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Sequence-to-sequence models with
attention mechanistically map to the
architecture of human memory search

Check for updates

Nikolaus Salvatore 1 & Qiong Zhang 1,2,3

Past work has long recognized the important role of context in guiding how humans search their
memory. While context-based memory models can explain many memory phenomena, it remains
unclear why humans develop such architectures over possible alternatives in the first place. In this
work, we demonstrate that foundational architectures in neural machine translation – specifically,
recurrent neural network (RNN)-based sequence-to-sequence models with attention – exhibit
mechanisms that directly correspond to those specified in the Context Maintenance and Retrieval
(CMR) model of human memory. Since neural machine translation models have evolved to optimize
task performance, their convergencewith humanmemorymodels provides adeeper understanding of
the functional role of context in humanmemory, aswell as presenting alternativeways tomodel human
memory. Leveraging this convergence, we implement a neural machine translation model as a
cognitivemodel of humanmemory search that is both interpretable and capable of capturing complex
dynamics of learning. We show that our model accounts for both averaged and optimal human
behavioral patterns as effectively as context-based memory models using a publicly available free
recall experiment dataset involving 171 participants. Further, we demonstrate additional strengths of
the proposed model by evaluating how memory search performance emerges from the interaction of
different model components.

As humans andmachine learning systems often face similar computational
challenges1, there has been synergy betweenmachine learning and cognitive
science research, leveraging machine learning advancements to better
model human cognition2,3 and cognitive models to inform better design of
intelligent systems4,5. Identifying parallels between models in machine
learning andmodels of human cognition is critical to the interplay between
these two fields. In this work, wemake connections between two prominent
classes of models previously developed from these two separate commu-
nities. Inmachine learning, one cornerstoneof neuralmachine translation is
the development of sequence-to-sequence (seq2seq) models to handle
variable-length input sequences in natural language processing tasks6,7.
Their efficiency is further improved by the attention mechanism8,9, which
laid the foundation for the now ubiquitous Transformer models10–13. In
cognitive science, researchers construct and test mathematical models of
human memory to understand how information is encoded and retrieved.
Decades of empirical work have recognized the important role of context in
encoding and later guiding the retrieval of information14–18. This notion of
context has been formally captured in frameworks such as the context

maintenance and retrieval (CMR)model, which can explain awide range of
memory behavioral patterns during free recall17,19–21, serial recall22,23, free
association24, collaborative recall25, as well as a broader range of behavior in
memory consolidations26, rewards27, and decision making28.

Despite the different forces driving these model developments (task
performance inmachine learning versus alignment with human behavioral
data in cognitive science), we demonstrate in this work that neural network
models in neural machine translation (specifically the RNN-based seq2seq
models with attention) and context-based models of human memory
(specifically the CMR model) exhibit strikingly similar architectural com-
ponents. To uncover this relationship, we review the historical develop-
ments of models in the two fields and highlight how two major
advancements in each field are analogous to each other. We also provide a
detailed mathematical mapping showing that the sequence-to-sequence
(seq2seq) architecture in neural machine translation corresponds to how
information is encoded and later accessed in human memory, and that the
attention mechanism corresponds to how humans reactivate prior mental
contexts. Identifying the convergence between the neural machine
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translation model and the context-based human memory model has two
important implications.

First, the convergence between the neural machine translation model
and the CMRmodel provides a deeper understanding of the functional role
of context in human memory. Despite the success of the CMR model in
explaining various behaviors in humanmemory17,19,20, we do not yet know if
there is a functional role in utilizing context to encode and retrieve infor-
mation. Does human memory rely on the use of context to maximize the
chance of retrieving the correct target information? A rational approach29,30

to address this question is to iterate through all possible architectures in
describing representations and processes of memory search and identify
which among them achieves optimal task performance. Though exhaus-
tively analyzing this vast architectural space in a single study is impractical,
we argue that the trajectory of model development in neural machine
translation follows exactly such an analysis, as the field explores the space of
architectures in search of those that optimize task performance. The con-
vergence between the development of theCMRmodel (driven by alignment
with human behavioral data) and the development of neural machine
translationmodels (driven by task performance) provides evidence that the
architectural assumptions specified in CMR serve an adaptive purpose. In
otherwords, itmay be rational for human cognition to organize and retrieve
information in this specific way using context, and alternative architectural
constraints could be less effective in serving the goal of thememory system.

Second, the convergence between the neural machine translation
model and the CMRmodel opens up alternative ways of modeling context
in human memory. Traditional cognitive models like CMR use mathema-
tical equations and a small set of parameters to describe how people search
their memories using context. These models are effective in describing
qualitative memory behaviors through parameter fitting, but are limited in
their ability to explain how different behavioral patterns emerge from the
process of learning and contribute to memory performance. By contrast,
neural network models offer such model flexibility, but often sacrifice
interpretability due to their numerous parameters and complex model
architectures. Identifying the parallels between architectural components in
a neural network model of machine translation and a mathematical model
of context memory lays the foundation for building a model that is both
flexible (being a neural network model) and interpretable (has connections
to known cognitive components). In this work, we implement such a neural
network model of machine translation as a cognitive model of human
memory search. We first demonstrate that a basic seq2seq model with
attention8 can capture and predict human recall patterns as effectively as
CMR in a free recall task. Next, we train our model in a reinforcement
learning framework to examine the emergent behavioral patterns during the
learning process and after task performance is optimized. Our results
indicate that the fully trained seq2seq model with attention aligns with the
behavioral patterns of optimal free recall, as produced by the rational ana-
lysis of the Context Maintenance and Retrieval model (rational-CMR31).
Furthermore, model evaluations conducted intermittently throughout the
model’s training exhibit similar recall characteristics as human participants
in terms of recency and temporal contiguity effects32–34.

While the above analyses aim to establish seq2seq models as an
alternative model of human memory search comparable to CMR, we
conduct modeling analyses to demonstrate the additional strengths of the
seq2seq model with attention. We examine the effect of working memory
capacity on recall strategies, as implemented as a change in the hidden state
dimension size of the seq2seq model. We show that reduced working
memory capacity requires a compensatory mechanism and a stronger
reliance on using context retrieved from episodic memory in order to
support memory performance. We also examine the role of episodic
memory through an ablation study of the attention mechanism, with the
goal of better understandingmemory deficiencies in hippocampal amnesia.
Prior research has linked medial temporal lobe (MTL) damage to an
inability to reinstate previously experienced contexts35–38. As we identify a
parallel between the attention mechanism in our seq2seq model and how
humans reactivate prior experienced contexts, ablation of the attention

mechanism should capture recall characteristics similar to those of patients
with hippocampal amnesia compared with healthy controls.

In the following sections of the paper, we first identify the convergence
of the seq2seqmodel with attention and the CMRmodel by reviewing their
historical developments and by providing a detailedmathematicalmapping
between their architectural components. Next, we implement a basic
seq2seqmodelwith attentionas a cognitivemodel ofhumanmemory search
as studied in a free recall task.Wedetail our evaluation results across a range
of model configurations, demonstrating the model’s ability to capture and
predict human free recall behavior, as well as providing insights into how
different model components interact and contribute to memory
performance.

Methods
Identifying parallels in historical developments
The sequence-to-sequence model architecture and early formula-
tions of human context models. We will start by reviewing the his-
torical developments of models in the two fields and highlight how two
major advancements in each field are analogous to each other, despite
their developments being driven by different forces (task performance in
machine translation and alignment with human data in cognitive sci-
ence). Early approaches in machine translation relied on more stringent
and limited rule-based methods to perform automated translation. The
oldest of approaches, rule-basedmethods, involve applying hand-crafted
linguistic rules that perform well in limited scenarios, but struggle to
extrapolate to the complexity and variability of natural language39. Sta-
tistical machine translation greatly improved the performance of rule-
based methods, leveraging word-based and later phrase-based statistical
methods drawing from large bodies of bilingual text40,41. These earlier
techniques were largely supplanted by neural network-based methods of
machine translation (termed neural machine translation) that displayed
unparalleled flexibility and spawned an entire subfield of research.
Despite the success of deep neural networks in a range of difficult pro-
blems such as speech recognition42 and visual object recognition43, early
development of neural network models, including recurrent neural
networks suitable for sequence modeling (RNNs44), can only be applied
to problems whose inputs and targets can be encoded in vectors of fixed
dimensionality. This poses a serious limitation in many tasks, such as
machine translation, that are expressed with sequences whose lengths are
not known in advance. The development of the sequence-to-sequence
(seq2seq) model was a milestone in neural machine translation, enabling
more effective handling of variable-length input and output sequences. In
these models, an encoder RNN maps a variable-length source sequence
(indicated in Fig. 1A) to a fixed-length context vector, hL, which is then
subsequently used by a decoder RNN to generate a variable-length target
sequence6,7.

The encoding and decoding processes found in seq2seqmodels closely
resemble how information is encoded and recalled in context-basedmodels
in human memory. Human memory search, when studied in a free recall
task, is also a sequence modeling task, where the input sequence is a list of
items presented and the output sequence is the list of items recalled (illu-
strated in Fig. 1B). Many behavioral findings in free recall literature can be
captured by a model where a contextual representation slowly drifts over
time and is associated with to-be-remembered experiences17,19,20. The con-
text at the end of the encoding period is carriedover to the recall period if the
delay or the distractor task between study and recall is minimal. During
recall, the contextual representation serves as a cue to drive a sequence of
recalls. Different than the development of machine translation models,
which has been driven by the need to perform well on the translation task,
the development of context-based models in human memory has been
drivenby theneed toaccount for behavioral patterns inhumandata and can
be traced back to Bower’s (1972) temporal contextmodel45,46. Sincememory
retrieval success is a function of context overlap between study and recall,
Bower’s temporal contextmodel can account for howwe forget by assuming
a context vector that drifts randomly and becomes more dissimilar over
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time. The model can also account for how one recognizes items studied on
different lists, as items within a given list will have more overlap in their
contexts. Bower’s formulation of context marks an important advancement
in the field and provides a foundation for more recent computational
models of human memory search17,19,20.

The attention mechanism and the context reinstatement mechan-
ism. The secondmajor advancement in neural machine translation is the
attention mechanism. Seq2seq models enabled the processing of
variable-length input sequences into fixed-length vectors6,7. However,
this approach initially struggled with long sentences, as the fixed-length
context vector limits the amount of contextual information that could
be embedded into the encoder’s output. To address this limitation,
the attentionmechanism8,9 allows themodel to focus on different parts of
the input sequence when generating each word in the target sequence.
Themechanism helps capture dependencies between distant wordsmore
effectively by giving the decoder RNN direct access to previous encoder
states during the decoding process. Each hidden state of the encoding
stage is assigned an attention weight by the mechanism and used to
inform each step of the decoding stage (as indicated in Fig. 1A). These
developments laid the foundation for more advanced architectures,
including the now ubiquitous Transformer model10–13.

We draw a parallel between the attention mechanism and the context
reinstatement mechanism in context-based models of human memory.

Early formulations of context saw context as a cue for items but did not
explicitly consider that items can alter context45,46. More recent computa-
tionalmodels of humanmemory search, such as theCMR19,20, a successor of
the Temporal Context Model17, introduced the idea that remembering an
item reinstates its original context at the time of encoding. As illustrated in
Fig. 1B, remembering the word “dog” calls back its original encoding con-
text, c1. This important addition to context-based models is driven by the
human recall pattern: items studied close to each other are likely to be
recalled together (temporal contiguity effect34). Themethod by whichCMR
reactivates previous encoding contexts is analogous to how an attention
mechanism can reactivate previous encoding hidden states. Once items tied
to the present context are depleted, context reinstatement enables a “jump
back in time” to earlier study contexts (akin to Tulving’s concept of mental
time travel47), providing additional retrieval cues to recall the remain-
ing items.

Deriving a detailed mathematical mapping
In addition to highlighting the parallels in their historical developments, in
this section, we provide a detailed mathematical mapping between the
architectural components of seq2seq models with attention and the CMR
model.As illustrated inFig. 2,we align the encoding anddecoding (or recall)
processes across both frameworks, detailing each step. Specifically,
Fig. 2A, C show the encoding phases for the seq2seq model and the CMR
model, respectively, while Fig. 2B, D depict their corresponding decoding

Fig. 1 | Illustrating the parallels between neural machine translation and human
memory search models. A A seq2seq model with attention begins machine trans-
lation tasks by encoding each word of the original sequence into its hidden state,
updated iteratively at each timestep, using its RNN encoder. In the decoding stage,
the decoder RNN receives the final hidden state from the encoding stage and gen-
erates a word in the target language. The attention mechanism gives the decoder
RNN direct access to each encoder’s hidden state at each decoding step. After each
word is translated, it is fed back into the decoder, alongwith its updated hidden state,

to iteratively generate a target sequence.BA context-based model of the human free
recall task begins with the model encoding each word of the presented list into its
latent context. During recall, participants try to recall as many of the words from the
list as possible in any order. This recall process is driven by the similarity between the
encoding and recall contexts, starting with the final context from the list presenta-
tion. Through the context reinstatement mechanism, the original encoding context
of a just-remembered item is reactivated, similar to how the attention mechanism
reactivates previous encoding hidden states.
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and recall phases.Wewill first describe eachmodel in detail, then derive the
mathematical mapping between them. Our model descriptions closely
follow (and are mathematically equivalent to) existing implementations of
seq2seq models with attention8 and CMR17,19,31, though the exact notation
has been slightly modified to facilitate easy visualization and alignment of
the two models.

Seq2seq model with attention
Encoding phase. The encoding phase of the seq2seq model, pictured in
Fig. 2A, is analogous to the study phase in a memory experiment, where
participants encode a list of items into an evolving mental context. Each
input item presented at timestep i is embedded into a dense vector xi 2
Rd using pre-trained embedding vectors (in our case, GloVe
embeddings48). The encoder RNN processes the sequence one item at a
time, updating its hidden state hi 2 Rd at each time step according to the
equation below:

hi ¼ ϕ Whxi þ Uhhi�1 þ bh
� � ð1Þ

In Eqn. (1),Wh and Uh are learned parameter matrices, bh is a learned bias
vector,ϕ is anon-linear activation function suchas tanh, sigmoid, etc., andhi
−1 is the hidden state from the previous timestep. In this process, the weight
matrix Uh controls the degree to which the previous hidden state hi−1 is

maintained in the current hidden state hi, while the weight matrix Wh

controls the degree to which the embedding of the newly presented item, xi,
is incorporated into the current hidden state.

In addition to updating the hidden state hi, the model also stores the
concatenation of all hidden states, H = [h1, h2, h3, …, hL] where L is
the number of steps/items during encoding. These statesH later inform the
decoding process to access the encoder states through the attention
mechanism.

Decoding Phase. The decoding phase, pictured in Fig. 2B, is initialized
with the final hidden state from the encoding phase, i.e., hL. During each
decoding step j (which we distinguish from encoding step i), the decoder
RNN receives the embedding xj 2 Rd of the just-recalled item from the
previous step j − 1, along with the previous hidden state hj�1 2 Rd :

hj ¼ ϕ Wh0xj þ Uh0hj�1 þ bh0
� �

ð2Þ

Eqn. (2) is identical to Eqn. (1) used in the encoding phase but employs
different parametersWh0 , Uh0 , and bh0 learned for the decoding phase.

During decoding, the attentionmechanism (shown in the green box in
Fig. 2B) gives the decoder access to all encoder hidden statesH via attention
weights. These attentionweights are obtainedby calculating a score function

Fig. 2 | Detailed mapping between components in the seq2seq model with
attention and those in the CMRModel.During the encoding phase, both the seq2seq
modelwith attention (A) and theCMRmodel (C)maintain an internal state (hidden state
hi or context vector ci) that combines input features of a presented item (fi) and the
previous encoding state (hi−1 or ci−1) at each step i. InCMR, twofixed parameters control
themixing of the previous encoding state and the new item embedding, while the seq2seq
model accomplishes the same task throughmore complexparametermatrices.During the
decoding or recall phase, both the seq2seqmodel with attention (B) and the CMRmodel
(D) use the current decoding state to drive the output of the next item. Importantly, the
decoding state that drives the next output, ĥj in the seq2seq model, contains three com-
ponents equivalent to those of cj in CMR: i) the hidden state or context state from the
previous decoding step (hj−1 or cj−1; red arrow), ii) an input embedding (fj−1) of themost

recently recalled item(black arrow), and iii) reactivatedhidden states or contexts states (αj)
from the encoding phase (green arrow). The attentionmechanism (indicated in the green
inset) of the seq2seqmodel computes an attention context vectorαj, which is calculated as
a sum of the encoding contexts weighted by the similarities between the current decoding
state hj and previous encoding states stored in H. This attention mechanism is mathe-
matically equivalent to the context reinstatement mechanism in CMR, also denoted here
as αj, by applying the activation strength of the previous recall step aj−1 to the previous
encoding contexts stored inMFC

exp . The seq2seqmodelwith attentionusesGatedRecurrent
Units6 and the Luong attention mechanism8, and the CMR model follows implementa-
tions in the previous work17,19,31. Color coding highlights the functional correspondence
between components in the two models.
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between the current decoder hidden state hj and each hidden state hi from
the encoding stage.Weuse the dot product as the score function as specified
in Luong attention8 to avoid introducing additional parameters. After cal-
culating scores for each encoder hidden state, the softmax operation is
applied to obtain the attention weights w as shown below:

wi
j ¼

exp h>j hi
� �

PL
i¼1 exp h>j hi

� � ð3Þ

where h>j hi is the dot product, i.e., the similarity between the current
decoder hidden state j and an encoder hidden state hi. The attention weight
wi
j refers to how much attention the model should pay to each encoder

hidden state hi relative to all other encoding states at the decoding step j,
which represents the importance of the encoder hidden statehi to producing
the output at the decoding step j.

Once the attention weights have been computed, the overall attention
context vector (αj) is obtained via a weighted sum of encoder states:

αj ¼
XL
i¼1

wi
jhi 2 Rd ð4Þ

Before anoutput is generated, afinal hidden state vector ĥj is formedby
combining the decoder hidden state and the attention context through a
dense, mixing layer:

ĥj ¼ tanh Wc hj; αj
h i� �

ð5Þ

Here, Wc 2 Rdx2d are the learned parameters of the mixing layer, while
[hj; αj] is the concatenation of the current decoder hidden state hj and the
attention context vector αj.

An output, fj, is generated at the decoding step j based on an output/
retrieval rule ψ in conjunction with the final hidden state ĥj:

f j ¼ ψðĥjÞ 2 RN ð6Þ

where f j 2 RN is a one-hot column vector that is all zeros except at the
position representing the item’s identity, and N is the total number of
possible items in the experiment.

CMR model
Encoding phase. During the encoding phase in the free recall task
(pictured in Fig. 2C), participants study a list of L items one after another
(drawn from a total number ofN possible items in the experimental word
pool). The CMR model proposes that their context slowly drifts towards
the memory representations of recently encountered experiences. The
state of the context at time step ci 2 RN is given by:

ci ¼ ρ ci�1 þ β xi ð7Þ

where xi 2 RN is the retrieved context (or input embeddings) of the just-
encoded item,β∈ [0, 1] is a parameter determining the rate atwhichcontext
drifts toward the new context, and ρ is a scalar ensuring ∣∣ci∣∣ = 1. The
retrieved context xi is further expressed as:

xi ¼ MFC
pref i ð8Þ

where MFC
pre 2 RN ×N represents item-to-context associations that existed

prior to the experiment (initialized as an identity matrix, under the
simplifying assumption that an item is only associated with its own
context19), and f i 2 RN is a one-hot column vector that is all zeros except at
the position that represents an item’s identity. Therefore, MFC

pref i is the
context previously associated with the presented item at encoding step i,
which is simply fi.

In addition to updating the context ci, CMR forms associations
between items and the evolving context throughout the encoding phase to
capture new learning in the experiment – through experimental item-to-
context and context-to-item associations held in MFC

exp 2 RN ×N and
MCF

exp 2 RN ×N . These matrices will be useful later in the recall phase to
reactivate the corresponding encoding context of a given item (MFC

exp) or to
retrieve an itemcorresponding toagiven context (MCF

exp). Theyare initialized
to zero at the start of the experiment and are updated via theHebbian outer-
product learning rule. Specifically, when an item is encoded at timestep i, an
association is formed between the previous context state ci−1 and the pre-
sented item fi:

ΔMFC
exp ¼ ci�1f

>
i ð9Þ

Similarly, the association from context to item,MCF
exp, is updated according

to:

ΔMCF
exp ¼ f ic

>
i�1 ð10Þ

Following equations (9) and (10), after all L items in a list have been
studied, the final experimental association matrices before the start of the
recall phase can be written as:

MFC
exp ¼

XL
i¼1

ci�1f
>
i ð11Þ

MCF
exp ¼

XL
i¼1

f ic
>
i�1 ð12Þ

Together, Eqns. (7), (11) and (12) captures how CMR embeds each
item into a gradually drifting context space, binding together items
encountered close together in time and allowing the model to capture the
temporal contiguity effects observed in free recall34. To illustrateMFC

exp and
MCF

exp defined in Eqns. (11) and (12) with an example, consider a short list of
L = 3 items during encoding f >1 ¼ ½0; 1; 0; . . .�, f >2 ¼ ½1; 0; 0; . . .� and
f >3 ¼ ½0; 0; 1; . . .�, which are associated through Hebbian learning with
contexts at the preceding step c0, c1 and c2 respectively (c0 denotes the
context vector prior to any encoding). After all L items in the list are
encoded, the resulting association matrices take the following form
MFC

exp ¼ ½c1; c0; c2; . . . �, where each context vector is stored in the column
corresponding to the encoded item’s identity. Similarly, the context-to-item
associationmatrix is given byMCF

exp ¼ ½ c>1 ; c>0 ; c>2 ; . . . �, where each context
vector is stored in the row corresponding to the encoded item’s identity.

Recall phase. The recall phase of CMR, pictured in Fig. 2D, begins with
the final context vector carried over from the encoding phase. On each
recall step j, the context vector cj is updated to reflect both the influence
from the just-recalled item fj−1 (controlled by β0) and the context from
the previous timestep cj−1 (controlled by ρ0), similarly to how context
drifts during the encoding phase in Eqn. (7):

cj ¼ ρ0cj�1 þ β0 ð1� γFCÞxj þ γFCαj

h i
ð13Þ

However, different than the encoding phase, the reactivated context
from the just-recalled item fj−1 comprises not only its pre-experimental
context xj ¼ MFC

pref j�1 (i.e., input embeddings, black arrow in Fig. 2D),
similarly to Eqn. (8), but also the experimental context αj (green arrow in
Fig. 2D) which is given by:

αj ¼ MFC
expf j�1 ð14Þ

The experimental context αj retrieves the context associated with
the item fj−1 during encoding through applying the experimental item-to-
context associations MFC

exp. The extent of retrieving an item’s
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pre-experimental context xj versus experimental context αj, as shown in
Eqn. (13), is determined by a parameter, γFC ∈ [0, 1].

To determine which item fj is to be retrieved at timestep j, CMR
examines how much the current context cj matches with all items’ experi-
mental contexts, as stored in rows ofMCF

exp ¼
PL

i¼1f ic
>
i�1 (Eqn. (12)):

aj ¼ MCF
expcj ¼

XL
i¼1

f ic
>
i�1

 !
cj ¼

XL
i¼1

f iðc>i�1cjÞ ð15Þ

Here, aj 2 RN is the activation strength, where each element reflects the
similarity between the context at which item i was encoded, ci−1, and the
present context cj during recall. Intuitively, items whose original encoding
context more closely matches the current context are more likely to be
recalled. Items that did not appear during the encoding phase have zero
activation strengths.

To translate the activation strength aj into recall probabilities, the
model applies a softmax function over the subset of elements in aj corre-
sponding to items that appeared during the encoding phase. The probability
of recalling the item from the encoding step i, fi, at recall step j is given by:

Pð f j ¼ f iÞ ¼
exp k c>i�1cj
h i

PL
i0¼1 exp k c>i0�1cj

h i ð16Þ

Here, k is a parameter that determines the amount of noise present in
the retrieval process, where a higher value of k favors amore noiseless recall
and a higher chance of retrieving the item with the strongest activation.
Finally, the recalled item at timestep j, fj, is sampled from a multinoulli
distribution whose probabilities for possible outcomes are specified in
Eqn. (16).

Putting everything together: mapping the seq2seq model with
attention to CMR
Encoding phase. Both the encoding and decoding/recall phases of the
seq2seqmodel with attention and CMR exhibit deep functional parallels.
The correspondence between the two models during the encoding phase
can be easily seen from Eqn. (1) and Eqn. (7). During each step of the
encoding phase, both models update their current hidden state hi or
context state ci by taking in an input embedding, xi, that incorporates pre-
experimental information of the presented item fi, which is then com-
bined with the hidden state hi−1 or context state ci−1 from the previous
encoding step. In CMR, two parameters, ρ and β, control the mixing of
the previous context and the new item embedding, while the seq2seq
model accomplishes the same task through more complex parameter
matrices Wh and Uh together with the bias vector bh and the activation
function ϕ.

Decoding/recall phase. Compared with the encoding phase, the par-
allels between the seq2seqmodel andCMR for the decoding phase are less
straightforward and require additional derivations, which we will
demonstrate in detail below. The key function during the decoding phase
for bothmodels is to generate an output or recall at each timestep j.While
the seq2seqmodel with attention uses the hidden state ĥj to determine the
output item fj (as shown in Eqn. (6) and Fig. 2B), the CMRmodel utilizes
its context state cj to determine the recalled item fj (as shown in Eqn. (16)
and Fig. 2D). Our primary goal here is to demonstrate the correspon-
dence in the decoding phase between these two models, specifically by
showing that ĥj in the seq2seq model contains components equivalent to
those of cj in CMR.

Combining Eqn. (1) and Eqn. (5), ĥj in the seq2seq model with
attention can be written as:

ĥj ¼ tanh Wc ϕ Wh0xj þ Uh0hj�1 þ bh0
� �

; αj

h i� �
ð17Þ

According to Eqn. (13), cj in CMR is given by:

cj ¼ ρ0cj�1 þ β0 ð1� γFCÞxj þ γFCαj

h i
ð18Þ

Examining Eqn. (17) and Eqn. (18), it is clear that both ĥj and cj share
two common components: the hidden state or context state from the pre-
vious decoding step (hj−1 or cj−1) and an input embedding (xj) of the most
recently recalled item. Crucially, cj and ĥj also incorporate a third compo-
nent, αj, which are reactivated hidden states or contexts from the encoding
phase. For the remainder of the derivation, we will show that these reacti-
vated hidden states αRNNj (from the seq2seq model’s attention mechanism)
are equivalent to the reactivated contexts αCMR

j (from the CMR model’s
context reinstatement mechanism).

Combining Eqn. (11) and Eqn. (14), we can write the reactivated
context in CMR as:

αCMR
j ¼ MFC

expf j�1 ¼
XL
i¼1

ci�1f
>
i

 !
f j�1 ð19Þ

Under the condition that the most recently recalled item at the
decoding step j−1 is the itemstudied at the encoding step i, i.e., fj−1 = fi, Eqn.
(19) can be written as:

αCMR
j ¼

XL
i¼1

ci�1f
>
i

 !
f i ¼ ci�1 if f j�1 ¼ f i ð20Þ

Since item recall is probabilistic, the identity of the just-recalled item
fj−1 is drawn from the distributiondefinedby the previous context state cj−1,
which can be written as (following Eqn. (16)):

Pðf j�1 ¼ f iÞ ¼
exp k c>i�1cj�1

h i
PL

i0¼1 exp k c>i0�1cj�1

h i ð21Þ

With Eqn. (20) and Eqn. (21), we can now write the expected value of
αCMR
j as below,

E αCMR
j

h i
¼
XL
i¼1

exp kc>i�1cj�1

� �
PL

i0¼1 exp kc>i0�1cj�1

� � ci�1 ð22Þ

The expected value of context reinstatement in CMR, E½αCMR
j �, is

directly analogous to the attention context vector in the seq2seq model.
Combining Eqn. (3) and Eqn. (4), we can write αRNNj in the seq2seq model
as:

αRNNj ¼
XL
i¼1

wi
jhi ¼

XL
i¼1

exp h>j hi
� �

PL
i0¼1 exp h>j hi0

� � hi ¼XL
i¼1

exp h>i hj
� �

PL
i0¼1 exp h>i0 hj

� � hi
ð23Þ

Examining Eqn. (22) against Eqn. (23), we can establish that the
seq2seq model’s attention mechanism is equivalent to the CMR model’s
context reinstatement mechanism, i.e., E½αCMR

j � � αRNNj . Intuitively, both
models use a current decoding state (hj or cj−1) as a probe to reactivate a
weighted averageof states from the encodingphase basedon their similarity.
The retrieved encoding states allow themodel to access relevant information
in the past to guide the generation of the next item.While we only examined
Luong attention in this derivation, alternative implementations of attention9

are analogous to Luong attention but with a different score function to
quantify similarity. This concludes our proof for the decoding phase, where
we demonstrate that what drives the next recall, ĥj in the seq2seqmodel and
cj in CMR, contains equivalent components as specified in Eqn. (17) and
Eqn. (18).
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Implementing a seq2seq model with attention as a cognitive
model of human memory search
Having established the historical parallels and provided a detailed mathe-
matical mapping between the seq2seq model with attention and CMR, we
can now leverage their convergence to explore alternative ways to model
human memory. For the proposed seq2seq model with attention, we use
gated recurrent units (GRUs) due to their simplified structure6. Themodel’s
output/retrieval rule, as described in Eqn. (6), is specified to align closely
with the retrieval rule in CMR, where an item's recall probability depends
on the match between the current context and the item’s study context (see
SupplementaryMethods section S1.1.).We begin by exploring the potential
of the seq2seq model as a predictor of individual recall behavior and
compare its explanation and predictive abilities to those of CMR. The
analyses outlined in this study were not pre-registered. The analysis of
secondary datasets in this study complied with all ethical regulations of
Rutgers University.

Explain and predict individual participant behavior. For individual
participant fitting, each participant’s set of presentation-recall pairs was
partitioned into training (90%), validation (5%), and test (5%) splits. Data
splitting was performed randomly, ensuring that no presented list
appeared in more than one subset. Seq2seq models with attention and a
hidden dimension size of 128 were trained on the training set, with
generalization loss evaluated on the validation set and final performance
reported on the held-out test set. This individual fitting training was
performed using a standard cross-entropy loss due to the order of recall
being necessary to capture the recall characteristics of each participant.
For this supervised training, each model is trained using the Adam
optimizer with a learning rate of 0.001, β1 = 0.9, and β2 = 0.999. Training
was performed using mini-batches of size 32 with an early stopping
patience of 5 epochs, allowing each model to train for an unspecified
number of epochs required until validation loss failed to improve for 5
epochs. No dropout or gradient clipping was used in training across any
of the experiments. Training and validation loss curves indicated con-
vergence of individual participant models. For comparison, a CMR
model was fit using Bayesian optimization49 for a total of 300 optimiza-
tion iterations on each participant’s training and validation splits. This
method optimizes CMR parameters by minimizing the root-mean-
square error between human and model-generated recall patterns (i.e.,
the serial position curve, the probability of first recall, and the conditional
response probability). To ensure each pattern contributed equally to the
optimization objective, we applied min-max scaling to normalize the
RMSE of each curve type before aggregating. The final evaluation results
of the seq2seq model and CMR model are shown for the test split with
respect to each participant. Additional model details can be found in the
Supplementary Methods section S1.1.

Optimal free recall behavior. In addition to evaluating the model’s
ability to explain and predict individual participant recall data, we train
themodel directly on the free recall task, rather than fitting to participant
recalls, and examine its optimal recall behavior. The model training
procedure is posed as a reinforcement learning problem, in which an
agent is presentedwith a list of words, and then expected to recall asmany
items as possible from this list when prompted with a start-of-sequence
token and terminate its own recall by the prediction of an end-of-
sequence token. During the training, random lists are continuously
generated for each episode, ensuring that the model is given exposure to
every word appearing in the vocabulary. We use the proximal policy
optimization (PPO) algorithm50 to obtain the optimal policy. For the
PPOalgorithm, the entropy coefficient was set to 0.01, the discount factor
was 0.99, and the PPO clip coefficient was 0.2. The reward structure
during the model training is as follows:+1 for each correct recall,−1 for
each incorrect recall, and −0.5 for repeating a previously correctly
recalled word. Training consisted of 50,000 iterations, each performed on
a batch of 4 episodes, where each episode represented the presentation

and recall of a single list. Additional model training details can be found
in the Supplementary Methods section S1.2.

For evaluation, all model configurations are evaluated on 10,000 ran-
domly generated sequences, and the resulting recalled lists are analyzed along
the standard free recall metrics: the serial position curve, the probability of
first recall, and the conditional response probability. To test the ability of our
model to predict human data in patients with medial temporal lobe amnesia
and healthy controls36, we train two distinct configurations of the free recall
model: the standard model as described and a model with the attention
mechanism removed. In addition, we evaluate the effects of hidden dimen-
sion size, analogous to workingmemory capacity, by training and evaluating
seq2seq models with different hidden dimension sizes: 32, 64, and 128.

Pennelectrophysiology of encoding and retrieval study. For allmodel
training and behavior comparisons with CMR and human participants, we
use data from the Penn Electrophysiology of Encoding and Retrieval Study
(PEERS)51. Our behavior comparisons focused on behavioral data from 171
young adults between the ages of 18 and 30 who completed Experiment 1 of
the PEERS dataset, which consisted of an immediate free recall task. Infor-
mation regarding gender and race could not be found in the original study.
Each individual underwent one practice session followed by six experimental
sessions, each containing 16-word lists. Only data from the experimental
sessions were included in our training and evaluation data. Each word list
consisted of 16 words and was immediately followed by a free recall test.
Words were presented on-screen either with an associated encoding task—
requiringa size judgmentor ananimacy judgment—orwithout anyencoding
task. The experiment included three types of word lists: no-task lists, single-
task lists, and task-shift lists. In order to control for ordering effects, the
sequence of lists and tasks was counterbalanced across sessions and partici-
pants.Wordsweredisplayed for3000milliseconds each, followedbya jittered
inter-stimulus interval randomly selected between 800 and 1200 milli-
seconds. If a word was linked to an encoding task, participants responded by
pressing a key. After the final wordwas presented and a jittered delay of 1200
to 1400 milliseconds elapsed, participants had 75 seconds to recall as many
words as possible from the just-presented list.

Medial temporal lobe amnesia and temporal context study. For our
ablation study of the attention mechanism, we compare the recall char-
acteristics of ourmodel without attention to those of patients withmedial
temporal lobe (MTL) amnesia36. In this experiment, the effect of MTL
lesions on temporal context memory was studied using a looped-list free
recall task design. This experiment sought to assess episodic memory
impairments by presenting participants with 12-word lists, each con-
taining ten high-frequency, high-concreteness nouns. These lists were
repeated four times in a looped sequence to reinforce the temporal
relationships between words. After each list, participants were asked to
recall thewords in any order immediately following the presentation. The
study included ten patients with MTL damage and 16 healthy controls
matched for age and education level. Information regarding gender and
race could not be found in the original study. Each participant underwent
three sessions, during which they were randomly assigned 9 of the 12-
word lists, with the order of lists randomized both within and across
sessions. During the task, each word was presented for 1200 ms, followed
by a 1600 ms inter-trial interval, and participants were instructed to recall
the words immediately after each list cycle. Their recall was recorded by
the experimenter, noting the order, repetitions, and any intrusions
(words not on the list).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
The following section details analyses of the seq2seq model’s behavioral
patterns compared to those of CMR and human recalls. We begin by
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analyzing the potential of these models to predict individual human recall
behavior based on three sets of recall patterns: 1) how well on average
the model or participant retrieves items for each position in the study
list (the serial position curve), 2) where the model initiates its recall from
(theprobability of thefirst recall, and3) how likely it is to recall items studied
consecutively in the study list (the conditional response probability, com-
puted by dividing the number of times a transition of that lag is actually
made by the number of times it could have beenmade33). Next, we examine
behavioral patterns of the fully optimized seq2seq models as well as beha-
vioral patterns exhibited throughout the training process. Then, we explore
the impact of changing hidden dimension size, drawing a parallel between
the hidden dimension and working memory capacity in human partici-
pants. Finally, an ablation study is conducted to assess the impact of
removing the attention mechanism, and we compare the resulting model
deficits and memory impairments observed in medial temporal lobe
patients with amnesia.

The seq2seq model can explain and predict recall behavior in
memory search comparably to the CMRmodel
We begin by exploring the potential of the seq2seq model as a predictor of
individual recall behavior and compare its explanationandpredictive abilities
to those of CMR. In order to assess the predictive ability of the two models,
both CMR and the seq2seq model (128-Dim. with attention mechanism)

were fit to a training split of each participant’s recall data (rather than
aggregated data across all participants) and then evaluated on a hold-out test
set from the same participant. For theCMRmodel,fitting is accomplished by
optimizing CMR parameters using Bayesian optimization to minimize the
root-mean-square error between model-generated and human behavioral
patterns. The seq2seq model is fit to human data using human participant-
presented lists asmodel input andhumanparticipant recalled lists as ground-
truth with a standard cross-entropy loss as the objective function52.
Figure 3A–C depict the behavior patterns of the first 12 participants (for
illustrative purposes) of the 171 participants taken from the PEERS dataset
withbothfittedCMRandseq2seqmodelsoverlaid.Additionally,we showthe
average recall behavioral patterns for all 171 participants in Fig. 3D–F.While
both CMR and the seq2seq model have qualitatively good fits to the human
recall data, we compare their model fit quality in terms of the root-mean
square error between the human recall behavior and corresponding model
recall behavior across all 171 participants (Fig. 3G–I).We performed a series
of two-sided Wilcoxon signed-rank tests to compare each pair of distribu-
tions for the root-mean-square-error fit for both CMR and the seq2seq
model. We find that the seq2seq model fits the corresponding human data
curve with significantly smaller error for the serial position effects (Wilcoxon
signed-rank test: two-sided,W = 0.0, n= 171, p = 8.2 × 10−30, ranked biserial
correlation =−0.995), the probability of first recall (Wilcoxon signed-rank
test: two-sided, W = 2880.0, n= 171, p = 5.23 × 10−12, ranked biserial

Fig. 3 | Behavioral patterns for individual participants and themodel predictions.
A–C Behavioral patterns for the first 12 participants out of 171 participants,
reproduced from Experiment 1 of the PEERS free recall dataset51, overlaid with
behavioral patterns of the CMRmodel and the seq2seqmodel with attention, trained
over a separate subset of the same individual participant data. The behavioral pat-
terns include (A) the serial position curve, (B) the probability of the first recall, and
(C) the conditional response probability.D–FAggregated behavioral patterns for all

171 participants overlaid with aggregated CMR and seq2seq model behavioral
patterns. Model fits are quantitatively evaluated regarding the root-mean-square
error between the human behavioral patterns of the 171 participants and model
predictions over (G) the serial position curve, (H) the probability of the first recall,
and (I) the conditional response probability. Both Seq2Seq and CMR model fitting
analyses are for N = 171 participants.
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correlation =− 0.608), and the conditional response probability (Wilcoxon
signed-rank test: two-sided, W = 3822.0, n= 171, p = 5.51 × 10−8, ranked
biserial correlation =−0.480). These results are not affected by different
methods of conducting the training and testing splits (see Supplementary
Discussion S2.2). When the amount of training data is reduced, however,
CMR is shown to give better predictions, highlighting a trade-off between
model flexibility and data efficiency (see Supplementary Discussion S2.3).
Together, these results support that the seq2seq model with attention can
capture human recall patterns as effectively as CMR. This ability to capture
human recall patterns is not a result of the neural networkmodel being over-
parameterized, as the trainedmodelwas able to predict behavioral patterns in
the unseen portion of the recall data.

The optimized seq2seq model demonstrates the same recall
behavior as the optimal policy of the CMRmodel
Past cognitive modeling work with CMR has demonstrated that not only
could it capture averaged humanbehavioral patterns (through fittingmodel
parameters to human data19,20), but it can explain why some individuals
achieve better memory performance than others in the free recall task by
analyzing how well their behavior aligns with an optimal policy of CMR
(rational-CMR31). When the free recall behavior is optimized under the
architectural constraints of the CMR model, the optimal policy begins by
recalling from the beginning of the list and sequentially recalling forwards
despite no constraint placed on the order of recall (Fig. 4B). Intuitively,
recalling items in a list in the same order they are studied helpsminimize the
odds that an item will be inadvertently skipped. However, this optimal
behavior is non-trivial because the end-of-list context is readily available at
the start of recall, whereas reactivating the beginning-of-list context
necessitates a potentially costly context shift to early items of the list.Why is

it necessary to start recalling from the beginning and recall forward, rather
than from the end and then recall backward? In CMR, each item is encoded
along a gradually drifting internal context. During recall, retrieving an item
brings back the context from when that item was originally studied, which
then serves to cue recall of other items.During this process, there is a reliable
way to proceed forward (by reinstating the pre-experimental context
associatedwith the item), but there is not a reliableway to proceedbackward
—the only way to promote backward transitions is to reinstate the experi-
mental context associated with the item at study, which is equally likely to
propel recall forward and backward. As a result, it yields better performance
when initiating the recall from the beginning of the list and then recalling
forwards31. Figure 4A–Cshows that,whenour seq2seqmodelwith attention
(dark green) is trained to optimize recall performance using reinforcement
learning, it demonstrated the same behavior as the optimal policy of CMR
(orange; Fig. 4A–Creproduced fromZhanget al.31).Weadditionally plot the
actor and critic losses along with the mean episode reward across training
(Fig. 4J–L) todemonstrate convergence of the seq2seqmodelwith attention.
Both models achieve near-optimal performance (Fig. 4A), with a near
certainty of starting recall at the beginning of the sequence (Fig. 4B) and
making a forward recall transition to the next serial position at lag +1
(Fig. 4C). These simulations provide evidence that the seq2seq model with
attention shares similar architectural constraints as those of CMR, giving
rise to optimal behavior aligned with that of the optimized CMR.

The intermediate training evaluations of the seq2seq model
exhibit similar qualitative patterns as are typically observed in
human participants
Only a small proportion of top-performing human participants can
demonstrate the exact behavior of the optimal policy31. Averaged human

Fig. 4 | Optimized and intermediate training of the Seq2Seq model with atten-
tion.The fully optimized seq2seqmodel with attention (128-Dim) shows behavioral
patterns that closely align with those of the rational-CMRmodel across three sets of
free recall patterns: serial position curve (A), probability of first recall (B), and
conditional response probability (C). Rational-CMR results are reproduced from
Zhang et al.31. D–F Recall characteristics are evaluated for intermediate epochs of
training and compared qualitatively to the average participant recall from the PEERS
dataset (N = 171). Intermediate model results exhibit recency effects and backward

contiguity effects that are typical in human behavioral patterns. G–I The same
results are plotted along the dimension of training epochs, summarizing the model’s
tendency to initiate recall from the end (the last three items of the list;G), to initiate
recall from the beginning of the list (the first three items of the list;H), and to recall
items in the backward direction (conditional response probability with −1 lag; I).
J–LActor and critic loss curves exhibit a consistent decrease over time, and themean
episode reward converges toward the maximum possible recall reward of 14 for our
experiments. 5000 training steps correspond to 1 training epoch.
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recall behavior in free recall experiments (dashed line in Fig. 4D–F; repro-
duced fromKahana et al.51) also exhibits recency (enhanced end-of-list recall)
and backward contiguity (tendency toward shorter than longer backward
lags), in addition to what is amplified in the optimal behavior with primacy
(enhanced beginning-of-list recall) and forward contiguity (tendency toward
shorter than longer forward lags). To assess sub-optimal model behavior, we
evaluate the recall behavior of several intermediate checkpoints taken of the
model throughout theoptimizationprocess (Fig. 4D–F).Characterizing these
intermediate training stagesprovides insight intohowrecall strategies emerge
and change as the model learns. We show that while the fully optimized
seq2seqmodel with attention demonstrates the same behavior as the optimal
policy of CMR, exhibiting both primacy and forward contiguity (Fig. 4A–C),
intermediate training evaluations of the model (lighter green lines) exhibit
recency (higher recall probability at the end of list in Fig. 4D in early Epochs
0–2) and backward contiguity (positive transition probabilities at negative
lags in Fig. 4F) similar to those observed in averaged human recall behavior.
As training progresses, the model quickly loses recency and backward con-
tiguity, increasingly depending on forward recalls that initiate recall from the
beginning of the sequence. This trend is made more evident in Fig. 4G–I,
which displays the change in the model’s tendency to initiate recall from the
end (the last three items of the list; Fig. 4G), to initiate recall from the
beginning of the list (the first three items of the list; Fig. 4H), and to recall
items in the backward direction (conditional response probabilitywith -1 lag;
Fig. 4I). Althoughmodel behavior during intermediate training evaluations is
partially influenced by model initialization, we find that patterns such as
recency and backward contiguity reliably appear across training runs and
initializations, suggesting that these are stable features rather than idiosyn-
cratic fluctuations.

The seq2seq model provides insight into how working memory
capacity affects optimal recall strategies
While the findings above support seq2seq models as alternative models of
human free recall, for the remaining analyses in the Results section, we
conduct modeling analyses to highlight the additional strengths of the
seq2seq model. Critical to the recall performance for both CMR and
the seq2seq model with attention is the ability to initiate recall from the
beginning of the list, i.e., the primacy effect.While CMRallows direct access
to the beginning of the list during recall without an explicit mechanism, the
seq2seq model with attention model provides additional insight into how
the primacy effect emerges during learning. To illuminate the underlying
learning process, we analyzed how the attention mechanism evolves across
training epochs. The attention weights represent the relative importance
placed on each encoding context at each step of the decoding process, as
defined in Eqn (3). These weights are visualized at various stages of training
as a heat map (Fig. 5) representing the attention weight between each
decoder hidden state (x-axis) and encoder hidden state (y-axis), averaged
across all training trials. Figure 5 depicts these averaged heat maps for
models with different hidden dimension sizes.When the hidden dimension
is small (32 in Fig. 5A), primacy is achieved through the attention
mechanism itself. The attention heat-map at Epoch-0 demonstrates that at
the beginning of the recall, only the context of the later list items of the input
sequence is readily available, as attention is distributed across the secondhalf
of the input sequence before recalling the first item of the output sequence.
With each successive epoch of optimization, the attention heat-map shifts
toward theoptimal behavior,wheremost attention is placedon thefirst item
of the input sequence at the beginning of recall (Fig. 5A, Epoch 5 and
Optimized). Recalling the first item in the input sequence subsequently

Fig. 5 | The effect of working memory capacity (hidden dimension size) on
optimal recall behavior. A–C Heat maps illustrating the evolution of attention
weights for seq2seq models with varying hidden dimension sizes across training
epochs. Attention weights are averaged across all trials and indicate the influence of
each encoded item (y-axis) on each decoding step (x-axis) during recall. A With a
small hidden dimension size (32-Dim.), attention shifts over epochs toward the
beginning of the input sequence, supporting the primacy effect through attention
alone and enabling sequential forward recall from the beginning of the list.

BAttention results with 64-Dim. hidden dimension size show similar results to those
of the 32-Dim. model, but more quickly approaching sequential forward recall and
showingweaker attentionweights in the fully optimized stage.CWith a large hidden
dimension size (128-Dim.), attention for the first item consistently favors the last
encoded item, suggesting that primacy is achieved not via attention shifts but by
retaining the list start within the model’s hidden state (analogous to working
memory).
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activates the attention on the next item in the input sequence, forming a
diagonal pattern that characterizes recalling items sequentially forward.

Next, we use differences in hidden dimension size tomodel differences
in working memory capacity. This view of working memory is consistent
with previous modeling work in which recurrent neural activity is used to
model active maintenance and integration of information2,53 and work in
which capacity is affected by the number of hidden units in the recurrent
neural networks54. Larger hidden dimension sizes allow more information
to be held in the hidden state, though this only provides a relativemeasure of
working memory—hidden dimension size does not directly translate to a
specific number of items that can be held in working memory in human
participants. We hypothesize that an increase in the model’s working
memory capacity (as modeled by hidden dimension size) reduces the
model’s need to obtain primacy through the attention mechanism. Indeed,
we observed that when the hidden dimension is large (128 in Fig. 5C), only
the last item of the input sequence is available at the beginning of recall, and
this pattern does not change even after epochs of optimization (Fig. 5C,
Optimized). Theobservation that themodelwith ahiddendimension sizeof
128 can still initiate recall from thebeginningof the input sequence indicates
that primacy is not obtained through the attentionmechanism but through
maintaining the item in the hidden state itself, enabled by a larger working
memory capacity.While there is alignment in the optimal behavior of CMR
and the seq2seq model with attention, visualizing attention weights across
intermediate stages of training in the seq2seq model with attention offers
additional insights into how the optimal behavior is achieved.

An ablation study of the attention mechanism provides insight
into the performance difference between patients with amnesia
and healthy controls
Medial temporal lobe (MTL) lesions have been previously associated with
the inability to reinstate prior experienced contexts35–38, mechanistically

corresponding to the context reinstatement mechanism in CMR.
Figure 6A–C depict recall patterns for patients with MTL amnesia and
healthy controls, reproduced from Palombo et al36. In addition to the dif-
ference in recall probability between patients with amnesia and healthy
controls (Fig. 6A), patients with amnesia also lack the ability to “jump back
in time” and therefore display a greatly reducedbackward contiguity relative
to healthy controls (lower−1 lag in 6C), consistent with CMR’s predictions
when the ability to reinstate the original study contexts is impaired. As we
hypothesized that the attention mechanism in our seq2seq model is ana-
logous to context reinstatement inCMR,we carried out an ablation study of
the attentionmodule to examine ifmodelswith andwithout attention,when
trained to optimize recall performance, could capture the key behavioral
differences in the healthy controls and patients with amnesia, respectively.
Results of this ablation are displayed in Fig. 6D–F, alongside themodel with
attention,where bothmodels are trainedwith ahiddendimension size of 64.
We found similar results with the human data in the recall performance,
where the attention model can recall more information than the no-
attentionmodel after being fully optimized (Fig. 6D). Moreover, the lack of
the attention mechanism in Fig. 6F largely eliminates the model’s capacity
for backward contiguity (at any stage of training) compared to the attention
model, where backward contiguity is observed in early iterations of training.
Additionalmodel simulations (see SupplementaryDiscussion S2.1) provide
evidence that these behavioral differences are due to the presence of the
attentionmechanism rather than simply due to the attentionmodel having
more parameters. These ablation results support the idea that the attention
mechanism in the seq2seqmodel is analogous to the context reinstatement
mechanism inCMR(whichhaspreviously been linkedwithMTLdamage36)
and contribute to memory performance during free recall. Importantly, the
differences in recall performance and backward contiguity between atten-
tion andno-attentionmodels donot come fromdirectfitting to humandata
but emerge during the process of optimizing performance, revealing the

Fig. 6 | Comparing optimized model behavior under ablation of the attention
mechanism with recall behavior of medial temporal lobe (MTL) patients with
amnesia. A–C Behavioral patterns of patients with MTL amnesia (N = 10) com-
pared to healthy controls (N = 16), demonstrating memory deficits on a free recall
task, reproduced fromPalombo et al.36. Despite the small list size, patients withMTL
amnesia exhibit diminished recall performance and reduced ability to perform
backward recall transitions (conditional response probability at −1 lag).
D–F Behavioral patterns of the seq2seq model with and without attention (hidden

dimension size 64), optimized or during intermediate training. The model without
attention exhibits diminished recall performance and reduced ability to perform
backward recall transitions (no backward contiguity at any stage of training as seen
from the conditional response probability at −1 lag). G, H Behavioral patterns of
models of varying hidden dimension sizes with and without attention. Models
without attention can achieve the optimal recall behavior but require sufficiently
large hidden dimensions. (N = 13 for each dimension size evaluation).
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functional role of the attention mechanism in contributing to memory
performance.

To further understand the role of the attention mechanism in con-
tributing to the performance difference between healthy controls and
patients with amnesia, we examine the effect of hidden dimension size.
Figure 6G, H show evaluation results for each configuration with respect to
hidden dimension size and the presence of the attention mechanism after
full optimization. Figure 6G shows that the attention model exhibits higher
recall probability than the no-attention model when the models’ hidden
dimensions are small (32Dim:Wilcoxon signed-rank test,W = 91.0,n = 13,
p = 1.22 × 10−4, ranked biserial correlation = 0.986, one-sided; 64 Dim:
W = 91.0, n = 13, p = 1.22 × 10−4, ranked biserial correlation = 0.993, one-
sided), but notwhen the hidden dimension size is large (128Dim:W = 29.0,
n = 13, p = 0.878, ranked biserial correlation =−0.363, one-sided). At
smaller hidden dimension sizes 32 and 64, the ablation of the attention
mechanism captures recall deficits observed in patients with amnesia
comparedwith healthy controls, shown in Fig. 6A. Since the fully optimized
versions of both the attention model and the no-attention model demon-
strate optimal free recall behavior (initiating recall from the beginning of the
list and recalling sequentially forwards; Fig. 6E–F), one might ask why the
attention model has better memory performance when it must learn to
ignore backward contiguity, while the no-attention model has forward
contiguity by default (i.e., incapable of backward contiguity). Evidence from
the optimal CMR model shows that forward contiguity enhances perfor-
mance only when coupled with primacy31. We hypothesize that the lack of
the attention mechanism (i.e., the ability to reinstate previous study con-
texts) makes it difficult to reinstate the beginning-of-list context, which is
necessary to establish primacy. We argue that the absence of primacy leads
to overall diminished performance in the no-attention condition. An
alternative, and more difficult way, to obtain primacy in the no-attention
model is to maintain the first item in the original sequence in the working
memory (i.e., hidden states), and this difficulty is greater when the working
memory capacity is smaller. This greater difficulty was made evident by the
stronger reliance on the attention mechanism by the smaller hidden
dimension sizes, while the largest, 128-Dimmodel was able to maintain the
first item without the use of the attention mechanism (Fig. 5). Aligned with
our prediction, the gap in performance between the attention-basedandno-
attentionmodelswas largerwhen themodels had smaller hiddendimension
sizes. A hidden dimension size of 32 is inadequate to observe any recall
performance in the no-attention case (Fig. 6G), which is associated with a
lowerprimacyvalue comparedwith themodelwith attention (Fig. 6H).This
is in contrast to a hidden dimension size of 128 where models with and
without attention demonstrate similar memory performance (Fig. 6G), as
one could obtain primacy either through maintaining the first item in the
workingmemory without requiring the attentionmechanism, as seen from
similar primacy values in Fig. 6H.

Discussion
We have demonstrated the close correspondence between neural machine
translation (NMT) models and cognitive models of human memory by
providing a detailed mathematical mapping between architecture compo-
nents in the sequence-to-sequence (seq2seq) model with attention to those
in the CMR model of free recall. We showed that seq2seq models with
attention mechanisms, originally introduced for the purpose of machine
translation, can serve as a neural networkmodel of humanmemory search.
Several seq2seq model components align closely with mechanisms in the
CMRmodel, and the additionof attentionprovides themodelwitha formof
mental time travel, enabling explicit reactivation of prior contextsmuch like
CMR. By fitting to human recall data, we show that the seq2seq model can
predict human recall characteristics with higher accuracy than the CMR
model, indicating its viability as a cognitive model of human free recall.
Comparisons to the optimal policy of CMR illustrate themodel’s alignment
with CMR in optimal recall behavior, while comparisons between human
participant data and incompletely optimized models reflect the model’s
potential for capturing sub-optimal recall behavior as well. In addition to

establishing this seq2seq model as an alternative memory search model
(capable of predicting individual participant behavior and capturing opti-
mal and sub-optimal recall behavior as CMR does), we demonstrated
additional strengths of the seq2seqmodel in evaluating the role of context as
maintained in the working memory versus that reactivated from the epi-
sodic memory. We showed that reduced working memory capacity (as
hidden state dimension sizes are altered) requires a compensatory
mechanism and a stronger reliance on episodicmemory to support optimal
recall behavior. By removing the attention mechanism and hampering the
model’s ability to reinstate previous encoding contexts, we eliminate the
model’s capacity for backward contiguity and reduce the model’s recall
performance in a manner similar to patients with MTL amnesia. We now
turn to the broader implications of these results.

An alternative model of human memory search
Our present work uncovers parallels betweenmodel architectures of neural
machine translation and model architectures of human memory search,
which opens up opportunities for improving existing models of human
memory. The seq2seq model with attention strikes a unique balance
between interpretability and flexibility. This balance is crucial for cognitive
modeling, where its goal lies in both the transparency in arriving at its
outputs and the ability to capture complex human behavioral data. In
comparison, purely data-driven machine learning methods can often out-
perform cognitive theories in capturing and predicting human behavior55–57

and are sometimes considered as anupper boundon the amount of variance
we can expect to account for in the human data58–61. However, it can be
challenging to interpret off-the-shelf machine learning methods62. The
seq2seq models with attention do not suffer from the challenge of inter-
pretability, as we have demonstrated in this work how each component –
such as the attention mechanism or the updating of hidden states—can be
mapped mathematically onto components of CMR. In addition to being
interpretable, themodel remains sufficiently flexible to capture awide range
of complex behaviors observed in human free recall. Our analysis reveals
that the seq2seqmodel with attention serves as an effective substitute for the
CMR model in fitting and predicting individual free recall characteristics.
The seq2seq model not only aligns closely with human recall patterns but
also outperforms CMR in certain predictive tasks. This supports the idea
that the seq2seq approach could be adopted as a useful tool in cognitive
modeling for understanding human memory search. While the current
work focuses on RNN-based models, Large LanguageModels (LLMs) offer
another promising avenue formodeling humanmemory. There is evidence
that pre-trained LLMs exhibit striking similarities to human episodic recall,
including serial position effects63,64 and temporal contiguity65,66, without
being explicitly trained on memory tasks. Recent work suggests some of
these behaviors, particularly the temporal contiguity effects, emerge from
the activity of induction heads within the transformers, which have been
directlymapped tomechanisms in cognitivemodels of humanmemory like
the ContextMaintenance and Reinstatement (CMR)model65. Additionally,
ablating these specific heads eliminates the structured recall patterns66.
Identifying convergences between human memory and machine learning
models not only deepens understanding of human memory but also drives
improvements in machine learning algorithms. In one such study, Fountas
et al.67 improve the LLM’s ability to effectively use its context by explicitly
integrating key aspects of human episodicmemory and event cognition into
the model architecture.

Disentangling the contributions of working memory and
episodic memory
Recalled items during a free recall task, as specified by the CMR model, are
driven by the current context, which is a combination of an evolving context
from the previous time step (asmaintained from theworkingmemory) and a
context reactivated from the encoding period (as retrieved from episodic
memory, analogous to the attention mechanism). The CMR model can
determine the combination of the two contexts in a single and fixed para-
meter, but cannot derive the dynamic interaction of these two contexts over
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time and their relation to free recall performance. Unlike CMR, the seq2seq
model has inplace of this singlefixedparameter a learneddense layer that can
dynamically combine the two contexts in order to drive recall performance.
This process helps disentangle the contributions of two types of contexts and
identify their changes over each time step of the recall sequence (Fig. 5). We
showed that seq2seqmodels with smaller hidden dimensions, analogous to a
limited working memory capacity, exhibit different recall strategies and a
stronger reliance on the attention mechanism to access primacy items
compared tomodelswith larger hidden dimensions.Our results indicate that
the need to resort to episodic memory only arises when other mechanisms,
such as those that support active maintenance, are exhausted.

These results are consistent with previous neuroscience literature
showing that after participants studieda short list of items, access to primacy
items was not accompanied by activation of the medial temporal lobe68. In
contrast, the medial temporal lobe is involved in studies where items were
unfamiliar, complex, or involved relational processing, placing high
demands on working memory69,70. In a similar vein, it has been proposed
that if the material to be learned exceeds working memory capacity or if
attention is diverted, performance depends on episodic memory retrieval
even when the retention interval is brief 71. In other words, MTL lesions
would impair performance only when working memory is insufficient to
support performance.Ourmodel simulations support this interpretation by
demonstrating that with ablation of the attention mechanism, our models
demonstrate similar behavioral recall deficiencies as those in hippocampal
patients with amnesia, but these deficiencies disappear if working memory
capacity (hidden dimension size) is increased.

A rational explanation of architectural assumptions in human
memory search
Cognitive models comprise a set of computations and mathematical
equations that implement theoretical accounts of cognitive processes72. A
goodfit of the cognitivemodel to humanbehavioral data reflects an accurate
psychological theory, whereas a bad fit would refute it. Although such a
model-fitting procedure has been a common practice in cognitivemodeling
and is useful in evaluating alternative psychological theories, we still do not
know where a particular cognitive process comes from in the first place.
Why do people tend to remember early-list items better than middle-list
items (i.e., the primacy effect)? Why do people demonstrate a bias in for-
ward transitions during free recall (i.e., forward asymmetry)? An alternative
approach in cognitive modeling that can answer these questions is to build
models that optimally solve the problem of a cognitive task29,30,73,74. If a set of
memory behavioral patterns arises as a result of optimizing the task per-
formance, then we can better understand the functional purposes of the
cognitive processes underlying these patterns2,31,75,76. For example, our cur-
rent work based on seq2seq models provided a rational account of why we
observe primacy and forward asymmetry (as they contribute to achieving
good task performance in free recall). We showed that initiating recall from
the beginning of the list and then sequentially recalling in the forward
direction gives rise to optimal recall performances, reproducing the same
results as the optimal behavior derived based on CMR31.

Critical to this rational approach is the specification of basic archi-
tectural assumptions about internal representations and processes during
memory search74,77,78. These include how context evolves towards each item
during encoding and is used to drive recalls, as specified in both the seq2seq
model and the CMR model. Optimizing performance without these
assumptions, such as allowing free traversal to any position in the context
space regardless of previous context, can easily achieve the goals inmemory
search, but does not provide a realistic model of how human memory
functions. While a rational approach can provide answers to why certain
cognitive processes are important, we do not yet know if there is any
adaptive purpose the architectural assumptions themselves serve or if they
aremerely hard constraints that limit the performance of the cognitive task.
A similar procedure to address this question is to iterate through all possible
architectures and examine which architecture out of this vast space of
architectures produces optimal task performance. Although it is unrealistic

to carry out such an analysis in a single project, we argue that the field of
neural machine translation has effectively conducted this analysis as
researchers have explored countless architectures in search of those that
optimize task performance. The convergence between the development of
human memory search models (driven by alignment with human beha-
vioral data) and the development of neural machine translation models
(driven by task performance) provides evidence that the architectural
assumptions specified in CMR serve an adaptive purpose.

Limitations
One limitation of our current study is that we evaluate ourmodel’s ability to
predict recall patterns over one type of free recall task when participants are
asked to recall immediately after the encoding phase. There are other var-
iants of the free recall task, where participants are required to recall the list
after a delay period79 - introducing a context change between encoding and
recall, or where there are distractor tasks in between every pair of adjacent
words during encoding80 - introducing a context change between encoding
adjacentwords.CMRcancapture these tasks through the amount of context
drift.We expect that the seq2seqmodel can similarly account for these tasks,
given themappingwe have derived between the seq2seqmodel architecture
and the context drifting mechanism in CMR, and the flexibility in the
seq2seq model to learn from the complex dynamics of context change. It
remains a fruitful venue in the future to evaluate the seq2seq model to
account for memory phenomena in different variants of the free recall task.
Another limitation in the current work is our focus on examining the
relationship between the seq2seq model with one specific memory search
model, CMR. In addition to the CMR model, there is another prominent
model of memory search, the Search of Associative Memory (SAM)
model81, which relies on the distinction between a short-term store and a
long-term store without reactivating prior contexts at retrieval. Both SAM
and CMR have a history of successfully accounting for various behavioral
patterns inmemory search. Despite similar levels of empirical evidence they
receive, the convergence of CMR and the seq2seq model, as shown in the
present work, provides additional support to the CMRmodel in terms of its
computational efficiency and adaptability.

Conclusions and future directions
In conclusion, we have demonstrated a convergence between neural
machine translation models and cognitive models of human memory.
Establishing a parallel between these models helps illuminate the factors
behind the success of neural machine translation and opens up the
opportunity to build more flexible models of human memory search. The
seq2seq model with attention, with its balance of interpretability and flex-
ibility, emerges as a useful tool for both simulating cognitive phenomena
and exploring additional theoretical insights into memory processes.
Compared with existing models of memory search that were built upon
well-controlled stimuli like lists of random words, the seq2seq model with
attention, traditionally applied to machine translation tasks, is suitable for
handling more complex input and output structures such as sentences. An
exciting venue for future research is to extend the application of the seq2seq
model of free recall fromrecalling lists ofwords to recallingmorenaturalistic
stimuli like narratives and stories. Futurework could also expandon current
findings by exploring the application of more advanced neural machine
translation architectures, such as transformer-based architectures, in cog-
nitivemodeling andby further investigating the relationship betweenneural
network architecture and human cognitive capacities.

Data availability
The PEERS dataset51 used to train and evaluate human behavioral fits is
publicly available at PEERS Dataset.

Code availability
The code used for training and evaluating model behavior is available at
Code Repository. This repository contains all the necessary scripts and
instructions to replicate the experiments described in this study.
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