Table 1 Prediction accuracy depending on hyperparameter values and feature encoders.
From: Deep learning-based interpretable prediction of recurrence of diffuse large B-cell lymphoma
Learning rate | Weight decay | Metrics | ResNet | UNI | CONCH | CTrans-Path | Prov-GigaPath |
---|---|---|---|---|---|---|---|
0.0001 | 0.00001 | Accuracy | 0.7879 | 0.7500 | 0.7500 | 0.7273 | 0.7424 |
B. Acc. | 0.5531 | 0.6626 | 0.5776 | 0.6147 | 0.5883 | ||
AUC | 0.5524 | 0.6146 | 0.6546 | 0.5775 | 0.6149 | ||
F1-score | 0.8768 | 0.8370 | 0.8481 | 0.8252 | 0.8378 | ||
0.0001 | 0.0001 | Accuracy | 0.7879 | 0.7348 | 0.7348 | 0.7197 | 0.7197 |
B. Acc. | 0.5979 | 0.6130 | 0.5732 | 0.5998 | 0.6246 | ||
AUC | 0.5994 | 0.6304 | 0.6681 | 0.5627 | 0.682 | ||
F1-score | 0.8728 | 0.8328 | 0.8367 | 0.8189 | 0.8199 | ||
0.00001 | 0.00001 | Accuracy | 0.7576 | 0.7348 | 0.6818 | 0.6894 | 0.7121 |
B. Acc. | 0.5106 | 0.6343 | 0.5458 | 0.6243 | 0.5986 | ||
AUC | 0.5024 | 0.7172 | 0.559 | 0.5956 | 0.6549 | ||
F1-score | 0.8602 | 0.8291 | 0.7962 | 0.7844 | 0.8153 | ||
0.00001 | 0.0001 | Accuracy | 0.7576 | 0.7045 | 0.6970 | 0.6894 | 0.7273 |
B. Acc. | 0.5000 | 0.5819 | 0.5829 | 0.6243 | 0.6165 | ||
AUC | 0.5074 | 0.6650 | 0.5889 | 0.6193 | 0.6619 | ||
F1-score | 0.8614 | 0.8112 | 0.8039 | 0.7844 | 0.8251 |