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The development and adoption of artificial intelligence (AI) provides moonshot opportunities to redefine how we generate
treatments for neuropsychiatric disease. Despite the rapid advancement of AI across biomedical spheres, its implementation in
drug discovery, proteomics, and neurobiology has been met with new and unexpected limitations. Historically, neuropharmacology
research has used observational and invasive experimental approaches to identify novel therapeutics. Unfortunately, this classic
approach suffers from laborious chemical synthesis and in vivo testing which ultimately leads to translational bottlenecks. With the
implementation of AI, we are now able to expedite this early testing by modeling how a drug or protein complex may interact with
a receptor of interest. By applying powerful, precision-based protein structure prediction tools, we can better tailor therapeutics and
minimize undesired outcomes. Though promising, important caveats like predicting chirality of molecules, conformational changes
upon binding, and determining downstream signaling elements remain critical roadblocks that functionally limit the efficacy of
prediction software. This Perspective article will briefly discuss how AI-powered protein prediction software will impact drug
development to transform neuropsychopharmacology research and therapeutics, while also providing insights into the limitations
of these digital tools.
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LAY SUMMARY

This article explores how artificial intelligence (AI) is changing the way we discover new treatments for brain and mental health
disorders. Instead of relying solely on slow and complex lab work, scientists are now using AI to predict how drugs interact with
biomolecules. This could speed up the development of safer, more targeted medicines. However, challenges remain, and the article
also explains the current limitations of these AI tools in neuropsychiatric research.

CLASSICAL APPROACHES FOR DESIGNING NOVEL
BIOMOLECULES
In 1865, Crum-Brown and Fraser proposed the idea of structure-
activity relationships (SARs) [1]. SARs characterize the relationship
between a chemical structure and its predicted biological activity,
giving scientists a framework from which to target the efficacy and
potency of biological and chemical molecules. By experimentally
changing these elements, we can design molecules that leverage or
avoid specific therapeutic outcomes (i.e. reduce cytotoxicity or
increase potency). Modern applications of this theory integrate
mathematical relationships between the chemical molecule and its
biological activity, known as quantitative structure-activity relation-
ships (QSARs) [2]. Over time, QSARs evolved into sophisticated
machine learning (ML)-based techniques that extract massive data
sets, thereby becoming a vital component in drug discovery [3].
These biomolecular quantitative advances continue moving in all
directions and have expanded today’s biotechnological landscape.
Due to these breakthroughs, we are now able to apply these
techniques to study proteins and other biomolecules, changing
how we approach neuropsychopharmacology.

Strings of amino acids can be classified into a variety of categories,
each of which help define the architectural components or
physiological roles of the molecule. The resulting protein provides
a complex conformation that can have numerous functional
iterations, each of which may interact with other proteins or
signaling molecules [4]. The precise nature of these interactions is
largely shaped by protein folding and unfolding, thereby represent-
ing a critical mechanism for biomolecular activity in live organisms
[5]. However, while protein folding itself is understood to be essential
to cellular signaling, our ability to model, predict, and ultimately
develop novel compounds to mimic these processes has been
significantly more difficult. From a structural perspective, the use of
artificial intelligence (AI) has allowed us to make some headway to
readily develop 3D protein structures with high accuracy [6, 7]. This
work has evolved since the first attempts to visualize protein
molecules with plasticinemodels. While plasticine modeling enabled
the visualization for folding, its utility was limited to proteins with
simple structures. X-ray crystallography and electron microscopy
catapulted that visualization to in-depth realistic patterns that were
obtained with the use of computation [8]. Though useful for
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understanding an isolated protein, it still leaves unresolved how the
protein may change in response to interactions with other bioactive
compounds. This is why it took decades to generate protein models
in the last century; there was no way to visualize how amino acids
would bind and fold given the numerous tertiary structures or
shapes they could assume [9].

THE ADVENT OF BIOMOLECULE PREDICTION SOFTWARE
AI development has refined machine learning (ML) and deep
learning capabilities providing powerful algorithms that are
changing science. ML, a subfield of AI, works by recognizing
patterns in an extensive data set, allowing the system to learn and
improve [10, 11]. Although it requires the programmer to set a
defined task, it does not need explicit step-by-step instructions.
Instead, ML modules allow systems to learn and interpret
bioinformatics data to improve past models [12]. This process
allows the program to train on existing data and significantly reduce
errors. Deep learning (DL), a sublayer of ML, employs neural
networks (layers of structure and functional analysis inspired by
animal brains) to process unstructured data (i.e. incomplete or
diverse information) in various forms while performing complex
tasks [13]. Optimized DL, which adjusts parameters to filter out
unnecessary information, enables protein structure design that may
or may not have a predetermined shape or function. This allows the
program to consider diverse characteristics like the physical energy
forces that play a crucial role on protein conformation.
DL has resulted in the development of an artificial intelligence

program called AlphaFold, which aims to address protein folding
and predict 3D protein structures [14, 15]. There are two previous
versions of AlphaFold: AlphaFold 1 and AlphaFold 2. AlphaFold 1
was released in 2018, using neural networks to predict protein
structures, while AlphaFold 2, released in 2021, switched its ML
algorithm to continuously refine locations of nearby amino acids
for every new input, and could predict structures with atomic level
accuracy [16, 17]. Although Alpha Fold 2 could model protein
structures and their interactions with higher accuracy, it lacked the
ability to predict complexes involving a broader range of
biomolecules [18–20]. The latest version of the software, Alpha-
Fold 3 (AF), released in 2024 can infer and simulate protein-
protein interactions, protein-ligand interactions, small molecules,
nucleic acids, ions and modified residues [21]. AF works by being
fed lists of molecules to learn and estimate confidence ranges,
values within which the model approximates the actual structure.
It then compares the sequence entered by the user to known
protein structures in databases (i.e. Protein Data Bank) to align
molecular data to existing templates. Once AF understands the
biomolecular framework being used, it activates its unique
diffusion network. AF’s diffusion network generates possible
conformations and provides highly accurate molecular structures
by applying chemical and physical limits, such as molecular forces
and bond lengths [22]. It uses the templates to guide the folding
process of new proteins thereby estimating how sequences, and
then complexes, could look once assembled. AF goes further by
not relying on homology modeling (how related proteins would
look) to visualize biomolecular complexes as its programming
identifies patterns, infers biochemical properties and predicts 1D,
2D and 3D structures from primary biomolecular sequences. It
bypasses homology altogether by successfully rendering graphical
representations without using template structures while predict-
ing previously unknown protein folds [23].
Protein prediction tools in the past were not built to analyze

potential scenarios where physical and stereochemical forces
interact [24]. Acknowledging physical and stereochemical ten-
dency is essential when morphing complexes as it can completely
change conformations or even compatibility [7]. AF approaches
this difficulty by having a DL-based structure prediction archi-
tecture that has been trained on biomolecular structures to

predict its interactions (Fig. 1). AF uses imputed biomolecules in
mathematical form to embed descriptive information as there are
diverging structures between amino acids and nucleic acids
(proteins and DNA/RNA structures, respectively) [25, 26]. AF also
maintains realistic bond geometries, minimizes steric clashes, and
accounts for physical energy distribution to achieve fidelity in
atomic structures [27]. These principles inform it to anticipate
constraints in physics that can destabilize the spatial arrangement
of atoms that form molecular structures (stereochemical consis-
tency). Further, it prevents impossible configurations to an extent
drawing from the same stereochemical principles it has learned
and trained on. With these advances, AF predictions of how
complex folding would occur are unparalleled as it takes potential
manipulations under consideration [28, 29].
Another feature of AF is that it uses biologically driven principles to

guide and identify key model characteristics. First, AF screens
multiple sequence alignments (MSA) identifying conserved residues
(amino acids) across species [30]. This step aids in the process of
predicting structurally and functionally important regions. When
evolutionarily co-varying positions in these sequences are identified,
they can point to potential physical interactions that guide folding
and binding predictions. Complexes that function together often
evolve together, but this can happen in a myriad of ways [31].
Identifying points of convergent evolution for how complexes evolve
allows us to highlight correlated mutations. These mutations can
affect how biomolecules interact with neural cells and receptors at
interfaces where differences in complex binding can have unin-
tended consequences. In testing how biomolecules achieve
conformation states, modular adaptations to the structure and
functional regions helps AF predict new folding patterns even when
direct homologs are unknown. In sum, AF continues to build on
earlier and similar iterations but uniquely incorporates amore flexible
design that allows for exciting new opportunities for drug discovery.

