Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Barriers and opportunities for resilient and sustainable urban forests

An Author Correction to this article was published on 17 March 2025

This article has been updated

Abstract

As cities heat up and expand in area and population, urban forests offer a nature-based solution to enhance liveability and reduce rising temperatures in cities. However, urban forests are vulnerable to climate change and face costly establishment and maintenance challenges. Here we explore four key ecological and socioeconomic barriers to achieving resilient urban forests: species selection, tree supply, tree life cycle (establishment and maintenance, including irrigation) and community engagement. We discuss how integrating traditional urban forestry practices with emerging technology offers a holistic approach to creating resilient, sustainable urban forests that can adapt to climate change while meeting community needs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of urban tree vulnerabilities to extreme weather events across the globe.
Fig. 2: Four ecological and socioeconomic barriers to achieving resilient, sustainable urban forests.
Fig. 3: Examples of urban management practices and community engagement across the globe.

Similar content being viewed by others

Change history

References

  1. Dyer, G. M. C. et al. Exploring the nexus of urban form, transport, environment and health in large-scale urban studies: a state-of-the-art scoping review. Environ. Res. 257, 119324 (2024).

  2. Emissions Gap Report 2023: Broken Record—Temperatures Hit New Highs, Yet World Fails to Cut Emissions (UNEP, 2023).

  3. April 2024 Was Earth’s Warmest on Record (NOAA, 2024).

  4. Dodman, D., Hayward, B., Pelling, M., Castán Broto, V. & Chow, W. T. in Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H. O. et al.) 907–1040 (Cambridge Univ. Press, 2022).

  5. Oke, T. R. City size and the urban heat island. Atmos. Environ. 7, 769–779 (1973).

  6. Steele, W., Handmer, J. & McShane, I. Hot Cities: A Transdisciplinary Agenda (Edward Elgar, 2023).

  7. Klein, R. J. T., Nicholls, R. J. & Thomalla, F. Resilience to natural hazards: how useful is this concept? Glob. Environ. Change B 5, 35–45 (2003).

    Google Scholar 

  8. Miller, R. W., Hauer, R. J. & Werner, L. P. Urban Forestry: Planning and Managing Urban Greenspaces 3rd edn (Waveland Press, 2015).

  9. Keeler, B. L. et al. Social-ecological and technological factors moderate the value of urban nature. Nat. Sustain. 2, 29–38 (2019).

    Article  Google Scholar 

  10. Ballinas, M. & Barradas, V. L. The urban tree as a tool to mitigate the urban heat island in Mexico City: a simple phenomenological model. J. Environ. Qual. 45, 157–166 (2016).

    Article  Google Scholar 

  11. Moss, J. L., Doick, K. J., Smith, S. & Shahrestani, M. Influence of evaporative cooling by urban forests on cooling demand in cities. Urban For. Urban Green. 37, 65–73 (2019).

    Article  Google Scholar 

  12. Esperon-Rodriguez, M. et al. Climate change increases global risk to urban forests. Nat. Clim. Change 12, 950–955 (2022).

    Article  Google Scholar 

  13. Yan, P. & Yang, J. Performances of urban tree species under disturbances in 120 cities in China. Forests 9, 50 (2018).

    Article  Google Scholar 

  14. Tubby, K. & Webber, J. Pests and diseases threatening urban trees under a changing climate. Forestry 83, 451–459 (2010).

    Article  Google Scholar 

  15. Roman, L. A. et al. Human and biophysical legacies shape contemporary urban forests: a literature synthesis. Urban For. Urban Green. 31, 157–168 (2018).

    Article  Google Scholar 

  16. Flörke, M., Schneider, C. & McDonald, R. I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 1, 51–58 (2018).

    Article  Google Scholar 

  17. Vogt, J., Hauer, R. J. & Fischer, B. C. The costs of maintaining and not maintaining the urban forest: a review of the urban forestry and arboriculture literature. Arboricult. Urban For. 41, 293–323 (2015).

    Google Scholar 

  18. Krizek, D. T. & Dubik, S. P. Influence of water stress and restricted root volume on growth and development of urban trees. J. Arboricult. 13, 47–55 (1987).

    Google Scholar 

  19. Esperon-Rodriguez, M. et al. Assessing climate risk to support urban forests in a changing climate. Plants People Planet 4, 201–213 (2022).

    Article  Google Scholar 

  20. Calfapietra, C., Peñuelas, J. & Niinemets, Ü. Urban plant physiology: adaptation-mitigation strategies under permanent stress. Trends Plant Sci. 20, 72–75 (2015).

    Article  Google Scholar 

  21. Brandt, L. et al. A framework for adapting urban forests to climate change. Environ. Sci. Policy 66, 393–402 (2016).

    Article  Google Scholar 

  22. Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Evol. Syst. 33, 125–159 (2002).

    Article  Google Scholar 

  23. Markesteijn, L. & Poorter, L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J. Ecol. 97, 311–325 (2009).

    Article  Google Scholar 

  24. Munné-Bosch, S. Limits to tree growth and longevity. Trends Plant Sci. 23, 985–993 (2018).

    Article  Google Scholar 

  25. Messier, C. et al. The functional complex network approach to foster forest resilience to global changes. For. Ecosyst. 6, 21 (2019).

    Article  Google Scholar 

  26. Paquette, A. et al. Praise for diversity: a functional approach to reduce risks in urban forests. Urban For. Urban Green. 62, 127157 (2021).

    Article  Google Scholar 

  27. Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946 (2013).

    Article  Google Scholar 

  28. Hilbert, D. R. et al. Selecting and assessing underutilized trees for diverse urban forests: a participatory research approach. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2022.759693 (2022).

  29. Huff, E. S. et al. A literature review of resilience in urban forestry. Arboricult. Urban For. 46, 185–196 (2020).

  30. Maliniemi, T. et al. Too much diversity—multiple definitions of geodiversity hinder its potential in biodiversity research. Divers. Distrib. 30, e13843 (2024).

    Article  Google Scholar 

  31. Joyner, J. L. et al. Green infrastructure design influences communities of urban soil bacteria. Front. Microbiol. 10, 982 (2019).

    Article  Google Scholar 

  32. Bonthoux, S. & Chollet, S. Wilding cities for biodiversity and people: a transdisciplinary framework. Biol. Rev. 99, 1458–1480 (2024).

    Article  Google Scholar 

  33. Nix, S., Roman, L. A., Healy, M., Rogan, J. & Pearsall, H. Linking tree cover change to historical management practices in urban parks. Landsc. Ecol. 38, 4227–4245 (2023).

    Article  Google Scholar 

  34. Street Tree Master Plan 2023. City of Sydney https://www.cityofsydney.nsw.gov.au/strategies-action-plans/street-tree-master-plan (2023).

  35. Thompson, I., Mackey, B., McNulty, S. & Mosseler, A. Forest Resilience, Biodiversity, and Climate Change. A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems (Technical Series no. 43) (Secretariat of the Convention on Biological Diversity, 2009).

  36. McLeod, K. W. Species selection trials and silvicultural techniques for the restoration of bottomland hardwood forests. Ecol. Eng. 15, S35–S46 (2000).

    Article  Google Scholar 

  37. O’Brien, L., Derks, J. & Schuck, A. The Use of Marteloscopes in Science: A Review of Past Research and Suggestions for Further Application (Integrate Network, 2022).

  38. Booth, T. H. The need for a global tree trial database. New For. 54, 1–7 (2023).

    Article  Google Scholar 

  39. Hilbert, D. R. et al. Expanding urban tree species diversity in Florida (USA): challenges and opportunities for practitioners. Soc. Nat. Resour. 36, 891–908 (2023).

    Article  Google Scholar 

  40. Williams, M. I. & Dumroese, R. K. Assisted migration: what it means to nursery managers and tree planters. Tree Plant Notes 57, 21–26 (2014).

  41. Sjöman, H., Hirons, A. & Bassuk, N. Improving confidence in tree species selection for challenging urban sites: a role for leaf turgor loss. Urban Ecosyst. 21, 1171–1188 (2018).

    Article  Google Scholar 

  42. Landis, T. D., Bonner, F. & Karrfalt, R. in The Woody Plant Seed Manual (eds Bonner, F. T. & Karrfalt, R. P.) 125–146 (USDA Forest Service, 2008).

  43. Rae, R. A., Simon, G. & Braden, J. in Urban Forests. Ecosystem Services and Management (ed. Blum, J.) 111–142 (Apple Academic Press, 2017).

  44. Hewett, E. W. High-value horticulture in developing countries: barriers and opportunities. CAB Rev. 7, 1–16 (2012).

    Article  Google Scholar 

  45. Sjöman, H. & Watkins, J. H. R. What do we know about the origin of our urban trees?—A North European perspective. Urban For. Urban Green. 56, 126879 (2020).

    Article  Google Scholar 

  46. Niemiera, A. X. & Holle, B. V. in Management of Invasive Weeds (ed. Inderjit Centre for Environmental Management of Degraded Ecosystems (CEMDE), University of Delhi) 167–187 (Springer, 2009).

  47. Fady, B., Ducci, F. & Vendramin, G. G. in State of Mediterranean Forests 2013 (eds Basacier, C. et al.) 139–146 (FAO, 2013).

  48. Kelleher, C. et al. Approaches to the Conservation of Forest Genetic Resources in Europe in the Context of Climate Change (European Forest Genetic Resources Programme, 2015).

  49. Roman, L. A. et al. Linking urban tree cover change and local history in a post-industrial city. Land 10, 403 (2021).

    Article  Google Scholar 

  50. Chishaleshale, M., Shackleton, C. M., Gambiza, J. & Gumbo, D. The prevalence of planning and management frameworks for trees and green spaces in urban areas of South Africa. Urban For. Urban Green. 14, 817–825 (2015).

    Article  Google Scholar 

  51. Lo, A. Y. & Jim, C. Y. Willingness of residents to pay and motives for conservation of urban green spaces in the compact city of Hong Kong. Urban For. Urban Green. 9, 113–120 (2010).

    Article  Google Scholar 

  52. Gwedla, N. & Shackleton, C. M. The development visions and attitudes towards urban forestry of officials responsible for greening in South African towns. Land Use Policy 42, 17–26 (2015).

    Article  Google Scholar 

  53. Hou, J., Johnson, J. M. & Lawson, L. Greening Cities, Growing Communities (Landscape Architecture Foundation with Univ. Washington Press, 2009).

  54. Eisenman, T. S., Roman, L. A., Östberg, J., Campbell, L. K. & Svendsen, E. Beyond the Golden Shovel. J. Am. Plan. Assoc. https://doi.org/10.1080/01944363.2024.2330943 (2024).

  55. Wattenhofer, D. J. & Johnson, G. R. Understanding why young urban trees die can improve future success. Urban For. Urban Green. 64, 127247 (2021).

    Article  Google Scholar 

  56. Jim, C. Y. Soil volume restrictions and urban soil design for trees in confined planting sites. J. Landsc. Archit. 14, 84–91 (2019).

    Article  Google Scholar 

  57. Di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sustain. 1, 617–622 (2018).

    Article  Google Scholar 

  58. Roman, L. A., Battles, J. J. & McBride, J. R. Determinants of establishment survival for residential trees in Sacramento County, CA. Landsc. Urban Plan. 129, 22–31 (2014).

    Article  Google Scholar 

  59. Nitoslawski, S. A., Galle, N. J., Van Den Bosch, C. K. & Steenberg, J. W. N. Smarter ecosystems for smarter cities? A review of trends, technologies, and turning points for smart urban forestry. Sustain. Cities Soc. 51, 101770 (2019).

    Article  Google Scholar 

  60. Russo, A. & Escobedo, F. J. From smart urban forests to edible cities: new approaches in urban planning and design. Urban Plan. 7, 131–134 (2022).

    Article  Google Scholar 

  61. Fini, A. & Brunetti, C. in Routledge Handbook of Urban Forestry (eds Ferrini, F. et al.) 419–433 (Routledge, 2017).

  62. Furumai, H. Rainwater and reclaimed wastewater for sustainable urban water use. Phys. Chem. Earth Parts A/B/C 33, 340–346 (2008).

    Article  Google Scholar 

  63. Brom, P. et al. A decision support tool for green infrastructure planning in the face of rapid urbanization. Land 12, 415 (2023).

    Article  Google Scholar 

  64. Sjöman, H., Hirons, A. D. & Bassuk, N. L. Urban forest resilience through tree selection—variation in drought tolerance in Acer. Urban For. Urban Green. 14, 858–865 (2015).

    Article  Google Scholar 

  65. Mullaney, J., Lucke, T. & Trueman, S. J. A review of benefits and challenges in growing street trees in paved urban environments. Landsc. Urban Plan. 134, 157–166 (2015).

    Article  Google Scholar 

  66. Shashua-Bar, L., Pearlmutter, D. & Erell, E. The cooling efficiency of urban landscape strategies in a hot dry climate. Landsc. Urban Plan. 92, 179–186 (2009).

    Article  Google Scholar 

  67. Simpson, J. R. Improved estimates of tree-shade effects on residential energy use. Energy Build. 34, 1067–1076 (2002).

    Article  Google Scholar 

  68. Heynen, N., Perkins, H. A. & Roy, P. The political ecology of uneven urban green space:the impact of political economy on race and ethnicity in producing environmental inequality in Milwaukee. Urban Affairs Rev. 42, 3–25 (2006).

    Article  Google Scholar 

  69. Bloch, S. Shade (Places, 2019).

  70. Aznarez, C. et al. Luxury and legacy effects on urban biodiversity, vegetation cover and ecosystem services. npj Urban Sustain. 3, 47 (2023).

    Article  Google Scholar 

  71. Barboza, E. P. et al. Green space and mortality in European cities: a health impact assessment study. Lancet Planet. Health 5, e718–e730 (2021).

    Article  Google Scholar 

  72. Li, Y. et al. Green spaces provide substantial but unequal urban cooling globally. Nat. Commun. 15, 7108 (2024).

    Article  Google Scholar 

  73. Kelly, D., Davern, M., Farahani, L., Higgs, C. & Maller, C. Urban greening for health and wellbeing in low-income communities: a baseline study in Melbourne, Australia. Cities 120, 103442 (2022).

    Article  Google Scholar 

  74. Levy, D. K., Comey, J. & Padilla, S. In the face of gentrification: case studies of local efforts to mitigate displacement. J. Afford. Hous. Commun. Dev. Law 16, 238–315 (2007).

    Google Scholar 

  75. Adjei Mensah, C., Andres, L., Baidoo, P., Eshun, J. K. & Antwi, K. B. Community Participation in Urban Planning: The Case of Managing Green Spaces in Kumasi, Ghana Vol. 28 (Springer, 2017).

  76. Broussard, S. R., Washington-Ottombre, C. & Miller, B. K. Attitudes toward policies to protect open space: a comparative study of government planning officials and the general public. Landsc. Urban Plan. 86, 14–24 (2008).

    Article  Google Scholar 

  77. Wüstemann, H., Kalisch, D. & Kolbe, J. Access to urban green space and environmental inequalities in Germany. Landsc. Urban Plan. 164, 124–131 (2017).

    Article  Google Scholar 

  78. Koo, J.-C., Park, M. S. & Youn, Y.-C. Preferences of urban dwellers on urban forest recreational services in South Korea. Urban For. Urban Green. 12, 200–210 (2013).

    Article  Google Scholar 

  79. Shackleton, C. M. & Njwaxu, A. Does the absence of community involvement underpin the demise of urban neighbourhood parks in the Eastern Cape, South Africa? Landsc. Urban Plan. 207, 104006 (2021).

    Article  Google Scholar 

  80. Grant, A., Millward, A. A., Edge, S., Roman, L. A. & Teelucksingh, C. Where is environmental justice? A review of US urban forest management plans. Urban For. Urban Green. 77, 127737 (2022).

    Article  Google Scholar 

  81. Riedman, E. et al. Why don’t people plant trees? Uncovering barriers to participation in urban tree planting initiatives. Urban For. Urban Green. 73, 127597 (2022).

    Article  Google Scholar 

  82. Dakouré, A. & Georges, J.-Y. Urban trees as a lever for citizen engagement in public consultation processes: the case of Paris, France. Front. Sociol. 9, 1345943 (2024).

    Article  Google Scholar 

  83. Puskás, N., Abunnasr, Y. & Naalbandian, S. Assessing deeper levels of participation in nature-based solutions in urban landscapes—a literature review of real-world cases. Landsc. Urban Plan. 210, 104065 (2021).

    Article  Google Scholar 

  84. Anguelovski, I. et al. Expanding the boundaries of justice in urban greening scholarship: toward an emancipatory, antisubordination, intersectional, and relational approach. Ann. Am. Assoc. Geogr. 110, 1743–1769 (2020).

    Google Scholar 

  85. Ordóñez Barona, C. et al. The role of diverse cultural identities in the perceived value of urban forests in Melbourne, Australia, and implications for urban ecosystem research and practice. Ecol. Soc. 28, 1–22 (2023).

    Article  Google Scholar 

  86. Roman, L. A. et al. Beyond ‘trees are good’: disservices, management costs, and tradeoffs in urban forestry. Ambio 50, 615–630 (2021).

    Article  Google Scholar 

  87. Explore Melbourne’s urban forest. City of Melbourne http://melbourneurbanforestvisual.com.au (2020).

  88. Brown, T. B. et al. Using phenocams to monitor our changing Earth: toward a global phenocam network. Front. Ecol. Environ. 14, 84–93 (2016).

    Article  Google Scholar 

  89. Zhang, H., Song, H.-j. & Yu, B.-c. Application of hyper spectral remote sensing for urban forestry monitoring in natural disaster zones. In 2011 International Conference on Computer and Management (CAMAN) https://doi.org/10.1109/CAMAN.2011.5778867 (IEEE, 2011).

  90. Jahani, A., Saffariha, M. & Barzegar, P. Landscape aesthetic quality assessment of forest lands: an application of machine learning approach. Soft Comput. 27, 6671–6686 (2023).

    Article  Google Scholar 

  91. Ramaiah, M., Avtar, R. & Kumar, P. Treated wastewater use for maintenance of urban green spaces for enhancing regulatory ecosystem services and securing groundwater. Hydrology 9, 180 (2022).

    Article  Google Scholar 

  92. Fam, D. et al. Irrigation of Urban Green Spaces: A Review of the Environmental, Social and Economic Benefits (Cooperative Research Centre for Irrigation Futures, 2008).

  93. Wendling, L. A. & Holt, E. E. in Women in Water Quality: Investigations by Prominent Female Engineers (ed. O’Bannon, D. J.) 23–46 (Springer, 2020).

  94. Dyer, G. M. C. et al. Commentary: a road map for future data-driven urban planning and environmental health research. Cities 155, 105340 (2024).

    Article  Google Scholar 

  95. Wilkes-Allemann, J. et al. Envisioning the future—creating sustainable, healthy and resilient BioCities. Urban For. Urban Green. 84, 127935 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

M.E.-R. received funding from Research Theme Program from Western Sydney University. C.C. acknowledges the support of the National Biodiversity Future Centre (NBFC) funded by the Italian Ministry of University and Research, P.N.R.R., Missione 4 Componente 2, ‘Dalla ricerca all’impresa’, Investimento 1.4, project number CN00000033. J.C.S. was supported by the Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), funded by Danish National Research Foundation (grant number DNRF173). C.S. was funded by the South African Research Chairs Initiative of the Department of Science and Technology and the National Research Foundation of South Africa (grant number 84379). Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors, and the National Research Foundation (NRF) does not accept any liability in this regard. The opinions and findings expressed in this Review are those of the authors and should not be construed to represent any official United States Department of Agriculture (USDA) or US government determination or policy. Requests for materials should be addressed to M.E.-R.

Author information

Authors and Affiliations

Authors

Contributions

M.E.-R., R.V.G. and M.G.T. conceived the article. The manuscript was written by M.E.-R. with contributions from C.C., P.C., C.D., A.A.E., D.E.R., A.J., E.L., S.J.L., G.M., R.M.M., T.M., C.M., J.Ö., L.A.R., A.R., M.S., C.S., H.S., I.S., J.S., J.-C.S., N.v.D., B.W. and J.Y. All authors, M.E.-R., R.G., M.G.T., C.C., P.C., C.D., A.A.E., D.E.R., A.J., E.L., S.J.L., G.M., R.M.M., T.M., C.M., J.Ö., L.A.R., A.R., M.S., C.S., H.S., I.S., J.S., J.-C. S., N.v.D., B.W. and J.Y., contributed to the discussion of the content and reviewed or edited the manuscript before submission. All authors, except for M.E.-R., R.G. and M.G.T., are listed alphabetically.

Corresponding author

Correspondence to Manuel Esperon-Rodriguez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cities thanks Clive Davies and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esperon-Rodriguez, M., Gallagher, R., Calfapietra, C. et al. Barriers and opportunities for resilient and sustainable urban forests. Nat Cities 2, 290–298 (2025). https://doi.org/10.1038/s44284-025-00212-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44284-025-00212-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing