho =−0.05, 95% CI = [−0.115,
0.009], p = 0.096) (Fig. 2E), suggesting that individuals higher in aloofness
may update their reward expectations more slowly. Slower learning could
reinforce exploitative behavior by reducing responsiveness to changes in
reward contingencies. Second, higher aloof scores were significantly cor-
related with lower decision noise (Spearman correlation (df = 999): rho =
0.07, 95% CI = [0.007, 0.137], p = 0.024) (Fig. 2F), indicating a reduced
tendency for stochastic or exploratory choices. This finding aligns with our
HMM results, which showed fewer and shorter exploratory bouts in high
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aloof individuals, further supporting the conclusion that social aloofness is
associated with reduced exploratory behavior.

A third result emergedwhen examining the choice kernel learning rate:
higher aloofness was also significantly associated with increased choice
stickiness (Spearman correlation (df = 999): rho = 0.08, 95% CI = [0.019,
0.141], p = 0.010) (Fig. 2H). This suggests that individuals with higher aloof
scores are more likely to repeat previous choices regardless of reward his-
tory. Together, these results indicate that reduced exploration in socially
aloof individuals arises from a combination of reduced decision noise and
increased choice perseveration. Rather than simply being rigid or unre-
sponsive to feedback, these individuals may be defaulting to habitual or
exploitative strategies that favor repetition over adaptation. These findings
highlight the utility of RL models incorporating choice history in revealing
the cognitive mechanisms that underlie variation in both social and non-
social flexibility.

Social behavior-related questions show highest influence on
exploratory strategy
Our correlation analyses revealed how differences in exploratory strategy
are reflected by the subscales of BAPQ, specifically BAPQaloof.Nextwe ask
whether this relationship is driven by specific questions within the aloof
subscale or social behavior related questions as a whole. Specifically, we
adopted sparse canonical correlation analysis (sCCA), an unsupervised
learning algorithm used tomaximize the correlations between two datasets,
to estimate the predictive power of each question.

The two input datasets consisted of 36 single-item scores from BAPQ
(one for each question) and nine task parameters that best characterized
cognitive strategy (Fig. 3A).

Chosen task parameters were (1) probability of exploration, (2)
exploration potential, (3) punishment sensitivity, (4) probability of shifting
away from the previous choice, (5) probability of repeating a rewarded

choice (win-stay), (6) probability of shifting away from a non-rewarded
choice (lose-shift), (7) relative response time difference (shift vs stay), (8)
averaged response time, and (9) probability of obtaining reward relative to
chance.

We selected the first canonical variate based on the degree of covar-
iance explained for further analysis.We performed a permutation to test for
significance35,36. Null distribution was built by randomly re-assigning sub-
jects’ single-item scores to shuffle the original correlation between the two
datasets. Results showed that the first canonical variate is significant (per-
mutation, 5000 times, p = 0.033). To explain the psychiatricmeaning of this
component, we extracted canonical loadings for all single items within
BAPQ (Fig. S1).

Interestingly, the component was dominated by symptoms related to
social behaviors, with high-loading questions such as “I feel like I am really
connecting with other people” (Fig. 3B). On the task side, this component
was dominated by the probability of exploration. Further, we conducted a
correlation analysis for p(explore) and the total score of these four symp-
toms, finding a strong correlation between the two (rho =−0.130, 95%
CI = [−0.1905, −0.0687], p < 0.001) (Fig. 3D).

These results collectively indicate a connection between social flex-
ibility, exploratory behaviors, and information-seeking strategies in
decision-making tasks. Additionally, these findings showcase the exciting
potential for computationalmodels toprovide insights into social behaviors,
even in a fundamentally non-social task.

Discussion
In this study, we examined how individual differences in self-reported social
and non-social flexibility relate to decision-making strategies, specifically
whether these traits manifest in measurable changes in explore–exploit
behavior. Using computational modeling, we found that increased social
aloofness was associated with decreased shift behavior, heightened
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sensitivity to unrewarded trials, and reduced exploratory tendencies. Sur-
prisingly, behavioral rigidity as measured by the BAPQ (a construct theo-
retically linked to cognitive inflexibility) did not significantly reflect changes
in explore-exploit balance (Spearman correlation (df = 999): rho = 0.00,
95% CI = [−0.066, 0.059], p = 0.886), suggesting that these tasks may cap-
ture specific elements of behavioral and social flexibility that are not fully
explained by cognitive rigidity.

Importantly, these effects were consistent across individual items
within the aloof subscale, rather than isolated outlier responses, as revealed
by our sparse canonical correlation analysis (sCCA). While social motiva-
tion and social skill are often interrelated, the aloof subscale of the BAPQ is
generally understood to reflect an individual’s interest in and preference for
social engagement, rather than their competence in navigating social
situations. This distinction is important for interpreting our findings. The
association between aloofness and reduced exploration likely reflects
motivational disengagement rather than impaired social cognition. How-
ever, reduced enjoyment of social interaction could still result fromdifficulty
interpreting social cues, and future work incorporating behavioral or cog-
nitive measures of social skill will be essential to further disentangle these
components.

The observed aloofness-driven decrease in exploratory behavior could
be influenced by both reward-related and reward-unrelated processes40,41,
and ourfindings provide evidence for both. Specifically, we found that social
aloofness was associated with shorter bouts of exploration, but not longer
bouts of exploitation, regardless of reward history.One possible explanation
is that individuals with higher aloofness may find exploration less tolerable,
potentially due todiscomfortwithuncertaintyornovelty.Alternatively, they
may find exploitation, or the reliance on known outcomes, more inherently
satisfying or rewarding.

To further unpack these patterns and identify what might be driving
the observed shift toward exploitative behavior, we examined trial-by-trial
decision dynamics using reinforcement learning (RL) models. Our RL
results revealed that reduced exploration in individuals high in aloofness is
not due to generalized cognitive rigidity, but rather a combinationof distinct
decision-making tendencies. Specifically, aloofness was associated with
lower decision noise, indicating a decreased tendency for stochastic or
random exploration. We also observed a trend-level relationship between
aloofness and lower learning rates, suggesting that high aloof individuals

may update their reward expectationsmore slowly, reinforcing a preference
for exploitation over exploration. Importantly, aloofness was also positively
correlated with the choice kernel learning rate (αCK), reflecting increased
choice stickiness, or a stronger tendency to repeat prior choices regardless of
reward. This finding indicates that more aloof individuals are not only less
likely to try new options but are also more likely to default to recent action
history as a guiding principle in decision-making. Together, these results
align with our HMM findings and suggest that aloofness-linked reductions
in exploration are driven by a convergence of lower decision noise, slower
learning, and greater habitual repetition, rather than inflexible value
updating alone.

Our finding that the aloof subscale was the most indicative of beha-
vioral differences prompts the question: Is this due to actual variations in
social flexibility, or could it be attributed to differences in self-reporting
accuracy? An advantage of pairing a self-report questionnaire, such as the
BAPQ, with a decision-making task, such as the restless bandit, is the ability
to examine if what people report as their behavior matches what is revealed
in a task assessing this behavior. To this point, it’s interesting that self-
reported levels of behavioral rigidity were not reflected in the behavioral
strategy in the bandit task, with the rigid subscale showing no statistically
significant correlation with commonmeasures of behavioral flexibility such
as shiftiness (Spearman correlation (df = 999): rho = 0.01, 95% CI =
[−0.052, 0.071], p = 0.789). Self-reports are not necessarily accurate with
regard to cognitive phenomena, and similar labels on self-report items and
task measures do not mean that they access the same construct42. It is
possible that participants are better able to accurately self-reflect on aloof
subscale prompts, because they access the motivation to perform social
behaviors, rather than mere competence42,43. Responding to “I enjoy chat-
ting with people” (from the aloof subscale) better reflects motivation and
preference than responding to questions such as “I can tell when it is time to
change topics in conversation” (from the pragmatic subscale), reflecting
competence. Because autistic traits have repeatedly been linked with
changes in motivation22,44,45, this may be an important contributor to why
the aloof scale in a general population best assesses nonsocial motivation.

It is also possible that these findings are a result of the shared striatal
circuitry of social information and reward processing10,11,46,47. Deficits in
social behaviors could be a result of dysfunction in the same circuitry
responsible for general reward and goal-directed behaviors and would
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explain our observed correlations between aloofness, or lack of social
motivation, and decision strategy, reflecting general motivation in this task.
This interpretation would be consistent with a generalization of the social
motivation hypothesis that has been proposed to explain the co-occurrence
of changes in social and non-social reward sensitivity48.

Prior research suggests that exploratory behavior in the restless bandit
task may reflect a different domain of flexibility than what is typically
assessed by the broad autism phenotype. Flexibility occurs on different
timescales, from trial-to-trial adjustments to broader trait-level cognitive
patterns across development49. In our study, exploratory behaviors corre-
lated with social aloofness but were not significantly correlated with beha-
vioral rigidity, suggesting that moment-to-moment decision-making
flexibility may be more closely linked to motivation, specifically, the moti-
vation to seek information, rather than a general resistance to change. This
aligns with prior work suggesting that social engagement modulates
exploration and learning50,51 and that motivational factors influence
uncertainty-driven decision-making52,53. The relationship between aloof-
ness and reduced exploration may reflect a broader disengagement from
novelty, independent of whether it is social or environmental in nature.

This raises the question of whether these results would persist across
different task designs. The explore-exploit tradeoff has been extensively
studied across various decision-making paradigms, each providing unique
insights into cognitive flexibility. The horizon task54 distinguishes between
directed and random exploration by manipulating available information,
while the novelty bandit task55,56 assesses responses to entirely new options,
capturing novelty-seeking tendencies. The restless bandit task used in our
study requires continuous adaptation to dynamic reward contingencies,
emphasizing real-time flexibility rather than broader trait-level patterns.
This feature makes it particularly useful for studying how individuals bal-
ance reward exploitation with the need for ongoing information-
seeking4,5,7,40,41. Given that our findings suggest a link between social aloof-
ness and reduced exploration, it is possible that similar effects could emerge
in other uncertainty-driven tasks, particularly those that require flexible
updating of reward expectations. However, tasks that emphasize novelty-
seeking, such as the novelty bandit task, may reveal additional nuances
regarding whether social aloofness specifically dampens responses to new
opportunities or whether it primarily affects how individuals adapt to
shifting reward contingencies.

However, because different explore–exploit paradigms emphasize
distinct cognitive and motivational processes, testing these effects across
multiple tasks is critical for determiningwhether they generalize beyond the
specific demands of the restless bandit task. An additional consideration is
that while these types of tasks capture adaptive learning, they do not directly
engage social cognition. Explicitly social decision-making paradigms, such
as trust games57 or multi-agent explore–exploit tasks58,59, could test whether
reduced exploration in highly aloof individuals is, in fact, reflected in social
contexts. If similar patterns emerge in socially interactive tasks, this would
suggest that theobserved relationships reflect adomain-general reduction in
information-seeking, with aloof individuals avoiding both social and non-
social uncertainty. Conversely, if aloofness is only reflecting exploration
deficits in non-social tasks, this would indicate a more domain-specific
reduction in learning flexibility that does not translate to explicit social
decision-making. These possibilities highlight the importance of cross-task
comparisons in differentiating motivational versus cognitive contributions
to exploration strategies.

Limitations
An important next step is to determine whether the observed relationship
between social aloofness and exploration is causal. Specifically, whether
changes in social motivation can drive shifts in explore–exploit behavior.
Longitudinal studies or experimental manipulations of social preference
could help clarify this question. Additionally, it is important to consider
the broader context in which these data were collected, as the COVID-19
pandemic significantly altered opportunities for social interaction. Future
research should examine whether these associations persist as social

conditions stabilize or whether they were influenced by temporary
changes in social engagement during that period. Despite these limita-
tions, our findings demonstrate that ostensibly non-social decision-
making tasks can reveal meaningful individual differences in social
processing tendencies. This highlights their potential utility not only in
studying social cognition in humans but also in translational animal
models, providing a framework for investigating the neurocognitive
mechanisms underlying social behavior.

Data availability
Data sufficient to replicate the results is available at, in accordance with the
approved IRB protocol: https://github.com/evanknep/BAPQ_Explore_
Exploit.

Code availability
The R code used to generate figures and statistics reported in this study is
publicly available at: https://github.com/evanknep/BAPQ_Explore_
Exploit. This repository contains a script containing figure creation and
statistical analysis functions used to create figures presented in the
manuscript.
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