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Validation of sleep-based actigraphy
machine learning models for prediction of
preterm birth
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Sarah K. England1,3 & Chenyang Lu1,2

Disruptive sleep is a well-established predictor of preterm birth. However, the exact relationship
between sleep behavior and preterm birth outcomes remains unknown, in part because prior work has
relied on self-reported sleep data. With the advent of smartwatches, it is possible to obtain more
reliable and accurate sleep data, which can be utilized to evaluate the impact of specific sleep
behaviors in concert with machine learning. We evaluate motion actigraphy data collected from a
cohort of participants undergoing pregnancy, and train several machine learning models based on
aggregate features engineered from this data.We then evaluate the relative impact from each of these
actigraphy features, as well as features derived from questionnaires collected from participants. Our
findings suggest that actigraphy data can predict preterm birth outcomes with a degree of
effectiveness, and that variability in sleep patterns is a relatively fair predictor of preterm birth.

Preterm birth (PTB), which is generally defined as delivery before 37 weeks
of gestation, is the single largest cause of death in children under the age of 51

with ~1 million deaths occuring per year2. While some etiologies of PTB
have been identified,many remain unknown. Previous literature has shown
that disruptive maternal sleep patterns have been associated with PTB
outcomes3–6.

One major limitation with previous studies is the reliance on self-
reported sleep patterns, which is limited by a patient’s ability to recall their
sleep patterns accurately and consistently7. Wearable devices can alleviate
this problem as they provide a more reliable and detailed stream of data8,9.
Previous literature has found that wearable sensor data can be used tomake
predictions regarding both physical andmental health issues, ranging from
pancreatic complications10 to depression11.

Using data collected fromwearables, we evaluate predictions of binary
PTB outcomes with patients from a cohort study conducted atWashington
University in St. Louis/BJC HealthCare12. Participants from this cohort
study were given actigraphy watches to wear for 2 weeks over the course of
each trimester, capturing high-resolution sleep data. The collected acti-
graphy data are then transformed into interpretable quantitative features
and used as input for several shallowmachine learning (ML)models. These
models are then evaluated to assess the relative impact of these features,
offering several clinical insights into the relative importance of individual

sleep and non-sleep behaviors, as well as insights for more complex ML
models.

Previous work with this dataset has attempted to evaluate regression
models of unengineered time-series data to predict the entire spectrum of
gestational age (GA) directly from individual actigraphy samples13, which is
intrinsically different in both objective and approach from predicting
binary-outcome PTB from statistics across a pregnancy. The authors noted
that measured mean absolute error between actual and predicted GA was
higher overall in PTB patients, but did not evaluate any classifier perfor-
mance with respect to binary-outcome PTB. Moreover, the models pre-
sented in13 are limited in their explanability as a result of both learning non-
linear representations and at attempting to predict GA at a sample level. In
addition, previous work has also examined direct correlations between
engineered actigraphy features and PTB, evaluating the risk associated with
each individual feature5,6.

This paper evaluates the performance of binary-outcome classification
of PTB from engineered actigraphy features and selected patient history
features. The models presented here are computationally simpler and
interpretable, which offer engineering and clinical insights about potential
approaches for more complicated models. Overall, we validate the usage of
sleep measures derived from actigraphy data in ML models for the pre-
diction of binary-outcomePTB. From thesemodels, relative comparisons of
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the impact of actigraphy and patient history features on predictions are
examined.We finally offer interpretations of each of the tested models, and
guidance for future works.

Results
Among the 1523 patients who participated in the cohort study, we analyze
the 665 patients who had actigraphy data in at least the first or second
trimester of their pregnancy and had a recorded delivery date. The average
patient had 39.1 (±32.2) day-level samples throughout the duration of their
pregnancy, with the first trimester having 15.7 (±10.4) samples on average,
the second trimester having an average of 24.0 (±18.9) samples, and the
third trimester having an average of 17.0 (±10.3) samples. The overall dis-
tribution of samples collected fromall patients can be seen in Fig. 1.Of these
patients, the mean age was 29.2 (±5.29) years, and the majority (55.34%) of
the patients weremultiparous. Aminority of patients (14.18%) experienced
a PTB outcome. Full details about the demographics of the patients used in
this dataset can be found in Section 1 in the Supplementary Materials, and
details about the actigraphy features andnumerical case report formfeatures
can be found in Table 1.

We compare the performance of models trained on the two primary
sources of data, the engineered actigraphy features and case report form
responses collected at each visit, inTable 2 andFig. 2. Performance curves of
the models trained only on the actigraphy or case report form data can be
found in Section 3 of the Supplementary Material. Confusion matrices
comparing the best model by area under the receiver-operator curve
(AUROC) areprovided inTable 3, andTukey’s honest significant difference
test (HSD) results comparing each are provided in Tables 4, 5, and 6.

We find that, using actigraphy features and case report form survey
data, it is possible to make reasonable predictions about binary-outcome
PTB. As seen in Table 2, actigraphy features appear to underperform fea-
tures from case report forms at predicting PTB when comparing the best
models for each configuration. The combined performance is better than
either source of data individually.

Gestational age and model performance
Figure 3 shows the performance of each model as samples up to a spe-
cified GA are included. As seen, the performance of the models does not
change consistently as the GA upper-bound is increased, although it
does increase noticeably in performance as the full GA spectrum is
enabled.

This lack of consistent performance change likely occurs for several
reasons. First, the distribution of study participants who have data up to a
givenGA is variable, and for those that dohavedataup to a specifiedGA, the
duration and lengths are also variable. In addition, the aggregation used for
all actigraphy features, mean and standard deviation, does not change lin-
early as the amount of data increases. This variability in AUROC and area
under the precision-recall curve (AUPRC) appears to weakly correspond to
the sample trends seen in Fig. 1, which is roughly centered around the
boundaries in each trimester.

Feature explanations
To assess the importance of each feature in each model, we evaluate the
features with SHapley Additive exPlanations (SHAP) scores14, which pro-
vide relative estimates of how the output of amodel will change as the input
features change. Figure 4 shows the feature explanations for the best per-
forming model with all features.

When all features are used, we find that the features that affect the
output of themodel themost are related to thenumberof complications that
occurredduring previous births. This is consistent with the literature, which
finds that past PTB is a strong predictor of future PTB outcomes15,16. Fea-
tures relating to socioeconomic status, highlighted in green, also rankhighly,
which is consistent with prior literature as race, ethnicity, and employment
status are associated with preterm birth17,18.

Actigraphy features were impactful to a lesser degree, with the highest
ranked feature being the average day-to-day variability between sleep start.
Other similarly ranked features following this included sleep start time, the
variance of the start of the sleep cycle, and day-to-day variability in the
duration of the sleep cycle, etc. Overall, actigraphy features relating to
variability in sleeppatterns appeared to rank higher than those derived from
averages across a patient’s pregnancy. Prior studies have shown that shift
work is associated with higher incidence of PTB19. The variability captured
by our actigraphy features may help explain this association, as shift work
often disrupts regular sleep patterns and leads to increased day-to-day
variability.

When we evaluate the best performing actigraphy-only model, shown
in Fig. 5, we find a similar ordering of relevant features, with features
reflecting variance between daily actigraphy measurements appearing
towards the top. Some of this difference in ordering can be attributed to the
issue of dimensionality, as the number of examples is smaller, although the
limited sample size prevents us from making any conclusive orderings.

Fig. 1 | Histogram of the collected actigraphy samples. Results are stratified by
whether the patient experienced a positive or negative preterm birth outcome. In the
first trimester there are 263 negative patients and 39 positive patients who had a

sample, 262 negative patients and 47 positive patients who have a sample, and in the
third trimester there are 46 positive patients and 8 negative patients who have a
sample.
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Table 1 | Actigraphy and numerical case report form features, stratified by trimester where applicable

Feature Trimester Preterm birth Non-preterm birth Corrected p

Number of days sampled 1 23.41 (22.54, 24.28) 21.88 (21.65, 22.11) 1:78×10�04�

2 35.50 (34.45, 36.54) 40.97 (40.48, 41.46) 1:19×10�13�

3 15.11 (14.74, 15.48) 26.59 (26.17, 27.02) 3:20×10�36�

All 29.20 (28.48, 29.91) 32.52 (32.23, 32.82) 5:45×10�12�

Day-to-day variability between sleep duration 1 −1:59 (−1:48, 0:11) −1:59 (−1:55, 0:03) 1.00

2 −1:60 (−1:53, 0:07) −1:60 (−1:57, 0:02) 1.00

3 −1:58 (−1:42, 0:14) −1:60 (−1:57, 0:03) 1.00

All −1:59 (−1:54, 0:05) −1:60 (−1:58, 0:01) 1.00

Day-to-day variability between sleep middle 1 −1:59 (−1:53, 0:06) −1:60 (−1:58, 0:02) 1.00

2 0:01 (−1:56, 0:05) 1:00 (−1:59, 0:01) 1.00

3 0:02 (−1:55, 0:10) −1:60 (−1:58, 0:02) 1.00

All 0:01 (−1:57, 0:04) −1:60 (−1:59, 0:01) 1.00

Day-to-day variability between sleep end 1 −1:59 (−1:52, 0:07) −1:59 (−1:57, 0:02) 1.00

2 0:01 (−1:55, 0:06) −1:60 (−1:58, 0:02) 1.00

3 0:01 (−1:52, 0:11) −1:60 (−1:58, 0:02) 1.00

All 1:00 (−1:56, 0:04) −1:60 (−1:59, 0:01) 1.00

Day-to-day variability between sleep start 1 −1:60 (−1:50, 0:09) 1:00 (−1:57, 0:03) 1.00

2 0:01 (−1:55, 0:07) 1:00 (−1:58, 0:02) 1.00

3 0:03 (−1:51, 0:16) −1:60 (−1:57, 0:02) 1.00

All 0:01 (−1:56, 0:06) 1:00 (−1:59, 0:01) 1.00

Total motion count during sleep time 1 13590.90 (12743.07, 14438.73) 12150.57 (11887.88, 12413.25) 0.00*

2 12633.96 (12098.49, 13169.43) 11333.77 (11167.64, 11499.91) 2:54×10�06�

3 14090.49 (13072.20, 15108.79) 12560.09 (12321.40, 12798.78) 0.03*

All 13108.81 (12694.23, 13523.40) 11875.15 (11753.36, 11996.94) 5:48×10�09�

Sleep length between start and end 1 9:20 (9:10, 9:29) 9:22 (9:19, 9:25) 1.00

2 8:53 (8:47, 8:58) 9:07 (9:05, 9:09) 4:97×10�06�

3 9:07 (8:55, 9:20) 8:60 (8:57, 9:02) 1.00

All 9:02 (8:57, 9:07) 9:08 (9:07, 9:10) 0.04*

End of the sleep cycle 1 7:38 AM (7:30 AM, 7:45 AM) 7:42 AM (7:39 AM, 7:44 AM) 1.00

2 7:49 AM (7:44 AM, 7:55 AM) 7:34 AM (7:32 AM, 7:35 AM) 1:68×10�07�

3 7:58 AM (7:48 AM, 8:08 AM) 7:35 AM (7:33 AM, 7:38 AM) 4:08×10�05�

All 7:48 AM (7:44 AM, 7:52 AM) 7:36 AM (7:35 AM, 7:37 AM) 1:68×10�07�

Frequency of motion counts during sleep time 1 0.19 (0.18, 0.19) 0.18 (0.18, 0.18) 0.57

2 0.19 (0.19, 0.19) 0.18 (0.17, 0.18) 9:71×10�13�

3 0.21 (0.21, 0.22) 0.19 (0.18, 0.19) 2:47×10�13�

All 0.19 (0.19, 0.20) 0.18 (0.18, 0.18) 9:05×10�17�

Halfway between sleep start and sleep end 1 2:57 AM (2:51 AM, 3:04 AM) 3:01 AM (2:58 AM, 3:03 AM) 1.00

2 3:23 AM (3:18 AM, 3:28 AM) 2:60 AM (2:58 AM, 3:01 AM) 3:74×10�19�

3 3:24 AM (3:16 AM, 3:33 AM) 3:05 AM (3:03 AM, 3:07 AM) 1:72×10�04�

All 3:16 AM (3:13 AM, 3:20 AM) 3:01 AM (3:00 AM, 3:03 AM) 2:44×10�14�

Start of the sleep cycle 1 10:18 PM (10:09 PM, 10:26 PM) 10:20 PM (10:17 PM, 10:23 PM) 1.00

2 10:57 PM (10:50 PM, 11:03 PM) 10:26 PM (10:24 PM, 10:28 PM) 1:18×10�22�

3 10:51 PM (10:40 PM, 11:02 PM) 10:35 PM (10:33 PM, 10:38 PM) 0.04*

All 10:46 PM (10:41 PM, 10:50 PM) 10:28 PM (10:26 PM, 10:29 PM) 3:93×10�14�

Total daily motion count 1 235784.82 (227642.00, 243927.63) 226901.10 (224501.82, 229300.39) 0.13

2 254095.03 (248684.76, 259505.31) 243520.87 (241601.36, 245440.38) 0.00*

3 231434.40 (219811.23, 243057.56) 240551.62 (238066.34, 243036.90) 0.71

All 245803.74 (241582.54, 250024.93) 238978.93 (237679.47, 240278.38) 0.01*
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First-time/nulliparous pregnancies
PriorPTBcomplications are a strongpredictor of futurePTBcomplications,
but such foresight does not exist in the case of nulliparious pregnancies. To
evaluate these pregnancies, we train separate models on nulliparous
patients. For training, we replace case report form features relating to
delivery history with empty values. Results from training on nulliparous
patients only are reported in Table 2.

As seen in Table 2, we find that the performance of actigraphy features
is distinctive when we use Gaussian Naïve Bayes as the classifier. For all
remaining model types, the performance is comparable both in contrast or
together with case report form data, differing by relatively small amount for
both AUROC and specificity at 90% sensitivity. This indicates that acti-
graphy data may provide performance comparable to or better than what
can be assessed in a clinical survey specifically with regards to nulliparous
patients.

In addition, the actigraphy features become a larger component of the
most impactful features, as seen in Fig. 6, although part of this can be
attributed to the reduced dimensionality. Of the case report form features
included, those relating to socioeconomic status appear to be the most
impactful. When examining the actigraphy features only, as seen in Fig. 7,
wefind that features evaluating variability are still among themost impactful
features, whether they are averages of the day-to-day variability features or
variances of the daily features.

Discussion
Overall, we find that actigraphy data compiled into simple measures of
sleep can aid in the prediction of PTB, and that simplerML architectures
appear to perform better at this. For all ablations tested, we find that
Gaussian Naïve Bayes (Gaussian NB) has the highest average AUROC.
This is remarkable since it is architecturally simpler than other models,
and suggests that the underlying features exhibit some independence
from each other. This independence argument is furthered by the lower
performance from our XGBoost models, as they learn decision trees
where learned relationshipsmay have dependencies.We do note that the
small sample size and reduced dimensionality may enable this
difference.

We also find that for the actigraphy-only models, there is a noticeable
split in the explanability between aggregating variability and averages of
actigraphy features. Among the highest performing features, we find that
those capturing variability in sleep patterns—either at the day-to-day or
whole-sample level—were the most explanatory features. Conversely, fea-
tures examining a patient’s average behavior generally ranked lower, which
suggests that consistent sleep patterns aremore important than any specific
sleep metric. This insight could inform the development of intervention
strategies focusedon sleephygiene, emphasizing the importance of reducing
variability in sleep patterns rather than targeting sleep duration or tim-
ing alone.

Table 1 (continued) | Actigraphy and numerical case report form features, stratified by trimester where applicable

Feature Trimester Preterm birth Non-preterm birth Corrected p

Longest contiguous subsequence of zero actigraphy activity 1 49.40 (48.37, 50.44) 47.28 (46.93, 47.64) 7:09×10�04�

2 49.09 (48.37, 49.81) 49.19 (48.94, 49.44) 1.00

3 49.41 (47.83, 50.98) 50.84 (50.49, 51.18) 0.44

All 49.22 (48.67, 49.78) 49.25 (49.08, 49.43) 1.00

Maternal Age at Enrollment/Consent All 29.46 (28.32, 30.60) 29.16 (28.73, 29.59) 1.00

BMI at 1st Prenatal Visit (calculated) All 31.04 (29.27, 32.80) 27.65 (26.98, 28.32) 0.00*

Day-to-day variability between sleep duration (Mean) All 1:55 (1:47, 2:03) 1:41 (1:38, 1:44) 0.01*

Day-to-day variability between sleep duration (Std. Dev.) All 1:34 (1:28, 1:40) 1:24 (1:21, 1:26) 0.02*

Day-to-day variability between sleep middle (Mean) All 1:06 (1:02, 1:11) 0:58 (0:56, 2:00) 0.01*

Day-to-day variability between sleep middle (Std. Dev.) All 0:54 (0:50, 0:58) 0:49 (0:48, 0:51) 0.24

Day-to-day variability between sleep end (Mean) All 1:16 (1:09, 1:23) 1:09 (1:07, 1:11) 0.22

Day-to-day variability between sleep end (Std. Dev.) All 1:08 (1:02, 1:14) 1:04 (1:02, 1:06) 1.00

Day-to-day variability between sleep start (Mean) All 1:34 (1:28, 1:41) 1:20 (1:17, 1:22) 0.00*

Day-to-day variability between sleep start (Std. Dev.) All 1:16 (1:11, 1:22) 1:08 (1:05, 1:10) 0.05*

Total motion count during sleep time (Mean) All 13647.79 (12323.81, 14971.77) 12707.36 (12244.70, 13170.01) 1.00

Total motion count during sleep time (Std. Dev.) All 8463.87 (7533.06, 9394.68) 7747.39 (7382.87, 8111.92) 1.00

Sleep length between start and end (Mean) All 9:04 (8:51, 9:17) 9:11 (9:07, 9:15) 1.00

Sleep length between start and end (Std. Dev.) All 1:48 (1:41, 1:54) 1:38 (1:35, 1:40) 0.04*

End of the sleep cycle (Mean) All 7:50 AM (7:36 AM, 8:03 AM) 7:44 AM (7:39 AM, 7:50 AM) 1.00

End of the sleep cycle (Std. Dev.) All 1:19 (1:13, 1:26) 1:13 (1:11, 1:15) 0.37

Frequency of motion counts during sleep time (Mean) All 0.20 (0.18, 0.21) 0.19 (0.18, 0.19) 0.55

Frequency of motion counts during sleep time (Std. Dev.) All 0.06 (0.05, 0.06) 0.05 (0.05, 0.05) 0.05

Halfway between sleep start and sleep end (Mean) All 3:17 AM (3:05 AM, 3:30 AM) 3:08 AM (3:03 AM, 3:14 AM) 1.00

Halfway between sleep start and sleep end (Std. Dev.) All 1:08 (1:03, 1:14) 1:01 (0:59, 1:03) 0.05*

Start of the sleep cycle (Mean) All 10:46 PM (10:30 PM, 11:01 PM) 10:33 PM (10:27 PM, 10:39 PM) 1.00

Start of the sleep cycle (Std. Dev.) All 1:33 (1:26, 1:40) 1:21 (1:19, 1:24) 0.02*

Total daily motion count (Mean) All 248621.24 (227847.62, 269394.86) 238254.11 (231486.01, 245022.21) 1.00

Total daily motion count (Std. Dev.) All 61098.30 (54031.17, 68165.42) 60132.28 (57293.21, 62971.36) 1.00

Longest contiguous subsequence of zero actigraphy activity (Mean) All 49.05 (47.20, 50.90) 49.04 (48.45, 49.63) 1.00

Longest contiguous subsequence of zero actigraphy activity
(Std. Dev.)

All 11.68 (11.15, 12.22) 11.96 (11.76, 12.17) 1.00

p values corrected with the Benjamini-Yekutieli34 method are shown, significant differences (α = 0.05) are highlighted with an *.
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Table 2 | Comparison of models for all patients and nulliparous patients

All Patients AUROC AUPRC

Model Ablation Pooled 95% CI Pooled 95% CI Specificity at 90%Sensitivity

Gaussian naive Bayes All features 0.697 0.724 (0.692–0.755) 0.383 0.382 (0.348–0.416) 0.335 (0.215–0.456)

Linear support vector
classifier

All features 0.669 0.672 (0.641–0.702) 0.311 0.337 (0.290–0.384) 0.156 (0.101–0.211)

Logistic regression All features 0.709 0.722 (0.692–0.753) 0.329 0.373 (0.325–0.420) 0.349 (0.243–0.454)

Nonlinear support vector
classifier

All features 0.689 0.720 (0.678–0.762) 0.307 0.345 (0.306–0.385) 0.269 (0.143–0.395)

XGBoost All features 0.662 0.668 (0.637–0.698) 0.228 0.271 (0.240–0.303) 0.113 (-0.018–0.245)

Average All features 0.685 0.701 (0.686–0.716) 0.312 0.342 (0.323–0.361) 0.244 (0.194–0.295)

Gaussian naive Bayes Actigraphy only 0.657 0.666 (0.623–0.709) 0.222 0.254 (0.225–0.284) 0.255 (0.157–0.353)

Linear support vector
classifier

Actigraphy only 0.498 0.514 (0.447–0.581) 0.149 0.202 (0.167–0.236) 0.104 (0.026–0.183)

Logistic regression Actigraphy only 0.601 0.619 (0.561–0.678) 0.175 0.217 (0.189–0.245) 0.185 (0.100–0.270)

Nonlinear support vector
classifier

Actigraphy only 0.608 0.612 (0.575–0.649) 0.189 0.223 (0.201–0.246) 0.155 (0.100–0.209)

XGBoost Actigraphy only 0.587 0.582 (0.537–0.626) 0.177 0.237 (0.182–0.291) 0.083 (-0.014–0.180)

Average Actigraphy only 0.590 0.599 (0.574–0.623) 0.182 0.227 (0.212–0.241) 0.156 (0.120–0.193)

Gaussian naive Bayes Case report forms only 0.672 0.712 (0.683–0.742) 0.379 0.390 (0.346–0.435) 0.218 (0.147–0.289)

Linear support vector
classifier

Case report forms only 0.668 0.671 (0.635–0.706) 0.308 0.323 (0.287–0.359) 0.184 (0.134–0.234)

Logistic regression Case report forms only 0.703 0.711 (0.690–0.732) 0.329 0.350 (0.306–0.394) 0.287 (0.231–0.343)

Nonlinear support vector
classifier

Case report forms only 0.623 0.645 (0.581–0.710) 0.258 0.292 (0.228–0.356) 0.171 (0.075–0.267)

XGBoost Case report forms only 0.597 0.606 (0.568–0.644) 0.218 0.298 (0.246–0.349) 0.000 (-)

Average Case report forms only 0.653 0.669 (0.650–0.688) 0.298 0.331 (0.309–0.352) 0.172 (0.136–0.208)

Nulliparous Patients AUROC AUPRC

Model Ablation Pooled 95% CI Pooled 95% CI Spec. at 90% Sens.

Gaussian naive Bayes All features 0.639 0.641 (0.571–0.711) 0.451 0.437 (0.381–0.492) 0.187 (0.025–0.348)

Linear support vector classifier All features 0.539 0.525 (0.444–0.606) 0.131 0.207 (0.174–0.240) 0.188 (0.088–0.288)

Logistic regression All features 0.670 0.671 (0.593–0.749) 0.156 0.247 (0.200–0.295) 0.315 (0.138–0.493)

Nonlinear support vector
classifier

All features 0.534 0.537 (0.498–0.577) 0.119 0.209 (0.188–0.230) 0.142 (0.056–0.229)

XGBoost All features 0.622 0.622 (0.534–0.709) 0.152 0.274 (0.213–0.335) 0.188 (0.005–0.372)

Average All features 0.601 0.599 (0.567–0.631) 0.202 0.275 (0.245–0.305) 0.204 (0.146–0.263)

Gaussian naive Bayes Actigraphy only 0.677 0.677 (0.595–0.759) 0.169 0.262 (0.222–0.302) 0.325 (0.136–0.514)

Linear support vector classifier Actigraphy only 0.524 0.496 (0.381–0.610) 0.128 0.218 (0.174–0.263) 0.131 (0.033–0.229)

Logistic regression Actigraphy only 0.679 0.677 (0.605–0.749) 0.160 0.257 (0.219–0.296) 0.298 (0.131–0.466)

Nonlinear support vector
classifier

Actigraphy only 0.615 0.629 (0.543–0.714) 0.169 0.284 (0.207–0.362) 0.187 (0.081–0.292)

XGBoost Actigraphy only 0.602 0.601 (0.515–0.687) 0.135 0.347 (0.251–0.443) 0.138 (-0.033–0.310)

Average Actigraphy only 0.619 0.616 (0.577–0.655) 0.152 0.274 (0.247–0.301) 0.216 (0.154–0.278)

Gaussian naive Bayes Case report forms only 0.537 0.532 (0.468–0.596) 0.415 0.408 (0.331–0.485) 0.129 (0.045–0.212)

Linear support vector classifier Case report forms only 0.486 0.454 (0.362–0.546) 0.104 0.189 (0.153–0.226) 0.063 (0.014–0.112)

Logistic regression Case report forms only 0.632 0.662 (0.537–0.788) 0.162 0.331 (0.197–0.465) 0.271 (0.052–0.491)

Nonlinear support vector
classifier

Case report forms only 0.446 0.468 (0.400–0.536) 0.108 0.221 (0.176–0.266) 0.046 (0.001–0.092)

XGBoost Case report forms only 0.612 0.618 (0.566–0.671) 0.140 0.288 (0.236–0.340) 0.127 (-0.065–0.318)

Average Case report forms only 0.543 0.547 (0.507–0.587) 0.186 0.287 (0.251–0.324) 0.127 (0.070–0.185)

Area under the receiver-operator curve (AUROC), area under the precision-recall curve (AUPRC), and specificity at 90% sensitivity highlighted for each of the trainedmodels, grouped by which sources of
data were included. Model averages for area under the receiver-operator curve (AUROC) and area under the precision-recall curve (AUPRC) are obtained by pooling classifier results together, and 95%
confidence intervals are obtained by averaging all folds.
Best performance metrics over each ablation are bolded.
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Fig. 2 | Reciever-operator and precision-recall
curves for models using all features. Pooled
a reciever-operator curves and b precision-recall
curves for all models using all data sources.

Table 3 | Confusion matrices for classifiers with the best area under the receiver-operator curve (AUROC) among all patients,
with the threshold set to match a 50% true positive rate

(a) Actigraphy/Gaussian naive Bayes

PN PP

TN 0.605 0.258

TP 0.076 0.061

(b) Case Reports/Gaussian naive Bayes

PN PP

TN 0.701 0.162

TP 0.076 0.061

(c) All/Gaussian naive Bayes

PN PP

TN 0.734 0.129

TP 0.095 0.043

PN is predicted negative, PP is predicted positive, TN is true negative, and TP is true positive.

Table 4 | Confusion matrices for classifiers with the best area under the receiver-operator curve (AUROC) among nulliparous
patients, with the threshold set to match a 50% true positive rate

(a) Actigraphy/Logistic Regresssion

PN PP

TN 0.674 0.222

TP 0.069 0.034

(b) Case Reports/Logistic Regression

PN PP

TN 0.697 0.200

TP 0.069 0.034

(c) All/Logistic Regression

PN PP

TN 0.683 0.214

TP 0.069 0.034

PN is predicted negative, PP is predicted positive, TN is true negative, and TP is true positive.
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Table 5 | Tukey’s honest significant difference test for area under the receiver-operator curve (AUROC) for across all models
staratifed by feature set

Actigraphy (1) All (2) Case Reports (3) Nulliparous Actigraphy (4) Nulliparous All (5) Nulliparous Case Reports (6)

(1) – 2:62× 10�05� 0.01* 0.96 1.00 0.14

(2) 2:62× 10�05� – 0.65 9:08 × 10�04� 2:87× 10�05� 3:12× 10�11�

(3) 0.01* 0.65 – 0.12 0.01*
2:31× 10�07�

(4) 0.96 9:08× 10�04� 0.12 – 0.97 0.01*

(5) 1.00 2:87× 10�05� 0.01* 0.97 – 0.13

(6) 0.14 3:12× 10�11� 2:31 × 10�07� 0.01* 0.13 –

Significant differences (α = 0.05) are highlighted with an *.

Table6 | Tukey’shonest significant difference test for areaunder theprecision-recall curve (AUPRC)acrossallmodels stratified
by feature set

Actigraphy (1) All (2) Case Reports (3) Nulliparous Actigraphy (4) Nulliparous All (5) Nulliparous Case Reports (6)

(1) – 1:48× 10�08� 4:12 × 10�07� 0.10 0.09 0.01*

(2) 1:48× 10�08� – 0.99 0.00* 0.00* 0.04*

(3) 4:12× 10�07� 0.99 – 0.02* 0.03* 0.17

(4) 0.10 0.00* 0.02* – 1.00 0.98

(5) 0.09 0.00* 0.03* 1.00 – 0.98

(6) 0.01* 0.04* 0.17 0.98 0.98 –

Significant differences (α = 0.05) are highlighted with an *.

Fig. 3 | Reciever-operator and precision-recall
curves for data up to a given gestational age (GA).
Selected a receiver-operator curves and b precision-
recall curves using with all features calculated with
features up to a maximum GA using one ran-
dom seed.
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For the case report form features included, we find that some of the
most explanatory features are past pregnancy complications, which is
consistent with previous literature18,20. We also find that various socio-
economic features are predictive of PTB, as they may be proxy measures
of maternal sleep. Race and ethnicity have been linked to increased sleep
disturbances and poorer sleep quality in tandem with more frequent
PTB outcomes21,22. Similarly, employment status and income have also
been associated with differences in PTB outcomes23, as the effects of

employment range from physical overexertion24 to direct conflicts with
sleep25.

For nulliparous patients, we find that the overall performance of
the actigraphy data is more comparable in performance to models
trained on the case report form data only. When compared to whole-
cohort models, the performance is similar for the actigraphy-based
models, while the performance of the models trained on the case
report form data drops noticeably. In addition to past PTB being a

Fig. 4 | SHapley Additive exPlanations (SHAP) analysis of Gaussian NB with all features. Features indicative of socioeconomic status are highlighted green, and other
patient history variables are highlighted red.
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strong predictor of future PTB, this may suggest that monitoring
sleep patterns is more necessary for nulliparous patients.

One limitation of this approach is that we do not evaluate cate-
gorical features as one-hot values, as the sample size would not be able
to counterbalance the large number of features generated by one-hot
categorical features. As a result, it is more difficult to interpret the
impact of some categorical variables that do not actually have an
ordinality to them (e.g., race, marital status). Similarly, we discard
non-numerical features from the case report form features, as

incorporating them with vision/language models would significantly
increase the overall dimensionality; future models may incorporate
these for improved performance.

Sample size, particularly with regards to the nulliparous pregnancies, is
another limiting issue, as itmakes noisemore prominentwhen training and
evaluating these models. To mitigate this issue, we employed multiple
random shufflings of the data for training and evaluation.However, we note
that this is limited given the notable discrepancy between the AUROC/
AUPRC metric poolings and their corresponding confidence intervals,

Fig. 5 | SHapley Additive exPlanations (SHAP) analysis of Gaussian Naïve Bayes (Gaussian NB) with actigraphy features only. Features aggregating average patient
behavior are highlighted in gold, and features aggregating the standard deviation of patient behaviors are highlighted in blue.
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which may result from the wide performance differences between each
shuffling and how they interact when averaging together. Sample size is a
limitation not only in cohort size, but also the amount of actigraphy data, as
the duration and frequency at which study participants wore their acti-
graphy watches was not consistent. Further studies should evaluate larger
cohorts of patients to ensure accurate performancemeasurements, aswell as
cohorts from other locations to validate the performance with respect to
different demographics. Moreover, longer and more consistent usage of
actigraphy watches may also reveal more reliable patterns of motion
behavior that predict PTB.

In addition, future work with actigraphy data could incorporate
luminosity sensor data, as itmay provide additional signals and corroborate
signals captured by an actigraphy sensor. Another area of future work are
with models trained with self-supervised learning (SSL), which learn rela-
tionships between input features before being fine-tuned for a downstream
task. SSL models are particularly effective as these learned relationships
between features generalize well in supervised tasks26.

In conclusion, our findings show that actigraphy data can help preterm
birth (PTB) in both multiparous and nulliparous patients, with sleep varia-
bility emerging as a key predictive feature. These results highlight the

Fig. 6 | SHapley Additive exPlanations (SHAP) analysis of logistic regression with all features for nulliparous patients. Features indicative of socioeconomic status are
highlighted green, and other patient history variables are highlighted red.
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potential of unobtrusive wearable measurements to enable early detection
and intervention for PTB. Future work could explore larger or more diverse
cohorts and develop targeted intervention strategies informed by these pre-
dictions to improve pregnancy outcomes.

Methods
Study characteristics
This study was completed as a part of of the March of Dimes Prematurity
Research Center at Washington University in St. Louis/BJC HealthCare12,

which was approved by the Washington University IRB (reference
#201612070) in accordance FDA Good Clinical Practices and the Declara-
tion of Helsinki. Written informed consent was obtained from participants
for the usage of their clinical, biospecimen, imaging, and questionnaire data.
Patients were recruited at the Washington University Medical Campus if
they had a singleton pregnancy with an estimated GA under 20 weeks,
planned to deliver at Barnes-Jewish Hospital, and were age 18 or older.

Trained obstetric research staff used a series of case report forms to
collect baseline maternal demographics, medical history, antepartum data

Fig. 7 | SHapley Additive exPlanations (SHAP) analysis of Gaussian Naïve Bayes (Gaussian NB) with actigraphy features only. Features aggregating average patient
behavior are highlighted in gold, and features aggregating the standard deviation of patient behaviors are highlighted in blue.
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and obstetric outcomes as previously described in ref. 12. Patient data were
collected at scheduled study visits during each trimester and at delivery,
where biological samples, imaging, actigraphy, and responses to standar-
dized surveys were obtained from each patient.

Survey data included questions from eleven different validated surveys
and standalone questions covering stress, schedule, sleep quality, physical
activity, postnatal depression, diet, demographics, and overall lifestyle. We
derive the label of PTB from the reported estimated date of confinement
(EDC), labeling births that occur 3 full weeks before the listed EDC as PTB.
EDCwasderived from thepatient’s lastmenstrual periodorfirst ultrasound27.

Actigraphy feature design
Actigraphy measurements were collected over a 2-week period in each
trimester (first trimester: 0–13 weeks and 6 days, second trimester:
14–27 weeks and 6 days, third trimester: ≥28 weeks) using the CamNtech
MotionWatch 8. Measurements were collected at a minute-frequency over
the duration a study participant wore their actigraphy watch. Patients were
reminded through calls, emails, and texts to return their actigraphy watches
after the capture period either at the next study visit or through a courier12.
Patients who did not have actigraphy data in either their first or second
trimester were filtered from the results for this analysis.

These features are very high-resolution, and to ensure the data is
tractable for shallow MLmodel training, we engineer these raw time-series
signals into aggregate features over day-level windows. On top of the day-
level measurements, we also measure the absolute change between days
where data is present. Section 2 of the Supplementary Materials contains a
summary of these engineered features.

To generate these features, all actigraphy data is separated into days
centered around midnight, from which we then attempt to estimate the
sleep cycle that occurred for each given day. A summary of these calculated
features that were used in the dataset for the ML models can be found in
Section 2 of the Supplementary Materials.

Model design
For each study participant, we aggregate the day-level actigraphy features
down to theirmean and standard deviation across the entire duration of the
pregnancy. When evaluating the window of GAs below a full-term preg-
nancy, we drop all actigraphy datawith aGAbelow a set range (e.g., if we set
the upper limit at 140 days, all data before 140 days are dropped, and the
remainder is aggregated).

For the surveydata,we select featureswithbothdomainknowledge and
automatic techniques. We first select a predefined set of features based on
pre-determined clinical knowledge, and sum values of questions regarding
individual births together. After these features, we select an additional 10
features with the minimal-redundancy-maximal-relevance algorithm with
semantic textual similarity scores generatedwithPubMedBERT28

fine-tuned
on several clinical and general datasets, as described in29. Features not
represented numerically are dropped. The full list of features that we used
can be found in Section 2 of the Supplementary Materials.

After this, we concatenate both sources of data, scale all numerical
features to its normal distribution, and encode all categorical features as
ordinal values. Missing values are imputed with either the mean, median,
most common value, or the mean of the 5 nearest neighbors, which is
learned during cross-validation (CV). The data is randomly split across a
80%/20% train/test split. For the whole cohort, 532 and 133 patients appear
in in each split, with each split having 66 and 28 PTB patients, respectively.
For thenulliparous cohort, this becomes238 in the train set and59 in the test
set, with each of those splits having 24 patients and 9 patients respectively.

We train our models with several standard ML models, including
logistic regression, linear support vector machine (SVM), kernelized/non-
linear SVM30,XGBoost31, andGaussianNB32. Logistic regressionpredicts the
output class using the sigmoidof the linear combinationof the inputweights.
Linear SVM predicts the class using a linearly-separated hyperplane, and
kernelized SVM uses a kernel function to learn a non-linear separation of
each class30. XGBoost is a gradient boostingmethod that builds an ensemble

of decision trees to optimize predictive performance31, and Gaussian NB
models output class conditioned on normal distributions of each feature32.
We evaluate the results across 10 random initializations for each model in
Section “Results”, and report the average AUROC and AUPRC through
pooling33, aswell as the95%confidence interval over all initializations. SHAP
values are averaged across all random initializations. A graphical summary
of this training pipeline can be seen in Section 2 of the Supplementary
Materials.

To find the best hyperparameters for each of the testedmodels, we use
5-fold stratified CV, which preserves the class proportionality across each
fold, using the training set. For XGBoost, the hyperparameter space ranges
from 1 to 3 estimators, 1 to 3 maximum depth, a learning rate of 0.1, and a
fitting objective of AUROC. For linear SVM, we test regularization para-
meters ranging logarithmically from 0.001 to 10, with 1000 iterations of
training. For non-linear SVM, we evaluate polynomial and radial basis
function kernels on top of the linear SVM parameters. For logistic regres-
sion, we evaluate regularization parameters from 0.001 to 10 with a L2
penalty, and 1000maximum iterations of training. ForGaussianNB,we use
10−9 as a fixed smoothing parameter.

Data availability
The data used in these findings can be obtained from the authors by request
with permission fromWashington University in St. Louis.

Code availability
We make the code used in this study available at https://github.com/
bcwarner/mod-actigraphy-clf.
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