CURRENT APPLICATIONS OF BIOMOLECULE PREDICTION
SOFTWARE
Neuropsychiatric disease research benefits from AF by having the
ability to improve target modeling and drug development. More
specifically, AF can shorten time windows to de-risk biomolecules
for toxicity and adverse events through profiling drug candidates
(Fig. 2), assist in the isolation and characterization of novel g
protein-coupled receptors (GPCRs), and, when empowered in the
near future, potentially anticipate unexpected problems during
biomolecule complex folding (i.e. misfolding) [32–34]. Currently, AF
models outperform traditional modeling (i.e. homology) tools ~70%
of the time, performing particularly well on “hard targets” (proteins
with no known homologs). Evidence for its advantage in this sphere
has been observed at Critical Assessment of Protein Structure
Prediction (CASP) competitions. Here, prediction software candi-
dates are evaluated on multiple readouts and categories, such as
the global distance test (GDT). GDT assesses how close the
predicted protein structure is to an experimentally determined
structure, thus providing a ground truth comparison. Over time, AF
has improved its score, with a recent 2020 competition scoring on
par with experimentally determined structures [35].
One real world example of AF in action involves the discovery of

a ligand for the trace amine–associated receptor 1 (TAAR1), a G
protein–coupled receptor that has an unknown structure and is a
promising target for treating neuropsychiatric disorders ranging
from schizophrenia to substance use disorder [32]. TAAR1
receptors are found both in the central nervous system and in
the periphery [36, 37]. TAAR1 modulates monoaminergic systems,
particularly dopamine, serotonin, and norepinephrine. Unlike
conventional antipsychotics that block D2 dopamine receptors,
TAAR1 activation modulates dopaminergic tone indirectly, redu-
cing hyperdopaminergia (persistent increase in central dopami-
nergic transmission) without causing motor side effects like
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Fig. 2 Comparison of traditional versus AI assisted drug development pipelines. A Traditional timeline for creating new drugs. A1–5)
Partitioned timeline showing major categories of drug development (vivid colors). Subcategories describing unique elements are below major
categories. Overall timeline from drug candidate identification to approval is ~10–15 years. B Projected timeline for creating new drugs with
AI assistance. B1–5) Same as A1–5, but with notably shorter durations driven by continued AI optimization at each step. Generative AI models
based on validation and clinical evidence can enhance the trajectory to approval by ~3 years.

Fig. 1 Schematic of AlphaFold 3 mechanism. AlphaFold 3 can predict the structure of proteins, DNA/RNA molecules, and ligands. 1) Once a
sequence has been entered, 2) the software concurrently engages with multiple databases to assess potential genetic sequences,
conformational prototypes, and structural configurations. 3) The input embedder then uses the sequencing and conformer information to
encode and generate a composite that results in a single and pair representation. 4) The template module then integrates known structures
obtained from the structural data search into the pair representation. 4/5) In tandem, the Multiple Sequence Alignment (MSA) Module
incorporates the sequencing, pair representation, and template models to iteratively build novel base templates. 6) From here, the pairformer
module uses MSA information to test different interacting elements, refining the predicted molecule interactions and repeatedly updating the
pair and single representations. 7) Finally, the diffusion module applies and removes noise into the algorithm to improve local stereochemistry
and global structures.
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tardive dyskinesia (a common side effect of antipsychotics). In the
periphery, emerging evidence suggests that TAAR1 activation is
involved in insulin secretion (pancreas) [38], energy homeostasis,
and body weight regulation while regulating neural circuits [39].
This raises interest in TAAR1 as a potential target for metabolic
disorders like type 2 diabetes and obesity. Considering its wide
utility, there is a strong interest in developing compounds to
modulate this receptor. Unfortunately, drug discovery for GPCRs
like TAAR1 has been hampered by the lack of high-resolution
structural data. While this is typically a major obstacle for
traditional, homology-based approaches, AF was able generate a
high-confidence structural model of TAAR1, enabling researchers
to speed up structure-based virtual screening. Researchers
computationally docked over 16 million fragment-like molecules
from the ZINC database into the estimated binding site of TAAR1.
The AF-derived structure identified 6.8 million compounds
capable of docking at the binding site, from which 30 top-
ranked candidates were selected for experimental testing. The
most potent and selective compound from the AF screen, referred
to as compound 65, displayed good selectivity against other
aminergic receptors and favorable pharmacokinetic properties.
Compound 65 was further validated using in vivo in mouse
models. They found that compound 65 regulated body tempera-
ture and produced sensorimotor gating behavior (whole body
flinch), which is an animal model proxy for antipsychotic-like
effects. These effects were absent in TAAR1 knockout mice,
confirming that the observed pharmacology was mediated
through TAAR1 activation. Throughout this process, AF was tested
against a homology-based model to benchmark drug discovery
efficacy. They found that the AF-derived model delivered a 60%
hit rate, nearly three-fold higher compared to the 22% hit rate of
the homology model. Cases like these highlight the strengths of
this new generation of prediction software, particularly as it relates
to the early phases of drug discovery.

