Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Biodiversity modeling to manage urban ecosystems for people and nature

Abstract

In the face of global change, cities increasingly need to reconcile people and nature by promoting biodiversity and improving human well-being as acknowledged by the COP15 biodiversity agreement. However, achieving these objectives requires data-informed decision-making to adapt cities to our changing world. Here we argue that the application of modeling frameworks from macroecology represents a big opportunity to precisely understand and inform current and future patterns of urban biodiversity and its contributions to people in cities. By closely collaborating with urban planners and decision-makers, resulting biodiversity outputs could assist urban management to better adapt to climate change, protect biodiversity, and optimize access to nature and its benefits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual framework of the potential interplay between biodiversity modeling and urban planning.
Fig. 2: Integration and applications of spatial biodiversity modeling to urban planning.
Fig. 3: Integrated urban planning for improved urban management.

Similar content being viewed by others

References

  1. Elmqvist, T. et al. Sustainability and resilience for transformation in the urban century. Nat. Sustain. 2, 267–273 (2019).

    Article  Google Scholar 

  2. Simkin, R. D., Seto, K. C., McDonald, R. I. & Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl Acad. Sci. USA 119, e2117297119 (2022).

    Article  Google Scholar 

  3. Rey, P.-L., Vittoz, P., Petitpierre, B., Adde, A. & Guisan, A. Linking plant and vertebrate species to nature’s contributions to people in the Swiss Alps. Sci. Rep. 13, 7312 (2023).

    Article  Google Scholar 

  4. Rocha, A. D. et al. Unprivileged groups are less served by green cooling services in major European urban areas. Nat. Cities 1, 424–435 (2024).

    Article  Google Scholar 

  5. Shackleton, C. M. & Gwedla, N. The legacy effects of colonial and apartheid imprints on urban greening in South Africa: spaces, species, and suitability. Front. Ecol. Evol. 8, 579813 (2021).

    Article  Google Scholar 

  6. Estien, C. O., Fidino, M., Wilkinson, C. E., Morello-Frosch, R. & Schell, C. J. Historical redlining is associated with disparities in wildlife biodiversity in four California cities. Proc. Natl Acad. Sci. USA 121, e2321441121 (2024).

    Article  Google Scholar 

  7. Lepczyk, C. A., Aronson, M. F. & La Sorte, F. A. Cities as sanctuaries. Front. Ecol. Environ. 21, 251–259 (2023).

    Article  Google Scholar 

  8. Uchida, K. et al. Urban biodiversity and the importance of scale. Trends Ecol. Evol. 36, 123–131 (2021).

    Article  Google Scholar 

  9. Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl Acad. Sci. USA 116, 909–914 (2019).

    Article  Google Scholar 

  10. Dunn, R. R., Gavin, M. C., Sanchez, M. C. & Solomon, J. N. The pigeon paradox: dependence of global conservation on urban nature. Conserv. Biol. 20, 1814–1816 (2006).

    Article  Google Scholar 

  11. Oke, C. et al. Cities should respond to the biodiversity extinction crisis. npj Urban Sustain. 1, 11 (2021).

    Article  Google Scholar 

  12. Acuto, M., Parnell, S. & Seto, K. C. Building a global urban science. Nat. Sustain. 1, 2–4 (2018).

    Article  Google Scholar 

  13. Nilon, C. H. et al. Planning for the future of urban biodiversity: a global review of city-scale initiatives. Bioscience 67, 332–342 (2017).

    Article  Google Scholar 

  14. Perrelet, K., Moretti, M., Dietzel, A., Altermatt, F. & Cook, L. M. Engineering blue–green infrastructure for and with biodiversity in cities. npj Urban Sustain. 4, 27 (2024).

    Article  Google Scholar 

  15. Cook, L. M. et al. Towards the intentional multifunctionality of urban green infrastructure: a paradox of choice? npj Urban Sustain. 4, 12 (2024).

    Article  Google Scholar 

  16. Parris, K. M. et al. The seven lamps of planning for biodiversity in the city. Cities 83, 44–53 (2018).

    Article  Google Scholar 

  17. Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).

    Article  Google Scholar 

  18. Andersson, E. K., Lyngstad, T. H. & Sleutjes, B. Comparing patterns of segregation in north-western Europe: a multiscalar approach. Eur. J. Popul. 34, 151–168 (2018).

    Article  Google Scholar 

  19. Andersson, E. K. et al. A comparative study of segregation patterns in Belgium, Denmark, the Netherlands and Sweden: neighbourhood concentration and representation of non-European migrants. Eur. J. Popul. 34, 251–275 (2018).

    Article  Google Scholar 

  20. Zumwald, M., Knüsel, B., Bresch, D. N. & Knutti, R. Mapping urban temperature using crowd-sensing data and machine learning. Urban Clim. 35, 100739 (2021).

    Article  Google Scholar 

  21. Casanelles-Abella, J. et al. Applying predictive models to study the ecological properties of urban ecosystems: a case study in Zürich, Switzerland. Landsc. Urban Plan. 214, 104137 (2021).

    Article  Google Scholar 

  22. Planillo, A. et al. Arthropod abundance modulates bird community responses to urbanization. Divers. Distrib. 27, 34–49 (2021).

    Article  Google Scholar 

  23. Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369, eaay4497 (2020).

    Article  Google Scholar 

  24. EU Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives (EC, 2020).

  25. Sofaer, H. R. et al. Development and delivery of species distribution models to inform decision-making. Bioscience 69, 544–557 (2019).

    Article  Google Scholar 

  26. Knapp, S. et al. A research agenda for urban biodiversity in the global extinction crisis. Bioscience 71, 268–279 (2021).

    Article  Google Scholar 

  27. Ellis-Soto, D., Chapman, M. & Locke, D. H. Historical redlining is associated with increasing geographical disparities in bird biodiversity sampling in the United States. Nat. Hum. Behav. 7, 1869–1877 (2023).

    Article  Google Scholar 

  28. Hortal, J. et al. Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117, 847–856 (2008).

    Article  Google Scholar 

  29. Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).

    Article  Google Scholar 

  30. Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models (Cambridge Univ. Press, 2017).

  31. Chauvier, Y. et al. Novel methods to correct for observer and sampling bias in presence‐only species distribution models. Glob. Ecol. Biogeogr. 30, 2312–2325 (2021).

    Article  Google Scholar 

  32. Sandel, B., Merow, C., Serra‐Diaz, J. M. & Svenning, J. Disequilibrium in plant distributions: challenges and approaches for species distribution models. J. Ecol. https://doi.org/10.1111/1365-2745.70009 (2025).

  33. Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).

    Article  Google Scholar 

  34. Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol Lett 8, 993–1009 (2005).

    Article  Google Scholar 

  35. Francis, A. P. & Currie, D. J. A globally consistent richness-climate relationship for angiosperms. Am. Nat. 161, 523–536 (2003).

    Article  Google Scholar 

  36. Hahs, A. K. et al. Urbanisation generates multiple trait syndromes for terrestrial animal taxa worldwide. Nat. Commun. 14, 4751 (2023).

    Article  Google Scholar 

  37. Kass, J. M., Fukaya, K., Thuiller, W. & Mori, A. S. Biodiversity modeling advances will improve predictions of nature’s contributions to people. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2023.10.011 (2023).

  38. Paquette, A. et al. Praise for diversity: a functional approach to reduce risks in urban forests. Urban For. Urban Green. 62, 127157 (2021).

    Article  Google Scholar 

  39. Burton, V. J. & Cameron, E. K. Learning more about earthworms with citizen science. Front. Young Minds 8, 548525 (2021).

    Article  Google Scholar 

  40. Delisle, Z. J., Flaherty, E. A., Nobbe, M. R., Wzientek, C. M. & Swihart, R. K. Next-generation camera trapping: systematic review of historic trends suggests keys to expanded research applications in ecology and conservation. Front. Ecol. Evol. 9, 617996 (2021).

    Article  Google Scholar 

  41. Fairbrass, A. J. et al. CityNet—deep learning tools for urban ecoacoustic assessment. Methods Ecol. Evol. 10, 186–197 (2019).

    Article  Google Scholar 

  42. Deiner, K., Yamanaka, H. & Bernatchez, L. The future of biodiversity monitoring and conservation utilizing environmental DNA. Environ. DNA 3, 3–7 (2021).

    Article  Google Scholar 

  43. Casanelles-Abella, J., Fontana, S., Meier, E. S., Moretti, M. & Fournier, B. Spatial mismatch between wild bee diversity hotspots and protected areas. Conserv. Biol. 37, e14082 (2023).

    Article  Google Scholar 

  44. Chauvier, Y. et al. Resolution in species distribution models shapes spatial patterns of plant multifaceted diversity. Ecography 2022, e05973 (2022).

    Article  Google Scholar 

  45. Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Article  Google Scholar 

  46. Petchey, O. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).

    Article  Google Scholar 

  47. Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).

    Article  Google Scholar 

  48. Hamel, P. et al. Mapping the benefits of nature in cities with the InVEST software. npj Urban Sustain. 1, 25 (2021).

    Article  Google Scholar 

  49. Stange, E. E., Zulian, G., Rusch, G. M., Barton, D. N. & Nowell, M. Ecosystem services mapping for municipal policy: ESTIMAP and zoning for urban beekeeping. One Ecosyst. 2, e14014 (2017).

    Article  Google Scholar 

  50. Faith, D. P. in Phylogenetic Diversity Vol. 1 (eds Scherson, R. & Faith, D. P.) 1–26 (Springer, 2018).

  51. Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, eaax0903 (2019).

    Article  Google Scholar 

  52. Leong, M., Dunn, R. R. & Trautwein, M. D. Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 20180082 (2018).

    Article  Google Scholar 

  53. Watkins, S. L. & Gerrish, E. The relationship between urban forests and race: a meta-analysis. J. Environ. Manag. 209, 152–168 (2018).

    Article  Google Scholar 

  54. Burghardt, K. T. et al. Current street tree communities reflect race‐based housing policy and modern attempts to remedy environmental injustice. Ecology 104, e3881 (2023).

    Article  Google Scholar 

  55. Lang, N., Jetz, W., Schindler, K. & Wegner, J. D. A high-resolution canopy height model of the Earth. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-023-02206-6 (2023).

  56. Erlwein, S., Meister, J., Wamsler, C. & Pauleit, S. Governance of densification and climate change adaptation: how can conflicting demands for housing and greening in cities be reconciled? Land Use Policy 128, 106593 (2023).

    Article  Google Scholar 

  57. Li, Y. et al. Green spaces provide substantial but unequal urban cooling globally. Nat. Commun. 15, 7108 (2024).

    Article  Google Scholar 

  58. Hansen, R., Mattes, A., Meier, M. & Kurths, A. Reorienting urban green infrastructure planning towards biodiversity—perspectives and ongoing debates from Germany. Urban For. Urban Green 90, 128155 (2023).

    Article  Google Scholar 

  59. Diezmartínez, C. V. & Short Gianotti, A. G. US cities increasingly integrate justice into climate planning and create policy tools for climate justice. Nat. Commun. 13, 5763 (2022).

    Article  Google Scholar 

  60. Brelsford, C., Lobo, J., Hand, J. & Bettencourt, L. M. A. Heterogeneity and scale of sustainable development in cities. Proc. Natl Acad. Sci. USA 114, 8963–8968 (2017).

    Article  Google Scholar 

  61. Egerer, M., Fouch, N., Anderson, E. C. & Clarke, M. Socio-ecological connectivity differs in magnitude and direction across urban landscapes. Sci. Rep. 10, 4252 (2020).

    Article  Google Scholar 

  62. Escobedo, F. J., Kroeger, T. & Wagner, J. E. Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ. Pollut. 159, 2078–2087 (2011).

    Article  Google Scholar 

  63. Pereira, P. & Baró, F. Greening the city: thriving for biodiversity and sustainability. Sci. Total Environ. 817, 153032 (2022).

    Article  Google Scholar 

  64. Kendal, D. et al. A global comparison of the climatic niches of urban and native tree populations. Glob. Ecol. Biogeogr. 27, 629–637 (2018).

    Article  Google Scholar 

  65. Grünig, M., Mazzi, D., Calanca, P., Karger, D. N. & Pellissier, L. Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change. Commun. Biol. 3, 233 (2020).

    Article  Google Scholar 

  66. Hirzel, A. & Guisan, A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol. Modell. 157, 331–341 (2002).

    Article  Google Scholar 

  67. Gavish, Y. et al. Accounting for biotic interactions through alpha‐diversity constraints in stacked species distribution models. Methods Ecol. Evol. 8, 1092–1102 (2017).

    Article  Google Scholar 

  68. Poggiato, G. et al. On the Interpretations of joint modeling in community ecology. Trends Ecol. Evol. 36, 391–401 (2021).

    Article  Google Scholar 

  69. Brun, P. et al. Multispecies deep learning using citizen science data produces more informative plant community models. Nat. Commun. 15, 4421 (2024).

    Article  Google Scholar 

  70. Allen, M. A., Roberts, D. A. & McFadden, J. P. Reduced urban green cover and daytime cooling capacity during the 2012–2016 California drought. Urban Clim. 36, 100768 (2021).

    Article  Google Scholar 

  71. Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).

    Article  Google Scholar 

  72. Chase, J. M., Jeliazkov, A., Ladouceur, E. & Viana, D. S. Biodiversity conservation through the lens of metacommunity ecology. Ann. N. Y. Acad. Sci. 1469, 86–104 (2020).

    Article  Google Scholar 

  73. Simons, A. L. et al. Correction to: Constructing ecological indices for urban environments using species distribution models. Urban Ecosyst. https://doi.org/10.1007/s11252-022-01275-y (2022).

  74. Geppert, C. et al. Temperature and not landscape composition shapes wild bee communities in an urban environment. Insect Conserv. Divers. https://doi.org/10.1111/icad.12602 (2022).

  75. McDonald, J. L. & Skillings, E. Human influences shape the first spatially explicit national estimate of urban unowned cat abundance. Sci. Rep. 11, 20216 (2021).

    Article  Google Scholar 

  76. Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).

    Article  Google Scholar 

  77. Egerer, M. & Anderson, E. Social-ecological connectivity to understand ecosystem service provision across networks in urban landscapes. Land 9, 530 (2020).

    Article  Google Scholar 

  78. Boeing, G. et al. Using open data and open-source software to develop spatial indicators of urban design and transport features for achieving healthy and sustainable cities. Lancet Glob. Health 10, e907–e918 (2022).

    Article  Google Scholar 

  79. Hu, L. et al. Monitoring housing rental prices based on social media: an integrated approach of machine-learning algorithms and hedonic modeling to inform equitable housing policies. Land Use Policy 82, 657–673 (2019).

    Article  Google Scholar 

  80. Mapping inequality. ESRI https://www.arcgis.com/home/item.html?id=e669e5298ba146cc8369f9cbde6eead4 (2024).

  81. Haandrikman, K., Costa, R., Malmberg, B., Rogne, A. F. & Sleutjes, B. Socio-economic segregation in European cities. A comparative study of Brussels, Copenhagen, Amsterdam, Oslo and Stockholm. Urban Geogr. 44, 1–36 (2021).

    Article  Google Scholar 

  82. Dmowska, A. & Stepinski, T. F. High resolution dasymetric model of U.S demographics with application to spatial distribution of racial diversity. Appl. Geogr. 53, 417–426 (2014).

    Article  Google Scholar 

  83. Chauvier, Y. et al. Influence of climate, soil, and land cover on plant species distribution in the European Alps. Ecol. Monogr. 91, 1–14 (2021).

    Article  Google Scholar 

  84. Mijling, B. High-resolution mapping of urban air quality with heterogeneous observations: a new methodology and its application to Amsterdam. Atmos. Meas. Tech. 13, 4601–4617 (2020).

    Article  Google Scholar 

  85. Buchhorn, M. et al. Copernicus Global Land Service: land cover 100m: collection 3: epoch 2015: globe. Zenodo https://doi.org/10.5281/zenodo.3939038 (2020).

  86. Dmowska, A., Stepinski, T. F. & Nowosad, J. Racial landscapes—a pattern-based, zoneless method for analysis and visualization of racial topography. Appl. Geogr. 122, 102239 (2020).

    Article  Google Scholar 

  87. Aiello, L. M., Schifanella, R., Quercia, D. & Aletta, F. Chatty maps: constructing sound maps of urban areas from social media data. R. Soc. Open Sci. 3, 150690 (2016).

    Article  Google Scholar 

  88. Loss, S. R., Will, T. & Marra, P. P. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4, 1396 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

J.C.-A. was funded by the SNF Postdoc.Mobility fellowship (grant number 217754). J.C.-A. and M.M. acknowledge support from the SNF Synergia program PAPPUS project (grant number 213584) and the BiodivERsA project BioVEINS (grant number 172467). Y.C.-M. and N.E.Z. have been supported by the ANR-SNF bilateral project OriginAlps (grant number 310030L_170059). We thank L. Roux for her support throughout the long processes of writing this Perspective and for the many discussions on the topic. We thank C. Graham for her feedback and also K. Thrace, G. Baltar and W. Adama for their continuing motivation and moral boost.

Author information

Authors and Affiliations

Authors

Contributions

J.C.-A. and Y.C.-M. conceived the Perspective and wrote the first version of the paper. All authors revised and corrected the subsequent versions of the paper.

Corresponding authors

Correspondence to Joan Casanelles-Abella or Yohann Chauvier-Mendes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cities thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, and Boxes 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casanelles-Abella, J., Moretti, M., Kleinschroth, F. et al. Biodiversity modeling to manage urban ecosystems for people and nature. Nat Cities 2, 573–584 (2025). https://doi.org/10.1038/s44284-025-00263-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44284-025-00263-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing