Table 1 Prediction accuracy depending on hyperparameter values and feature encoders.

From: Deep learning-based interpretable prediction of recurrence of diffuse large B-cell lymphoma

Learning rate

Weight decay

Metrics

ResNet

UNI

CONCH

CTrans-Path

Prov-GigaPath

0.0001

0.00001

Accuracy

0.7879

0.7500

0.7500

0.7273

0.7424

B. Acc.

0.5531

0.6626

0.5776

0.6147

0.5883

AUC

0.5524

0.6146

0.6546

0.5775

0.6149

F1-score

0.8768

0.8370

0.8481

0.8252

0.8378

0.0001

0.0001

Accuracy

0.7879

0.7348

0.7348

0.7197

0.7197

B. Acc.

0.5979

0.6130

0.5732

0.5998

0.6246

AUC

0.5994

0.6304

0.6681

0.5627

0.682

F1-score

0.8728

0.8328

0.8367

0.8189

0.8199

0.00001

0.00001

Accuracy

0.7576

0.7348

0.6818

0.6894

0.7121

B. Acc.

0.5106

0.6343

0.5458

0.6243

0.5986

AUC

0.5024

0.7172

0.559

0.5956

0.6549

F1-score

0.8602

0.8291

0.7962

0.7844

0.8153

0.00001

0.0001

Accuracy

0.7576

0.7045

0.6970

0.6894

0.7273

B. Acc.

0.5000

0.5819

0.5829

0.6243

0.6165

AUC

0.5074

0.6650

0.5889

0.6193

0.6619

F1-score

0.8614

0.8112

0.8039

0.7844

0.8251

  1. The different cores per patient were first transformed into feature vectors using a ResNet-50 trained on ImageNet and different feature encoders trained on H&E-stained images: UNI by Chen et al. [29], CONCH by Lu et al. [30], CTransPath by Wang et al. [28] and Prov-GigaPath by Xu et al. [31]. The length of the feature vectors varies across the different feature encoders. The pretrained Resnet-50 and UNI generate 1024-dimensional features, CONCH produces features of size 512, CTransPath of size 768 and Prov-GigaPath outputs features of length 1536. B. Acc. stands for balanced accuracy. The results of our model are marked in bold.