CURRENT LIMITATIONS OF BIOMOLECULE PREDICTION
SOFTWARE
It is clear that biomolecule prediction software represents an
important leap in biomedical AI technology [40]. Accurately
predicting structures and examining their interaction in a unified
framework will reduce time frames to search for or design new
drug candidates. However, these models still have several critical
areas in which continued development is necessary, such as their
preponderance to create spurious structural orders (also called
hallucinations [41]). These digital hallucinations are predicted
structural features that may appear well-formed and confident in
the model but do not actually exist in the real, native structure of
the protein—often due to limitations or artifacts in the model’s
training or input data. Troubleshooting these and similar problems
(e.g., incomplete/disorganized bioinformatic data) will help
alleviate these disruptions in future models as human intervention
exerts guidance in aiding accurate simulations.
AF excels at predicting interaction between structures (i.e.,

between a ligand and a receptor), but not at quantifying affinity
or potency (i.e., the effect of that interaction). To assess that,
additional modeling tools or experimental data are required. As
such, AF is best viewed as a high-resolution input for further
computational or wet-lab work rather than a standalone solution for
predicting drug efficacy. Relatedly, AF also struggles to incorporate
extracellular space conditions that may impact molecular interac-
tions. The accuracy drops when handling chirality and chiral
molecules (binding and arrangement of atoms) as the algorithm
attempts to predict molecular interactions [21, 23]. It integrates
some basic chemistry, but as of now does not extrapolate essential
spatial distributions to assemble molecules that can be easily or
realistically synthesized in the lab [14, 42, 43]. As a result, it often
omits crucial components like heme groups, misrepresents metal

coordination sites, and cannot account for covalent drug binding or
enzymatic active site geometry.
Finally, AF exhibits limitations when modeling intrinsically

disordered regions, non-specific protein interactions, and proteins
with significant conformational flexibility. Despite attempts to
incorporate AI techniques from image generation, such as
diffusion models, AF can still produce structurally implausible
features like atom overlaps or steric clashes [44]. It also
occasionally omits key structural elements, necessitating expert
human correction. For effective drug design, AF would benefit
from better integration of principles from medicinal chemistry,
structural biology, and physics to more accurately reflect real-
world molecular forces and docking behavior. Human oversight
remains essential to guide these models and interpret results in a
realistic biochemical context. Ultimately, predictions must be
validated through experimental assays, and researchers are
advised to generate multiple models and compare outputs to
increase reliability and identify consistent structural features.

DISCUSSION
Diagnostically, biomolecule prediction software can provide
insights into how genetic mutations impact protein structures
and interactions [45]. By understanding how discrete mutations
influence protein function, we can better design molecules that
account for those functional changes. Still, while AI technology
can provide useful suggestions, in vivo testing of molecules
remains the gold standard for guiding the selection of drug
candidates for clinical trials. Derisking and reducing toxicity still
benefits from testing how model organisms respond to
biomolecules that are designed to target specific sites for
therapeutic effects [46]. However, with the guidance of prediction
software, back-end drug development can be significantly
improved and expedited. Looking forward, it will be necessary
to eliminate the existing disconnect between software developers
and software users. Realistic guardrails are essential in AI
development and deployment, and critical precautions must be
taken to protect the extent to which technology can intervene
and execute functions currently handled by humans. This will
only be achieved if digital literacy in neuropsychopharmacology
research is modernized to implement these types of tools. As an
interdisciplinary field, neuropsychopharmacology stands to sig-
nificantly benefit from optimized novel drug discovery, complex
biobehavioral modeling, and standardized yet precision-based
treatments. The adoption of AI into neuropsychiatric disease
treatment will be a difficult, but important, conversation amongst
both those administering and receiving treatments. However, we
believe that an open discussion for how and when to incorporate
innovative AI technology represents an exciting step forward in
precision medicine.

Citation diversity statement. The authors have attested that
they made efforts to be mindful of diversity in selecting the
citations used in this article.

REFERENCES
1. Brown AC, Fraser TR. On the connection between chemical constitution and

physiological action; with special reference to the physiological action of the salts
of the ammonium bases derived from strychnia, brucia, thebaia, codeia, morphia,
and nicotia. J Anat Physiol. 1868;2:224–42.

2. Hansch C, Fujita T. p-σ-π analysis. A method for the correlation of biological
activity and chemical structure. J Am Chem Soc. 1964;86:1616–26.

3. Soares TA, Nunes-Alves A, Mazzolari A, Ruggiu F, Wei GW, Merz K. The (Re)-
evolution of quantitative structure–activity relationship (QSAR) studies propelled
by the surge of machine learning methods. J Chem Inf Model. 2022;62:5317–20.

4. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P, et al. The shape and structure
of proteins. in Molecular biology of the cell. 4th edition. Garland Science; New York;
2002 https://www.ncbi.nlm.nih.gov/books/NBK21054/.

R.A. García-Reyes et al.

4

NPP – Digital Psychiatry and Neuroscience

https://www.ncbi.nlm.nih.gov/books/NBK21054/


5. Díaz-Villanueva JF, Díaz-Molina R, García-González V. Protein folding and
mechanisms of proteostasis. Int J Mol Sci. 2015;16:17193–230.

6. Vilar S, Costanzi S. Predicting biological activities through QSAR analysis and
docking-based scoring. Methods Mol Biol. 2012;914:271–84.

7. Blanco-González A, Cabezón A, Seco-González A, Conde-Torres D, Antelo-Riveiro
P, Piñeiro Á, Garcia-Fandino R. The role of AI in drug discovery: challenges,
opportunities, and strategies. Pharmaceuticals. 2023;16:891.

8. Boumedine N, Bouroubi S. Protein folding in 3D lattice HP model using a com-
bining cuckoo search with the hill-climbing algorithms. Appl Soft Comput.
2022;119:108564.

9. Kuhlman B, Bradley P. Advances in protein structure prediction and design. Nat
Rev Mol Cell Biol. 2019;20:681–97.

10. Mosavi A, Salimi M, Ardabili SF, Amidpour M, Rabczuk T, Shamshirband S, et al.
State of the art of machine learning models in energy systems, a systematic
review. Energies. 2019;12:1301.

11. Schauperl M, Denny RA. AI-based protein structure prediction in drug discovery:
Impacts and challenges. J Chem Inf Model. 2022;62:3142–56.

12. França RP, Borges Monteiro AC, Arthur R & Iano Y Chapter 3 - an overview of
deep learning in big data, image, and signal processing in the modern digital
age. in Piuri V, Raj S, Genovese A & Srivastava R, eds. Trends in deep learning
methodologies. Academic Press; 2021. 63–87. https://doi.org/10.1016/B978-0-12-
822226-3.00003-9.

13. Abdolrasol MGM, Hussain SMS, Ustun TS, Sarker MR, Hannan MA, Mohamed R,
et al. Artificial neural networks based optimization techniques: a review. Elec-
tronics. 2021;10:2689.

14. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvu-
nakool K. Highly accurate protein structure prediction with AlphaFold. Nature.
2021;596:583–9.

15. Thornton JM, Laskowski RA, Borkakoti N. AlphaFold heralds a data-driven revo-
lution in biology and medicine. Nat Med. 2021;27:1666–9.

16. AlQuraishi M. Protein-structure prediction revolutionized. Nature. 2021;596:487–8.
17. Callaway E. DeepMind’s AI predicts structures for a vast trove of proteins. Nature.

2021;595:635.
18. Skolnick J, Gao M, Zhou H, Singh S. AlphaFold 2: why it works and its implications

for understanding the relationships of protein sequence, structure, and function.
J Chem Inf Model. 2021;61:4827–31.

19. Nussinov R, Zhang M, Liu Y, Jang H. AlphaFold, artificial intelligence (AI), and
allostery. J Phys Chem B. 2022;126:6372–83.

20. Ma W, Zhang S, Li Z, Jiang M, Wang S, Lu W, Bi X, Jiang H, Zhang H, Wei Z.
Enhancing protein function prediction performance by utilizing AlphaFold-
predicted protein structures. J Chem Inf Model. 2022;62:4008–17.

21. Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O.
Accurate structure prediction of biomolecular interactions with AlphaFold 3.
Nature. 2024;630:493–500.

22. Roy R, Al-Hashimi HM. AlphaFold3 takes a step toward decoding molecular
behavior and biological computation. Nat Struct Mol Biol. 2024;31:997–1000.

23. Desai D, Kantliwala SV, Vybhavi J, Ravi R, Patel H, Patel J. Review of AlphaFold 3:
transformative advances in drug design and therapeutics. Cureus. 2024;16:e63646.

24. Bertoline LMF, Lima AN, Krieger JE, Teixeira SK. Before and after AlphaFold2: an
overview of protein structure prediction. Front Bioinform. 2023;3:1120370.

25. Anusha, Zhang Z, Li J, Zuo H, Mao C. AlphaFold 3 – aided design of DNA motifs to
assemble into triangles. J Am Chem Soc. 2024;146:25422–5.

26. Wee J, Wei G-W. Evaluation of AlphaFold 3’s protein–protein complexes for
predicting binding free energy changes upon mutation. J Chem Inf Model.
2024;64:6676–83.

27. Yang Z, Zeng X, Zhao Y, Chen R. AlphaFold2 and its applications in the fields of
biology and medicine. Signal Transduct Target Ther. 2023;8:1–14.

28. Hoffmann F AlphaFold3 and its improvements in comparison to AlphaFold2.
Medium. 2024. https://medium.com/@falk_hoffmann/alphafold3-and-its-
improvements-in-comparison-to-alphafold2-96815ffbb044.

29. Thompson B, Petrić Howe N. Alphafold 3.0: the AI protein predictor gets an
upgrade. Nature. 2024. https://doi.org/10.1038/d41586-024-01385-x

30. Wossnig, L AlphaFold3 — what’s next in computational drug discovery? Medium.
2024. https://medium.com/@leowossnig/alphafold3-whats-next-in-computational-
drug-discovery-2da534c0845e.

31. Lu X, Kensche PR, Huynen MA, Notebaart RA. Genome evolution predicts genetic
interactions in protein complexes and reveals cancer drug targets. Nat Commun.
2013;4:2124.

32. Díaz-Holguín A, Saarinen M, Vo DD, Sturchio A, Branzell N, Cabeza de Vaca I, Hu H.
AlphaFold accelerated discovery of psychotropic agonists targeting the trace
amine–associated receptor 1. Sci Adv. 2024;10:eadn1524.

33. He X-H, Li J-R, Shen S-Y, Xu HE. AlphaFold3 versus experimental structures:
assessment of the accuracy in ligand-bound G protein-coupled receptors. Acta
Pharmacol Sin. 2024;46:1111–22. https://doi.org/10.1038/s41401-024-01429-y

34. Krokidis MG, Koumadorakis DE, Lazaros K, Ivantsik O, Exarchos TP, Vrahatis AG,
Kotsiantis S. AlphaFold3: an overview of applications and performance insights.
Int J Mol Sci. 2025;26:3671.

35. Callaway E. ‘It will change everything’: DeepMind’s AI makes gigantic leap in
solving protein structures. Nature. 2020;588:203–4.

36. Nair PC, Chalker JM, McKinnon RA, Langmead CJ, Gregory KJ, Bastiampillai T.
Trace amine-associated receptor 1 (TAAR1): molecular and clinical insights for the
treatment of schizophrenia and related comorbidities. ACS Pharmacol Transl Sci.
2022;5:183–8.

37. Dedic N, Dworak H, Zeni C, Rutigliano G, Howes OD. Therapeutic potential of
TAAR1 agonists in schizophrenia: evidence from preclinical models and clinical
studies. Int J Mol Sci. 2021;22:13185.

38. Michael ES, Covic L, Kuliopulos A. Trace amine-associated receptor 1 (TAAR1)
promotes anti-diabetic signaling in insulin-secreting cells. J Biol Chem.
2019;294:4401–11.

39. Dedic N, Wang L, Hajos-Korcsok E, Hecksher-Sørensen J, Roostalu U, Vickers SP, et al.
TAAR1 agonists improve glycemic control, reduce body weight and modulate
neurocircuits governing energy balance and feeding. Mol Metab. 2024;80:101883.

40. Arnold C. AlphaFold touted as next big thing for drug discovery — but is it?
Nature. 2023;622:15–17.

41. Lowe, D AlphaFold 3 debuts. 2024. https://www.science.org/content/blog-post/
alphafold-3-debuts.

42. Tunyasuvunakool K, Adler J, Wu Z, Green T, Zielinski M, Žídek A, Bridgland A,
Cowie A, Meyer C. Highly accurate protein structure prediction for the human
proteome. Nature. 2021;596:590–6.

43. Steinkellner G, Kroutil W, Gruber K, Gruber CC. AlphaFold 3 is great — but it still
needs human help to get chemistry right. Nature. 2025;637:548.

44. Brotzakis ZF, Zhang S, Murtada MH, Vendruscolo M. AlphaFold prediction of
structural ensembles of disordered proteins. Nat Commun. 2025;16:1632.

45. Yao M, Miller GW, Vardarajan BN, Baccarelli AA, Guo Z, Liu Z. Deciphering proteins
in Alzheimer’s disease: a new mendelian randomization method integrated with
AlphaFold3 for 3D structure prediction. Cell Genom. 2024;4:100700.

46. van der Lee M, Swen JJ. Artificial intelligence in pharmacology research and
practice. Clin Transl Sci. 2022;16:31–36.

ACKNOWLEDGEMENTS
All figures were created with Biorender.com.

AUTHOR CONTRIBUTIONS
All authors contributed to conceptualization, editing, writing, reference collection,
figure design and approval.

FUNDING
All this work has been supported by funding to R.A.G.R. from the Howard Hughes
Medical Institute (HHMI) Gilliam Fellowship (GT17052) and the Washington University
National Institute of Health Initiative for Maximizing Student Development Program
Grant (5T32GM148405); L.N.M.Q. is funded by the Washington University Neu-
roscience Postbaccalaureate Research Education Program (NeuroPREP) Program
(R25NS130965); H.R. is funded by the Washington University Vagelos Undergraduate
Research Fellowship (Roy and Diana Vagelos Division of Biology and Biomedical
Sciences); D.C.C. is funded by the National Institute of Mental Health
(5R01MH132504), the National Institute on Drug Abuse (5R00DA049862), the
McDonnell Center for Cellular Molecular Neurobiology, the McDonnell Center for
Systems Neuroscience, and the Diabetes Research Center (P30 DK020579) at
Washington University School of Medicine in St. Louis.

COMPETING INTERESTS
The author declares no competing interests.

ADDITIONAL INFORMATION
Correspondence and requests for materials should be addressed to
Rubén A. García-Reyes.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

R.A. García-Reyes et al.

5

NPP – Digital Psychiatry and Neuroscience

https://doi.org/10.1016/B978-0-12-822226-3.00003-9
https://doi.org/10.1016/B978-0-12-822226-3.00003-9
https://medium.com/@falk_hoffmann/alphafold3-and-its-improvements-in-comparison-to-alphafold2-96815ffbb044
https://medium.com/@falk_hoffmann/alphafold3-and-its-improvements-in-comparison-to-alphafold2-96815ffbb044
https://doi.org/10.1038/d41586-024-01385-x
https://medium.com/@leowossnig/alphafold3-whats-next-in-computational-drug-discovery-2da534c0845e
https://medium.com/@leowossnig/alphafold3-whats-next-in-computational-drug-discovery-2da534c0845e
https://doi.org/10.1038/s41401-024-01429-y
https://www.science.org/content/blog-post/alphafold-3-debuts
https://www.science.org/content/blog-post/alphafold-3-debuts
http://www.nature.com/reprints
http://www.nature.com/reprints


Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

R.A. García-Reyes et al.

6

NPP – Digital Psychiatry and Neuroscience

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Neuropsychopharmacology in the era of artificial intelligence and biomolecule prediction software
	Classical approaches for designing novel biomolecules
	The advent of biomolecule prediction software
	Current applications of biomolecule prediction software
	Current limitations of biomolecule prediction software
	Discussion
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




