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Speech-based indices are promising objective biomarkers for identifying schizophrenia and monitoring symptom burden. Static
acoustic features show potential but often overlook time-varying acoustic cues that clinicians naturally evaluate—such as negative
symptoms—during clinical interviews. A similar dynamic, unfiltered approach can be applied using speech spectrograms,
preserving acoustic-temporal nuances. Here, we investigate if this method has the potential to assist in the determination of
diagnostic and symptom severity status. Speech recordings from 319 participants (227 with schizophrenia spectrum disorders, 92
healthy controls) were segmented into 10 s fragments of uninterrupted audio (n= 110,246) and transformed into log-Mel
spectrograms to preserve both acoustic and temporal features. Participants were partitioned into training (70%), validation (15%),
and test (15%) datasets without overlap. Modified ResNet-18 convolutional neural networks (CNNs) performed three classification
tasks; (1) schizophrenia-spectrum vs healthy controls, within 179 clinically-rated patients, (2) individuals with more severe vs less
severe negative symptom burden, and (3) clinically obvious vs subtle blunted affect. Grad-CAM was used to visualize salient regions
of the spectrograms that contributed to classification. CNNs distinguished schizophrenia-spectrum participants from healthy
controls with 87.8% accuracy (AUC= 0.86). The classifier trained on negative symptom burden performed with somewhat less
accuracy (80.5%; AUC= 0.73) but the model detecting blunted affect above a predefined clinical threshold achieved 87.8%
accuracy (AUC= 0.79). Importantly, acoustic information contributing to diagnostic classification was distinct from those identifying
blunted affect. Grad-CAM visualization indicated that the CNN targeted regions consistent with human speech signals at the
utterance level, highlighting clinically relevant vocal patterns. Our results suggest that spectrogram-based CNN analyses of short
conversational segments can robustly detect both schizophrenia-spectrum disorders and ascertain burden of negative symptoms.
This interpretable framework underscores how time–frequency feature maps of natural speech may facilitate more nuanced
tracking and detection of negative symptoms in schizophrenia.

NPP – Digital Psychiatry and Neuroscience; https://doi.org/10.1038/s44277-025-00040-1

LAY SUMMARY

Short snippets of everyday speech hold medical clues. Using computer vision techniques on sound pictures (“spectrograms”) from
short speech fragments, researchers trained a neural network on recordings from 227 people with schizophrenia and 92 without.
The model spotted schizophrenia with 88 % accuracy and judged negative symptom severity well, especially the “blunted affect”
symptom. Visualizations showed it focused on speech patterns, not noise. The findings suggest analyzing speech transformed to
pictures could help diagnose and track schizophrenia.

INTRODUCTION
Speech disturbances constitute a defining feature of schizo-
phrenia spectrum disorders (SSD) [1, 2]. These are immedi-
ately apparent when considering a set of symptoms referred
to as negative symptoms - alogia, poverty of speech, and
diminished spontaneous conversation - that profoundly
impede social and functional outcomes [3, 4]. Clinically,
these behaviors are evaluated largely through direct obser-
vation of patients’ speech patterns and conversational

engagement [5]. In this sense, these features are more of
observed ‘signs’ than reported ‘symptoms’ as individuals do
not actively complain about them and struggle to provide
specific verbal descriptions. In particular, features such as
blunted affect carry diagnostic significance and prognostic
value, but are not assessed reliably in clinical practice [6, 7].
Clinical assessment of these features can greatly benefit from
the availability of complementary objective markers that are
readily accessible.
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Recent studies suggest that carefully selected and engineered
acoustic features—including derivatives of pitch, prosody, pauses,
and overall speaking rate—can serve as potential markers for
identifying SSD and capturing its symptom severity [8–10]. These
studies, based on readily accessible software packages have
advanced the replicability of speech-based analyses [11–13].
These programs have allowed a large number of features to be
extracted from very short time windows - as short as 50 ms, risking
redundancy and overfitting. In turn, researchers have resorted to
data summarisation or guided selection before further compres-
sing the feature space to reduce dimensionality ([9, 14, 15] for
examples). This workflow requires some presupposition of feature
relevance and theories that are not often explicit (i.e., expert
knowledge) to mitigate complexity. Such a feature engineering
process is thought by some to be a major bottleneck for
generalisability and clinical implementation for machine learning
applications [16]. Our goal is to exploit temporal acoustic
information from short segments of speech without any selection,
manipulation and transformation of raw data (i.e., no feature
engineering) to test if ‘acoustic separation’ of schizophrenia is
feasible on the basis of speech spectra. To this end, we employ a
deep-learning convolutional neural network (CNN) shown to be
successful in developing models to detect depression, bipolar
disorder and sleep disorders [17–19].
One of the major drawbacks in summarising acoustic informa-

tion to a handful of features is the loss of temporal information.
The moment-to-moment shifts in pitch, speaking rate, or pause
structure serve as clinically informative cues to negative symp-
toms. Subtle changes in intonation over the course of an
utterance, variations in speech rate tied to conversational
dynamics, or specific junctures where pauses reveal heightened
cognitive load [20] are all critical cues to assess one’s affect.
Capturing these finer-grained temporal patterns is especially
important for schizophrenia, where aberrant communication can
manifest as inconsistent speech rhythms such as long delays
before responses [21], pressured speech [22], or truncated
sentence structures including blocking [23]. In this work, we
exploit the raw temporal trace of speech, addressing the open
question of the importance of subtle acoustic fluctuations in
identifying the mental states that define schizophrenia and its
severity.
Convolutional neural networks (CNNs), a method in the field of

deep learning, offer a powerful solution to learn hierarchical
representations directly from the temporal acoustic data available
in speech spectrogram “images,” which has previously been
applied to speech in schizophrenia [24]. Other deep learning
approaches such as wav2vec [25, 26] exist and have been used in
schizophrenia [27–30], we focus here on CNN spectrograms
because they preserve both subtle acoustic cues, such as formant
transitions, and the short-term temporal variations—like pro-
longed pauses—that might indicate clinical phenomena. Trained
CNN models are highly scalable, handling large datasets efficiently
and incorporating new data with minimal manual preprocessing
[24, 31].
Building on this design, we deploy a CNN-based model to

classify short, 10 s speech segments in three distinct tasks: (1)
discriminating SSD from healthy controls, (2) dividing individuals
into higher vs lower severity of overall negative symptoms, and
(3) detecting blunted affect scores above a clinical threshold. By
focusing on brief audio segments, we aim to preserve time-
sensitive acoustic variation while keeping computational
demands manageable. Our goal is not highest-in-field perfor-
mance, but to show the feasibility of using CNNs in an
heterogeneous sample using separated datasets. Recent sys-
tematic reviews have shown that clinical prediction models in
psychiatry report high classification accuracy (area under the
curve or AUC of 0.70–0.85), but >90% of prior studies were at
high risk of bias due to overfitting or lack of robust out-of-

sample validation [32]. In psychosis, reported AUCs of successful
models are around 0.75–0.85 [33]. On this basis, we hypothesize
that integrated acoustic and temporal features in a CNN will
achieve clinically meaningful out-of-sample classification accu-
racy (AUC > 0.75) for diagnosis and to identify negative
symptom severity in order to show the feasibility of a CNN-
based approach. We apply Gradient-weighted Class Activation
Mapping (Grad-CAM), a visualisation approach, to verify that the
neural network’s attention converges on clinically interpretable
parts of the spectrogram rather than on incidental noise.

PATIENTS AND METHODS
Participants
Data from 227 individuals with psychosis at various illness stages, (at-risk
stage, medication-naive first episode psychosis, to chronic illness lasting
>10 years) and 92 age-matched healthy controls from London, Ontario or
Montreal, Canada were included. This sample overlaps partially with 2 prior
studies [34, 35]. All participants gave informed consent to have their
speech recorded and analysed. Recordings were in English, the preferred
language of daily communication for all included participants. Speech was
collected through recording the entire DISCOURSE protocol
(www.discourseinpsychosis.org), which combines both open-ended and
structured tasks to generate a range of speech styles. These tasks include
free conversation, personal and health narratives, and picture-based
descriptions, aimed at a duration of 20min. For most participants, the full
protocol was conducted, capturing spontaneous, semi-structured and
structured speech. However, in the case of untreated, acutely unwell
individuals, only the short picture-description segment was administered
—consisting of three Thematic Apperception Test images, each described
for 1 min [36] for a total duration of 3 min. Patients were diagnosed using
DSM-5 operational criteria through a best-estimate consensus procedure
(treating psychiatrist and the clinical research team) based on all available
clinical information [37]. When patients were recruited from a first-episode
psychosis clinic, the individual diagnoses were confirmed after
6–12 months to ensure diagnostic stability. Individual diagnostic distribu-
tions are shown in Table 1. Given the diagnostic heterogeneity, we use the
term SSD here to capture all patients as they satisfied DSM-5 criterion A of
schizophrenia or CHR criteria for schizophrenia (as described in [35]) at the
initial presentation. Only 2 of the 17 clinical high risk subjects developed
first episode psychosis (schizophrenia) in the subsequent 12 months, but
they were included along with other SSD groups as the speech samples
were obtained prior to the diagnostic outcome. All participants gave
informed consent, and the Research Ethics Board at Western University
approved the study.
Clinical symptoms were assessed in the same week as speech recordings

for 179 patients and 82 controls using at least 8 items [38] of the PANSS
scale [39] by trained RAs supervised by the same clinician (LP) for every
case. All RAs achieved a minimum ICC of 0.85 for the PANSS total scores
with LP at the end of their training (6 subjects or more, fixed raters, single
measures), and item level discrepancies during the data acquisition were
resolved by substituting uncertain scores with LP’s scores for all cohorts.
For symptom severity classification, only the 179 patients whose PANSS

scores were available were included. To assess whether our approach is
sensitive to overall negative burden and allowing measurement of
symptom specificity, we first perform classification on average negative
symptom levels, before focusing on the specific symptom of blunted
affect. While acoustics are intuitively linked to blunted affect as a clinical
sign, given the importance of determining overall negative symptom
severity as being above or below a threshold that prompts clinical actions
we use the median split that provides balanced sample size for this
dataset. The negative PANSS scores were computed by taking the sum of
N1 (blunted affect), N4 (passive/apathetic social withdrawal) and N6 (lack
of spontaneity and flow of conversation) (possible range of 1-absent to
7-extreme for each). We performed a median split on the PANSS-8
negative symptom N1+N4+N6 items average. This median split approach
(per item average of the cut-off= 2.62; median across 3 items= 7.85)
formed one sub-group satisfying low negative symptoms (i.e., ≤3 average
item score), and the other with higher burden that is likely to be
functionally intrusive as per PANSS item descriptions, the cutoff 3 being
the commonly used symptom remission criteria that denotes a feature
being absent, minimal or mild [40]. To detect blunted affect, we
divided patients into two groups having a PANSS N1 (blunted affect) of
either ≤3 or >3. Sex differences were assessed with a chi-square test; age
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and symptom severity with ANOVAs. Statistical tests were performed in R
[41].

Creation of spectrograms
See Fig. 1 for an overview of the processing flow. Each interview audio file
was transcribed using an offline implementation of WhisperX, an
adaptation of OpenAI’s Whisper automatic speech recognition (ASR)
system [42]. The output consisted of the transcribed text, per-word start
and end timestamps, as well as the confidence score and the speaker
associated with each word. Then, a list of fragments of interest of the
patient’s speech was generated. The list of fragments of interest contained
the timestamps of 10 s long, uninterrupted audio fragments. The cutoff of
10 s removes occurrences of crosstalk or short answers, where speaker
identification is harder to estimate. A subset of audio fragments was
manually checked for accuracy of the pipeline. All audio was re-sampled to
16,000 Hz and a log Mel spectrogram for each fragment of interest was
created with fast Fourier transforms computed on windows of a length of
128ms and a stride of 16ms. All audio manipulations were done using
librosa, a Python library for audio analysis [43].

Training of convolutional neural network
Fully independent training, validation, and test sets are crucial for
obtaining reliable performance estimates in real-world settings [44–46].
Yet in psychiatric research, large and heterogeneous datasets can be
difficult to obtain, leading many to employ cross-validation or data
augmentation [32, 33, 47]. Data augmentation and cross-validation can
help offset data scarcity; these solutions need careful implementation to
reduce additional noise and overfitting. Furthermore, when multiple
speech segments from the same participant appear in both training and
validation folds, cross-validation can inadvertently leak information and
overestimate performance. In the present study, we minimize these
concerns by enforcing a strict train–test–validation split at the participant
level, thereby preserving ecological validity in our assessments. 70% of the
patients were part of the training data set, while 15% of patients were part
of the testing and 15% of the validation data sets. The proportions of
spectrograms from each study in the original data set were respected in
train, validation and testing sets.
ResNet-18 with a modified final fully-connected (FC) layer to accom-

modate for the two classes (see Fig. 1) was used in order to accomplish the
training. In order to optimize the training and to achieve the best accuracy,
we conducted empirical evaluations by testing a range of different
parameters. The optimal hyperparameters which provided the best
performance for our model were determined to be a batch size of 32,

an initial learning rate of 0.001, 50 epochs, and a weight decay of 0.01.
Hyperparameters were finalised before any evaluation on the held-out test
cohort, and we did not run cross-validation, opting for a single stratified
split that reflects intended clinical deployment while preventing
participant-level leakage and preserving heterogeneity across folds.
Classification metrics for binary classification such as Area Under the
Curve (AUC), F1 scores, accuracy, precision and recall were collected for the
SSD vs HC, negative symptom and blunted affect detection classifiers.
In order to compare our approach with other methodologies, we train

two other models on the same train/validation/test split. First, the 88
eGeMAPSv02 standard features were extracted using OpenSMILE 13 and
classified with a random forest. Second, we fine-tuned a wav2vec2 model
[25, 48] for the three tasks as a reference; see Supplementary Table S2 for
additional details.
To evaluate specificity, we tested the trained blunt affect symptom

detection model on the overall severity-based classification task division,
thereby checking if general illness severity acted as a confounding factor.
We anticipated poorer performance on the severity split if the models were
genuinely capturing patterns unique to the symptom of blunted affect.

Feature visualization
Gradient-weighted Class Activation Mapping (Grad-CAM) [49] was used
in order to provide visual insights into both the learning process and the
final classification. This method generates a heatmap highlighting the
regions of an image that most impact its classification by a CNN. It does
so by calculating averaged gradients across feature maps and turning
them into a heatmap which is then placed over the image. To determine
whether the network captured short phonemic segments or entire
phrases, we set a threshold at 63% of the maximum activation and
measured the largest continuous horizontal extent above that cutoff.
Grad-CAM activations of short durations would suggest reliance on a
single word or a few phonemes, whereas longer spans would indicate
that a sequence of words (and intervening or preceding pauses) drove
classification.

RESULTS
Demographics & spectrograms
The schizophrenia-spectrum cohort included individuals spanning
multiple points along the illness trajectory, from clinically high-risk
and first-episode psychosis to long-standing schizophrenia and
schizoaffective disorders (Table 1). This broad range of diagnostic
subtypes contributes to the ecological validity of our sample by

Table 1. Demographic characteristics of SSD patients against HCs.

Category SSD patients (n= 227) Healthy controls (n= 91) Statistics

Age

Years M
(SD)

27.16 (8.94) 25.44 (5.85) F= 2.829, p= 0.0936

Sex

Male n (%) 175 (77.09) 58 (63.74) X²= 5.5661, p= 0.018a

Clinical scores

PANSS-8 M 20.96 (8.00) 8.83 (0.00) F= 176.4, p < 0.001b

N1, N4, N6 M
(SD)

7.85 (4.70) 3 (0.00) F= 87.17, p < 0.001b

Diagnosis

Schizophrenia n (%) 96 (42)

Psychosis NOS n (%) 18 (8)

FEP n (%) 72 (32)

Schizoaffective n (%) 20 (9)

Bipolar with psychotic features n (%) 4 (2)

CHR n (%) 17 (7)

M mean, SD standard deviation, PANSS positive and negative syndrome scale, NOS not otherwise specified, FEP first episode psychosis, CHR clinical high risk.
aIndicates p value < 0.02.
bIndicates p value < 0.001.
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capturing a variety of symptom intensities and illness stages.
Although there was no significant difference in age compared to
controls, men were overrepresented among patients—consistent
with known epidemiologic patterns [50]. No sex or age differences
were present in the patient median or blunted affect groups.
Medication exposure among SSD participants varied considerably,
ranging from unmedicated clinical high-risk individuals to first-
episode psychosis patients with less than three days of exposure
to antipsychotic use [34], and extending to longer-term cases
receiving long-acting injectable medications. While we did not
control for individual dosage and medication, the group propor-
tions of type of medication usage were matched across train,
validation, and test splits. As such we cannot equate the observed
acoustic classification performance to primary vs secondary
(medication-related) negative symptoms.
The split on the PANSS-8 negative symptom N1+N4+N6 items

average was performed for a median score of 7 (minimum 3;
maximum 21) resulting in 97 participants below and 82
participants above the median. For the blunted affect split, 119
SSD participants had an N1 score 3 or below, with 60 participants
having a score of 4 or higher. Table 2a, b provide further
demographic and clinical details for the negative-symptom and
blunted-affect sub cohorts, respectively.
Duration of participant-only audio recordings for the control

group were on average 517 s long, with a minimum duration of
108 and a maximum of 1972 s (SD - 331 s) while for SSD cohort the
average was 410 s (min - 51 s, max 1594, SD 316 s). Note that these
durations are the total duration only of the extracted, unin-
terrupted 10 s fragments per interview which were assigned to the
participant. The spectrogram pipeline resulted in an SSD patients
& HCs cohort of 110,246 unique spectrograms. The negative
symptom cohorts containing only SSD patients had 59,562 unique
spectrograms each.

Classifiers
Classification results for the three tasks on a per-spectrogram basis
are summarized in Table 3. Overall, the diagnostic classifier showed

strong performance, attaining an AUC of 0.8651 and yielding
87.83% test accuracy. Within this framework, healthy controls
were identified with a moderate precision (0.7446) and high recall
(0.8365), whereas the schizophrenia-spectrum group displayed
notably higher precision (0.9366) and a robust F1 score of 0.9147.
For the negative symptom severity classifier, designed to

distinguish more severely ill from less severely ill patients based
on overall symptom severity, accuracy was 80.46% though the
AUC dropped to 0.7330. As the precision and F1 scores indicate,
the sub-median (“less severe”) group was identified with
substantially higher certainty than the above-median (“more
severe”) group. Finally, the blunted affect (N1) classifier achieved
87.84% accuracy, along with an AUC of 0.7856. Though the mildly
ill subgroup (N1 ≤ 3) was classified with near-perfect precision
(0.9734) and high recall, 0.893, the more severely ill subgroup’s
performance was notably lower, mirroring the pattern seen in the
median-split task.
When we applied the blunted affect classifier to the negative

severity-based classification task, performance declined notably,
with the AUC dropping to 0.5831. Similarly, the negative
severity-based classification classifier applied to the blunted
affect dropped to an AUC of 0.5334. Note that the blunted affect
and severity splits were trained on the same spectrograms of the
same SSD participants, but divided differently. This decline in
performance indicates that the blunted affect models are indeed
capturing symptom-specific acoustic patterns rather than gen-
eral illness severity and vice versa, as indicated by the contrast
with their stronger original results on the negative-symptom
classification task. Diagnostic classifier performance on negative
symptom severity ratings dropped to an AUC of 0.5046 with an
accuracy of 0.6482, while for the N1 division it dropped to
0.4954 (test-set accuracy of 0.3518). See supplemental Table S1
for all metrics of trained model performance on different
divisions.
When averaging spectrograms on a subject basis to achieve

per-participant scores, accuracy was similar for diagnostic (87.8%
spectrogram-level; 89.8% participant-level), dropped somewhat

Fig. 1 Flowchart of the general processing pipeline, going from the raw audio signal (top left) to 10 s spectrograms based on time stamped
transcription (bottom left), binary classification through a resnet-18 based convolutional neural network into either patient-control, median
negative symptom or clinical blunted affect classifiers (bottom right), with accompanying grad-CAM visualization of convolutional layers,
showing log-mel spectrograms areas of interest (top right).
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for median symptom classification (80.5% vs 71.4%) and was
similar for N1 detection (87.84% vs 85.7%).
Comparing the CNN approach to the wav2vec2 and eGe-

MAPSv02 methods showed CNN accuracy outperforming them on
diagnosis (87.83, 81.6 and 71.4% for CNN,wav2vec and eGe-
MAPSv02, respectively), median split (81.6, 75.0 and 71.4%
respectively) and N1 (87.8, 71.4 and 75.0% respectively) - but
eGeMAPSv02 had a higher AUC for N1 classification (0.856 versus
0.786 for CNN; for full results see Supplementary Table S2).

Grad-CAM visualization results
Grad-CAM heatmaps revealed a progressive refinement of
activations across the five convolutional blocks [(7 × 7, 64),
(3 × 3, 64), (3 × 3, 128), (3 × 3, 256) and (3 × 3, 512)], with each
stage focusing more sharply on spectro-temporal features of
interest (Fig. 1). In the final layer, these regions aligned with
stretches of speech in the mid-frequency range, suggesting the
model was leveraging information tied to vocal articulation and
resonance.
Next, examining the longest contiguous activation above 63%

of maximum intensity allowed us to gauge how much continuous
speech shaped the network’s decisions. In the SSD-versus-HC
classifier, the median uninterrupted activation was 5.45 s for
controls and 6.61 s for patients, indicating that entire phrases
rather than isolated phonemes were implicated. Similarly, for
blunted affect detection, median active durations were 6.52 s (N1/
123) and 5.27 s (N1/4567), suggesting that multiple consecutive

words, along with their intervening pauses, played a key role in
classification.

DISCUSSION
Our findings indicate that analyzing spectrograms of brief, 10 s
speech segments can reliably identify a range of psychotic
disorders that occur in schizophrenia spectrum and the individuals
with clinically notable blunted affect, a core negative symptom,
with sufficient accuracy (AUC > 0.75). By preserving both acoustic
details (pitch, prosody) and short-term temporal cues (pauses,
shifts in vocal energy), our CNN-based approach highlights the
importance of moment-to-moment fluctuations in speech—
features often lost when data are averaged across entire
recordings. From a theoretical standpoint, this work underscores
the role of negative symptoms in modulating subtle aspects of
speech production [51, 52]. Moreover, by specifically isolating
blunted affect as one symptom of interest, we demonstrate that a
single clinical construct can be captured from short vocal samples.
Data-driven models proved capable of extracting these cues
without relying on handcrafted metrics, suggesting that speech-
based markers of blunted affect or overall symptom severity can
be detected in short conversational fragments.
Our results confirm previous findings suggesting that acoustic

speech features can serve as reliable biomarkers for the
distinguishment of schizophrenia spectrum disorder patients from
healthy controls [9, 53]. We further confirm previous findings that

Table 2. Demographic and clinical characteristics of clinical sub-cohorts.

a

Demographics of SSD patients with sub-median average negative PANSS scores against SSD patients with above-median average negative
PANSS scores.

Category Sub-median average negative PANSS
score (n= 97)

Above-median average negative PANSS
score (n= 82)

Statistics

Age

Years M
(SD)

27.4 (7.04) 28.27 (11.51) F= 0.379, p= 0.539

Sex

Male n (%) 70 (72.16) 66 (80.49) X2= 1.2613, p= 0.2614

Clinical scores

N1 M
(SD)

1.39 (0.67) 4.23 (1.28) F= 361, p < 0.001a

N1, N4, N6 M
(SD)

4.26 (1.56) 12.11 (3.45) F= 404.6, p < 0.001a

b

Demographics of SSD patients with a N1 score ≤3 against SSD patients with a N1 score >3

Category Mildly ill patients (PANSS N1 score ≤ 3,
n= 119)

Severely ill patients (PANSS N1 score > 3,
n= 60)

Statistic

Age

Years M
(SD)

26.98 (7.18) 29.38 (12.44) F= 2.632, p= 0.107

Sex

Male n (%) 88 (73.95) 48 (80) X² = 0.50288, p= 0.4782

Clinical scores

N1 M
(SD)

1.62 (0.81) 4.82 (0.91) F= 567.6, p < 0.001a

N1, N4, N6 M
(SD)

5.18 (2.46) 13.15 (3.43) F= 318.2, p < 0.001a

M mean, SD standard deviation, PANSS positive and negative syndrome scale, NOS not otherwise specified, FEP first episode psychosis, CHR clinical high risk.
aIndicates p value < 0.001.
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acoustic speech features may serve not only as reliable biomarkers
for distinguishing schizophrenia spectrum disorder patients
from healthy controls, but also in classifying the severity of the
disorder [9, 54].
Our diagnostic classifier (AUC= 0.865) is more accurate than

our symptom severity classifiers (AUC= 0.733, AUC= 0.786). This
can be explained by the presence of at least some symptoms in
both patient groups, making the differences between groups
smaller and thus making classification harder. Identifying
individuals with prominent blunted affect (N1) was more
accurate (AUC= 0.7856) than identifying those with higher
overall negative symptom burden (AUC= 0.7330). This is to be
expected as blunted affect (N1) is a primarily acoustic feature,
while the other negative symptoms (N4 and N6) require an
assessment of pragmatic aspects of one’s interaction with
others [39].
Our diagnostic classifier did not perform better than chance

when applied to identify symptom severity (AUCs <0.51). Of
note, acoustic features that correlate with negative symptoms
are known to contribute to the diagnostic separation of
schizophrenia [55], but to our knowledge cross-label applica-
tions of severity and diagnostic markets have not been reported
to date. Our results indicate that the pattern contributing to
acoustic separation of diagnostic category is not the same as the
pattern that marks symptom severity. This resonates with the
fact that clinicians often use distinct features to identify
diagnoses (i.e., presence or absence of a set of defined
symptoms), but employ a different approach to appraise the
severity of a patient’s condition (frequency, distress and
functional effects of those symptoms).
We obtained a lower AUC in our diagnostic classifier than some

previous literature using a similar approach (AUC= 0.9978, [24]).
However, it is important to note that we had access to a larger,
more heterogeneous sample of 227 patients, while Fu et al.
recruited 56 patients for a single study. Existing work has often
used narrowly defined cohorts, limiting how well findings
generalize across the wide range of illness stages and symptom
presentations that characterize the schizophrenia spectrum
[8, 24, 55–57].
Concurrent with a heterogeneous data set, preventing data

leakage is vital in clinical machine learning, as inadvertently
reusing the same participant’s data in both training and testing
can lead to overly optimistic performance estimates and hamper
real-world applicability [58–61]. In many biomedical studies, large
datasets are segmented at the slice, patch, or short-segment level
under cross-validation, inadvertently allowing identical or near-
identical information to appear across folds. To avoid this pitfall,
we enforced a strict participant-level split for training, validation,
and test sets, while also balancing the proportion of samples
sourced from each original study. This approach preserves
independence between datasets, better reflects actual clinical

usage scenarios, and provides a robust measure of the model’s
true predictive power.

Strengths and limitations
Our approach features a large, well-defined multi-stage sample
capturing the real-world clinical population to whom the eventual
results will be applicable. Our strict partitioning of training,
validation, and test sets, ensured a realistic estimate of model
performance, with transparent insights into the model’s decision
making based on Grad-CAM analysis. Compared to alternative
algorithms, such as wav2vec, that learn representations from raw
waveforms without spectrograms [26], Grad-CAM provided the
visual interpretability required to precisely pinpoint the
time–frequency plane critical for the classificatory performance.
Despite the strengths of our transparent, clinically interpretable
outputs, we have a few limitations that require further considera-
tion. We did not control for dosage of medication on a participant
level, although we balanced type (i.e. medication-naive, long-
acting injectable) across test, train and validation sets. We
restricted our analysis to a single language - English, which may
limit generalizability to other languages [14]. In addition, we
concentrated on only detecting one specific symptom—blunted
affect—while the symptoms in schizophrenia encompass a
broader range of phenomena (e.g., social withdrawal, poverty of
speech). Future studies could expand on these points by
examining multilingual datasets and addressing a more diverse
array of symptom constructs.
Diagnostic classification had a strong performance, achieving

an accuracy of 87.8%1. Within the patients, performance was
lower (80.46% for negative symptoms) or similar (87.84% for
blunted affect). Because this margin is small, and because the split
group size for the symptom divisions decreases the opportunity
for the model to adequately train; results for split groups should
be interpreted with more caution than our patient/control
division. We kept a single, stratified train/validation/test split
mirroring clinical deployment while aiming to preserve balanced
heterogeneity of diagnosis, illness stage, type of medication and
sex across partitions. The objective was not to chase peak
accuracy but to show that a raw spectrogram CNN can classify
disorder and pick up specific symptom profiles. Looking ahead,
mapping which frequency–time domains drive classifications
across larger samples and sites, or with careful application of
data augmentation preserving set independence [47], may yield
more granular and robust symptom detectors.
Our findings underscore the promise of a CNN-based analysis of

short speech segments for both diagnosing schizophrenia
spectrum disorders and gauging negative-symptom severity. By
retaining temporal structure and acoustic detail, this method
captures important nuances often lost in simpler feature-
averaging strategies. With further refinements—such as multi-
lingual datasets or expanded symptom domains—these

Table 3. Performance metrics of classifiers.

AUC Test accuracy (%) Precision Recall F1 score

Diagnostic classifier

HC 0.8651 87.83 0.7446 0.8365 0.7879

SSD 0.9366 0.8938 0.9147

Median-split classifier

Sub-median 0.733 80.46 0.9627 0.8188 0.8849

Above-median 0.2431 0.6473 0.3535

Blunted affect (N1) classifier

Mildly ill (N1 ≤ 3) 0.7856 87.84 0.9734 0.8936 0.9318

Severely ill (N1 > 3) 0.325 0.6776 0.4393
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approaches could become increasingly relevant for clinical
assessment and longitudinal symptom tracking.
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