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Genotoxic consequences of viral
infections
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Viral diseases continually threaten human health as evolving pathogens introduce new risks. These
infections can lead to complications across organ systems, with impacts varying by virus type,
infection severity, and individual immune response. This review examines the genotoxic stress caused
by viral infections and its pathological consequences in humans.

Many aspects of viral infections are not directly related to the action of the
virus in question. Complications associated with infections can be perma-
nent or curable. One critical aspect of post-viral complications is the gen-
otoxic effects of certain viruses. Genotoxicity refers to the ability of certain
agents, including viruses, to damage the genetic material within host cells,
potentially leading to cell dysfunction and cancer development. Genotoxic
viruses, including HIV1, human papillomavirus (HPV)2, hepatitis B and C3,
Epstein-Barr virus (EBV)4, and Kaposi’s sarcoma-associated herpesvirus
(KSHV)5, can integrate their geneticmaterial into thehost genome, resulting
in mutations. HPV plays a significant role in the development of cervical
cancer6, while hepatitis B and C viruses are major causes of liver cancer7.
Epstein-Barr virus (EBV) is associated with several types of lymphoma8

Kaposi’s sarcoma-associated herpesvirus (KSHV) is linked to Kaposi’s
sarcoma, a type of cancer that forms in the lining of blood and lymph
vessels9.

The mechanisms of genotoxicity encompass a range of processes that
result in direct or indirect damage to the DNA molecule10. Direct DNA
damage canbedefined as the formationof adducts, or direct chemical bonds
toDNA;DNAstrand breaks, which disrupt the integrity of the genome; and
DNA alkylation, where alkyl groups added to DNA lead to abnormal
replication. Indirect DNA damage may result from the production of
reactive oxygen species (ROS),which oxidize thenitrogenous bases ofDNA,
or from the inhibition of DNA repair mechanisms, thereby increasing the
likelihood of mutation. Errors in the replication of DNAmay be caused by
intercalation, whereby chemical compounds occupy the space between
DNAbase pairs, resulting in replication errors. Furthermore, chromosomal
abnormalities, including chromosomal aberrations (deletions, duplications,
translocations, inversions) and aneuploidy (alterations in chromosome
number), are also induced by genotoxic agents11.

The role of DNA damage in host cells in the life cycle of viruses is
complex, with effects varying depending on the virus type, replication
mechanism andhost response. Amultitude of viruses have evolved intricate
mechanisms to exploit or manipulate host DNA damage response (DDR),

frequently utilizing these pathways to enhance replication, evade immune
defenses, or establish persistent infections12. While DNA damage can
impede viral replication by disrupting essential cellular processes, it can also
facilitate viral propagation by activating pathways that viruses exploit for
their own replication13.

In the event ofDNAdamage, cells initiate a series of repairmechanisms
collectively known as DDR (Fig. 1). However, this activation presents a
potential challenge for DNA viruses, as it can result in cell cycle arrest or
apoptosis, thereby limiting viral replication14. To counteract this, several
DNA viruses have developed strategies to interfere with key DDR signaling
proteins, such as ATM andATR kinases, which are crucial for the detection
and repair of DNA breaks15,16.

Retroviruses such as HIV have been observed to employ specific
strategies for interacting with the DDR, which significantly impacts their
replication processes17. During the course of an HIV infection, the inte-
gration of viral DNA into the host genome involves the participation of
DNA repair enzymes, which can result in the triggering of a DNA damage
response in the host cell. HIV effectively exploits DDR components, such as
the non-homologous end-joining (NHEJ) pathway, to enhance the effi-
ciency of its integration and establish a long-term presence within the host
genome, creating latent reservoirs that contribute to persistent infections18.

Furthermore, DNAdamage resulting fromviral infections can prompt
host cells to adopt a state that is conducive to viral replication or persistence.
PersistentDNAdamagemay result in the inductionof cellular senescenceor
the activation of chronic inflammation, thereby creating an environment
that is conducive to the replication of certain viruses. For example, cyto-
megalovirus (CMV) exploits cellular senescence to establish latency,
exploiting this altered cellular state to evade immune detection and enabling
reactivation under conditions of immune suppression19,20.

In the present review, we evaluate how different viruses induce geno-
toxic stress, their interaction with the DNA repair machinery, and finally,
how this may lead to potentially oncogenic consequences, e.g. mutations
and/or chromosomal aberrations. We excluded directly oncogenic viruses
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like papilloma and hepatitis B viruses from this review as comprehensive
reviews already exist on this subject21,22.

RNA viruses
Human immunodeficiency virus
The International Agency for Research onCancer (IARC) classified human
immunodeficiency virus, type 1 (HIV-1) as a “carcinogenic to humans”
(Group 1) agent, indirectly associated with the cancer risk via
immunosuppression23. HIV leads to a gradual depletion of CD4+ T cells
and eventually, if left untreated, leads to a severe immune deficiency, so-
called acquired immune deficiency syndrome (AIDS)24. Despite combina-
tion antiretroviral therapy (cART) that blocks HIV replication and restores
CD4+T cell counts, people livingwithHIV experience a high prevalence of
certain types of malignancies25. In a comprehensive study of the North
American population, cumulative incidences (%) of cancer by age 75 (HIV
+/HIV−) were: Kaposi sarcoma (KS), 4.4/0.01; non-Hodgkin’s lymphoma
(NHL), 4.5/0.7; lung, 3.4/2.8; anal, 1.5/0.1; colorectal, 1.0/1.5; liver, 1.1/0.4;
Hodgkin lymphoma (HL), 0.9/0.1; melanoma, 0.5/0.6; and oral cavity/
pharyngeal, 0.8/0.826.

Herewe shall focus our attention on the possible direct effects ofHIV-1
on DNA integrity and efficiency of DNA repair.

Studies inpeople livingwithHIV. HIV infection triggers oxidative stress
and oxidative DNA damage in both infected and non-infected cells.
CD4+ T cells from people living with HIV have significantly increased
levels of 7,8-dihydro-8-oxoguanine, a metabolite of oxidized DNA, as
compared to HIV-negative people, with particularly high levels in people
with AIDS27. Spontaneous H2O2 production by monocytes from people
with HIV is higher than in healthy controls and correlates with the viral
load28. B cells from cART-treated people living with HIV have a higher
level of reactive oxygen species and a higher level of DNA damage29.
8-hydroxydeoxyguanosine levels are increased in frontal cortex autopsy
tissue from HIV-positive individuals with or without HIV-associated
neurocognitive disorders as compared to HIV-uninfected controls30.
Moreover, the level of mitochondrial DNA 8-hydroxydeoxyguanosine in
peripheral blood mononuclear cells from people with HIV correlates
with HIV-related structural brain changes seen by magnetic resonance
imaging of the brain: lateral ventricular enlargement and decreased
volumes of the hippocampus, pallidum, and total subcortical gray
matter31. Serum/plasma levels of oxidative stress markers, such as lipid
peroxidation or malondialdehyde adducts, are higher in people living
with HIV, while plasma levels of antioxidants, including glutathione, are
lower32–34. The frequency of micronuclei, a marker of genome instability,

in peripheral blood mononuclear cells is also increased in people with
HIV35. Taken together, these findings suggest that HIV-1 actively sti-
mulates the oxidative stress response and DNA damage in different
cell types.

Genotoxicity of HIV-1 proteins. The persistence of certain diseases in
people living with HIV despite successful HIV infection control with
cART may be at least partially attributed to ongoing viral protein
synthesis (Fig. 2). Although cART successfully inhibits viral replication,
latent HIV-infected cells are not eradicated and persist even after long-
term effective cART, which makes a cure difficult to achieve36. Further-
more, while cART blocks many stages of the HIV-1 cycle, it has little
effect on the transcription or translation of viral genes. The HIV LTR
promoter is never completely silent37,38 and even defective proviral DNA
in infected cells can give rise to viral proteins39,40, which may have an
impact on HIV-associated illnesses.

One of such potentially pathogenic proteins is HIV-1 Tat (trans-acti-
vator of transcription), a crucial player in viral transcription and patho-
genesis. HIV-1 Tat binds to nascent viral RNA element (TAR,
transactivation-responsive region) and recruits activated transcriptional
factors to the viral promoter, which leads to increased viral transcript
elongation41,42. Tat is efficiently released fromHIV-infected cells43,44 and can
penetrate non-infected cells through endocytosis45. Tat can also be released
extracellularly within exosomes46. Due to this property, Tat is considered to
play a role in several HIV-associated pathologies, such as HIV-associated
neurocognitive disorder, substance use disorder, cardiovascular complica-
tions, accelerated ageing, B cell lymphomas, and others47–56. Tat circulates in
the blood50,57–60 and cerebrospinal fluid61 of people with HIV. Oncogenic
properties of Tat have been proposed in different cancers62–65.

Tat triggers oxidative stress in T cells66,67, B cells29, brain endothelial
cells68–70, neuronal71–73, microglial74,75 and astroglial76 cells. Furthermore, Tat
protein modulates the expression of multiple genes involved in DDR and
DNA repair. In T cells, HIV-1 Tat downregulates TP53 expression77.
Human rhabdomyosarcoma cells expressing Tat are more sensitive to
radiation due to a decreased expression of DNA-dependent protein kinase
catalytic subunit (DNA-PKcs), an enzyme that participates in the non-
homologous end-joining (NHEJ) pathway of DNA repair18. In rat pheo-
chromocytoma cells, Tat downregulates Ku70, another crucial component
of NHEJ, and upregulates Rad51, a central enzyme in homologous
recombination (HR) DNA repair. This results in a diminished capacity for
rejoining linearized DNA but an enhanced HR-mediated DNA double-
strand breaks repair78. The cellular protein Tip60 (Tat-interacting protein),
initially identified as an interactor ofHIV-1Tat, has emerged as a significant

Fig. 1 |Overviewof theDNADamageResponse (DDR)Pathway. Figure illustrates theDNAdamage response (DDR) pathway, highlighting the sequential activation of key
kinases, including ATM, ATR, CHEK1, BRCA1, and CHEK2, in response to DNA damage. If DNA damage is irreparable, the pathway culminates in apoptosis.
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research focus due to its involvement in diverse cellular processes, including
chromatin remodeling, DNA damage response and repair, cell cycle arrest,
and apoptosis79. Tat inhibits Tip60’s histone acetyltransferase activity80 and
induces its polyubiquitination and degradation81. These actionsmay impair
Tip60-mediated cellular DNA damage signaling and repair.

The impact of Tat protein on B cells warrants particular attention,
given the increased incidence of B-cell lymphomas in people living with
HIV82. While HIV-1 cannot directly infect B cells, the ability of its Tat
protein to enter these cells and interfere with DNA repair mechanisms is
believed to contribute to lymphomagenesis. The presenceof Tat proteinwas
detected in HIV-1-associated B-cell lymphomas, including Burkitt’s lym-
phomaanddiffuse largeB-cell lymphoma83–85. In vitro, exposure of B cells to
Tat results in the emergence of chromosomal aberrations, including
through the mechanisms of oxidative stress, depletion of glutathione levels,
and DNA damage29,86. However, other mechanisms may also be involved.
HIV-1 Tat upregulates the expression of error-prone DNApolymerase β in
B cells, a knownmutagenic enzyme that is also upregulated inAIDS-related
B cell lymphoma lineages87. HIV-1 Tat protein induces the transcription of
the nuclease-encoding RAG1 gene in B cells, leading to the formation of
DNA double-strand breaks, including double-strand breaks in the MYC
gene locus50. This increase in double-strand breaks promotes the colocali-
zation of the MYC gene locus with the IGH gene locus, ultimately con-
tributing to the characteristic t(8;14) chromosomal translocation associated
with Burkitt’s lymphoma50. Loci colocalisation is an important prerequisite
for chromosomal translocation between them88–90. MYC and IGH coloca-
lisation is increased in circulating B cells from people with HIV50. Tat also
activates the expression of theAICDA gene throughAkt/mTORC1pathway
activation and inhibition of the AICDA transcriptional repressors c-Myb
and E2F8;AICDA gene encodes the activation‐induced cytidine deaminase
(AID), an enzyme that in physiological conditions creates double-strand
breaks for immunoglobulin class‐switch recombination and immunoglo-
bulin gene maturation in B cells. Overexpression of AID leads to increased
double-strand breaks within the IGH and potentially MYC gene loci,
favouring the formation of t(8;14) translocation91,92. Therefore, Tat protein
is a potentially significant factor contributing to B-cell lymphomagenesis in
HIV-positive individuals through its ability to induce genome instability.

HIV-1 accessory protein Vpr is another potentially pathogenic and
genotoxic protein that can actively or passively enter the extracellular
compartment and interact with uninfected bystander cells93,94. Extracellular
Vpr is detected in both the serum and cerebrospinal fluid of HIV-positive

individuals95,96. Similar to HIV-1 Tat, Vpr can induce oxidative stress and
deplete glutathione levels97–99. In infected cells, Vpr exhibits a complex
interplay with the host DNA damage response machinery, displaying both
activating and inhibitory effects100,101. Vpr directly induces DNA damage,
leading to the formation of both double-strand breaks and single-strand
breaks100,102. Vpr also induces double-strandDNAunwinding, leading to the
accumulation of negatively supercoiled DNA and the recruitment of
topoisomerase 1, ultimately resulting in DNA double-strand breaks103.
TheseDNA lesions trigger the recruitment of repair factors, such as γH2AX,
RPA32, and 53BP1, to initiate the DNA damage response signaling
cascade100.Vpr triggers expressionupregulation, activation, and recruitment
of DNAdamage response proteins (Rad17, Hus1, ATR, RPA70)103,104. DNA
damage and the consequent activation of the DNA damage response are
ubiquitous inducers of cell cycle arrest at the G2 phase, and Vpr has been
demonstrated to effectively trigger G2 phase cell cycle arrest105–110. However,
Vpr also possesses DDR-inhibitory properties, antagonizing essential DSB
repair mechanisms like HR and NHEJ100. Vpr targets and triggers a pro-
teasomal degradation of a wide array of host DNA damage response pro-
teins, including UNG2, SMUG, HLTF, MUS81, and EME1 components of
the SLX4 complex, EXO1, TET2, MCM10, and SAMHD1111–119. This sug-
gests that Vpr’s DNA damage response-associated functions may be com-
partmentalized during the viral life cycle within an infected cell. This dual
nature of Vpr’s DNAdamage responsemodulation suggests a potential role
in promoting genomic instability and facilitating viral integration into the
host genome. Extracellular Vpr also exhibits the capacity to elicit a DNA
damage response upon transduction of target cells120.

HIV-1 Nef (Negative regulatory factor), another potential pathogenic
viral protein, is released from infected cells inmicrovesicles (exosomes) and
circulates in the plasma of HIV-infected individuals even with viral sup-
pression therapy121–124. Nef prolongs the survival of the infected T cells by
interacting with the signal transduction proteins of the host cells. It can
encourage the endocytosis and destruction of receptors found on cell sur-
faces like CD4 andMHC proteins, as well as the death of uninfected T cells.
This reduces the ability of cytotoxic T cells to aid the virus in eluding the
host’s defenses. The HIV Nef genes are necessary for effective viral trans-
mission and disease progression in vivo but not for HIV replication in vitro.
In vitro, Nef has been demonstrated to cause monocyte-derived dendritic
cells to overexpress the B lymphocyte stimulator BLyS and to move from
infected macrophages into B cells via actin-propelled conduits123,125. HIV-1
Nef exhibits pro-oxidant activity in microglial, endothelial cells, and

Fig. 2 | Genotoxicity Induced by HIV-1-Related Proteins. The figure depicts the
process of genotoxicity triggered by HIV-1 proteins. The proteins are released from
infected cells through exocytosis and subsequently enter healthy cells, where they

induce oxidative stress. This oxidative stress leads to DNA damage, including
double-strand breaks and chromosomal aberrations. Arrows indicate protein traf-
ficking pathways.

https://doi.org/10.1038/s44298-024-00087-5 Review

npj Viruses |             (2025) 3:5 3

www.nature.com/npjviruses


neutrophils126–129. Nef promotes p53 proteasomal degradation130. Similarly
toTat,Nef upregulatesAICDA andpromotesDNAdouble-strand breaks in
Bcells, contributing to genomic instability131.Nef is also theprimary causeof
lung cancer in HIV-positive individuals, whose lung cancer develops on
average ten years earlier than in non-infected individuals. Lung cells were
shown to express more of the essential angiogenesis-promoting protein
vascular endothelial growth factorA (VEGF-A) and to bemore proliferative
and invasivewhenNefwaspresent132.Nef hasbeendemonstrated towork in
collaboration with the human herpesvirus 8 protein K1 in Kaposi sarcoma
to stimulate angiogenesis and cellular proliferation via the miRNA-718-
mediated phosphatase and tensin homolog/protein kinase B/mammalian
target of rapamycin (PTEN/AKT/mTOR) pathway133.

HIV-1 envelope glycoprotein 120 (gp120) is detectable in the serum, in
secondary lymphoid organs, and in the brain of people living with
HIV134–137. gp120 is implicated inAIDS-relatedneurotoxicity and is partially
responsible for HIV-1 attachment to target cells. gp120 induces oxidative
stress in astrocytes, brain, and endothelial cells68,138,139. Further evidence that
gp120’s neurotoxicity is mostly indirect, and comes from the requirement
for extremely highprotein concentrations for direct neuronal injury—much
greater than the actual quantity of the protein thought to be present in vivo.
Furthermore, apoptotic neurons in HAD cannot co-localize with infected
microglia, suggesting a multicellular etiology140. The activation of macro-
phages and astrocytes leads to an increase in proinflammatory cytokines,
chemokines, and endothelial adhesion molecules. Glutamate, along with
other excitatory amino acids, is also releasedby activatedmicroglia141.When
glutamate receptors are overstimulated, there is an excessive influx of cal-
cium and the production of free radicals, including nitric oxide (NO), in
neurones and astrocytes142. Prior research using primary mixed CNS cul-
tures exposed togp120has revealedneuronal dendritic pruning, varicosities,
vacuolation, and fragmentation143. Astrocytic enlargement and hyperplasia
were present in conjunction with these neuronal damages, which is in line
with neuropathological findings in HAD144. The importance of iNOS after
gp120 exposure is partly derived from research demonstrating that iNOS
inhibitors lessen a number of the negative effects of gp120. Elevated serum
levels of cortisol in HIV-1 patients have been linked in numerous studies to
the disease’s clinical progression145. It was shown that the secretion of
corticotropin-releasing factor (CRF) by gp120 can stimulate the
hypothalamic-pituitary-adrenal axis. Nevertheless, exposure to gp120 was
no longer sufficient to cause the production of CRF when L-NAME, a
nonselective NOS inhibitor, was present146. Furthermore, it was observed
that primary human astrocyte cultures exposure to gp120 had an upregu-
lation of membrane CD23 protein. Aminoguanidine, an iNOS inhibitor,
was able to inhibit the formation of NO and interleukin-1-beta (IL-1β) that
was caused by this upregulation147. It has also been demonstrated that
superoxide dismutase, glutamate receptor antagonists, and NOS inhibitors
shield primary neuronal cultures from gp120148.

To conclude, several HIV-1 proteins, including Tat, Vpr, Nef, and
gp120, have been shown to induce DNA damage and promote genomic
instability. These proteins can induce oxidative stress, deplete glutathione
levels, interfere with the host DNA damage responsemachinery, or directly
damage DNA. These proteins can be released from infected cells and
interactwith uninfectedbystander cells, suggesting that theymay contribute
to the pathogenesis of HIV-associated diseases beyond their direct role in
viral pathogenesis.

Genotoxicity related to HIV-1 integration. HIV-1 integration, the
process by which the proviral genomic DNA is inserted by viral integrase
into the host cell’s genome, is a critical step in the viral life cycle149. Viral
integration generates single-strand gaps and short overhangs at the ends
of viral DNA, which activates the host cellular DNA damage response
machinery150. A diverse range of host DNA repairmechanisms, including
base and nucleotide excision, Fanconi anemia pathway, HR, and NHEJ,
play crucial roles in HIV-1 integration and post-integrational DNA
repair151–156. Interestingly, the DNA damage response can also restrict
HIV-1 infection. The enzyme sterile alpha motif and HD domain-

containing protein 1 (SAMHD1), a dNTP triphosphohydrolase, has been
shown to restrict HIV-1 infection in resting CD4+ T cells, dendritic and
myeloid cells by depleting dNTP pools, which are essential for viral
reverse transcription and replication157–159. Besides depleting dNTPpools,
SAMHD1 also has a direct role in maintaining genome integrity by
promoting DNA end resection to facilitate double-strand break repair by
HR160. DNA damage induced by certain agents, such as topoisomerase
inhibitors and neocarzinostatin, enhances SAMHD1 activity in mono-
cyte‐derived macrophages and further restricts HIV-1 infection161,162.
Thus, the induction of double-strand DNA breaks in human monocyte-
derived macrophages can contribute to their resistance to HIV-1
infection.

Insertional mutagenesis is not directly associated with oncogenesis in
the context of HIV infection, since the majority of cancers in people living
with HIV arise from cells that are not infected by HIV and do not contain
proviral DNA163. Rare T-cell lymphomas bearing HIV proviral DNA have
been documented in individuals living with HIV164–166. An exceptional case
of B cell lymphoma (B cells are not susceptible to HIV infection) was
reported to harbor an integrated HIV-1 provirus upstream of the STAT3
gene167. Despite this, the existing evidence suggests that insertion muta-
genesis may contribute to the expansion and persistence of HIV-infected T
cell clones168–171.

Genotoxicity of antiretroviral therapy. Over 30 antiretroviral drugs
belonging to eight distinct mechanistic classes have received approval
from the U.S. Food and Drug Administration for the treatment of HIV
infection172. cART generally consists of a combination of at least three
antiretroviral drugs fromdistinct classes, typically two nucleoside reverse
transcriptase inhibitors (NRTIs) combined with a third drug from one of
three classes: HIV integrase strand transfer inhibitors (INSTIs), non-
nucleoside reverse transcriptase inhibitors (NNRTIs), or HIV protease
inhibitors (PIs) with a pharmacokinetic enhancer172. This synergistic
combination effectively suppresses HIV replication, thereby reducing
viral load and preventing the progression of HIV infection to AIDS.

Once they enter host cells, NRTIs undergo a series of phosphorylation
reactions catalyzed by cellular kinases. These phosphorylated NRTIs then
compete with cellular deoxynucleotide triphosphates (dNTPs) for incor-
poration into the nascent viral DNA by reverse transcriptase. Upon
incorporation, NRTIs act as chain terminators, preventing further DNA
synthesis and effectively halting viral replication173. In vitro studies have
demonstrated thatNRTIs also have the potential to incorporate into nuclear
and mitochondrial DNA and inhibit host DNA polymerases and induce
DNA damage174–177. The potential of certain NRTIs to be incorporated by
the mitochondrial DNA polymerase γ correlates with their mitochondrial
toxicity174,176. NRTI-associated mitochondrial toxicity is a major adverse
effect characterized by severe complications such as myopathy, peripheral
neuropathy, hepatic failure, and lactic acidosis178. The incorporation of
NRTIs into nuclear DNA was proposed to result in genotoxic and muta-
genic effects: induction of genomic instability, increased mutation rates,
chromosomal aberrations, micronuclei formation, and telomere
shortening177,179. Zidovudine and stavudine were shown to be genotoxic
in vivo177,180,181. Abacavir and emtricitabine increase the frequency of Bur-
kitt’s lymphoma-associated translocation t(8;14) in CRISPR/Cas9-based
cellular screening model182. Owing to their toxicity, older NRTIs, such as
zidovudine (also known as azidothymidine), stavudine, and didanosine, are
no longer recommended for clinical use172. Despite initial concerns about
the genotoxic,mutagenic, and carcinogenic potential ofNRTIs, the evidence
to date does not support their involvement in oncogenesis in people living
with HIV25.

Studies on the genotoxicity of anti-HIV drugs are conducted in many
laboratories. Studies of the widely used drugs, novel compounds, and
combinations are on line. In experimental studies, genotoxic effects were
reported for stavudine180, efavirenz, and tenofovir disoproxil fumarate alone
and in combinations183. DNA damage by azathymidine was observed both
in experiments in cell cultures and mother–child pairs receiving this
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therapy177. Genotoxic effects of the drugs initially designed for anti-HIV
therapy suggests investigation of anti-tumor effects of these compounds,
studies were performed on HIV-1 inegrase inhibitor raltegravir184, protease
inhibitor nelfinavir185 and other compounds.

Side effects of anti-HIV therapy canproduceanegative impact onmale
fertility. Damage of spermatozoa DNA was observed in experiments on
rats186 and confirmed in clinical studies. Significant fragmentation of sper-
matozoid DNA was observed in AIDS patients receiving active anti-
retroviral therapy compared to naïve HIV-infected men187.

Determining the precise impact of cART on cancer risk remains a
challenging task due to the complex interplay of variousHIV-related factors
that contribute to carcinogenesis. The limited number of studies directly
comparing the effectiveness of different antiretroviral drugs in cancer pre-
vention further complicates the assessment of their individual roles in
mitigating cancer risk.

Influenza viruses
The influenza virus is highly infectious and causes global epidemics and
pandemics, with particular risks to vulnerable populations, including the
elderly, children, pregnant women, and those with immunocompromised
immune systems.

Reactive oxygen and nitrogen species (RONS) generated by the
inflammatory response during severe influenza A infections play a critical
role in the pathogenesis of the disease, inducingDNA lesions that can cause
mutations andcell death.This inflammation-drivenoxidativeDNAdamage
frequently results in DNA strand breaks, which occur either through
replication fork collapse or chemical reactions188. In response to DDR sig-
nals, which may include cell cycle arrest, DNA repair, senescence, or
apoptosis189. A common DDR process is the phosphorylation of γH2AX,
which is triggered by DNA-dependent protein kinase catalytic subunit
(DNA-PKcs) andataxia telangiectasiamutated (ATM)kinase in response to
DSBs. This formation of γH2AX foci aroundDSB sites renders it a valuable
tool for the study of DNA damage caused by replicative stress during
influenza infection190–193. The H1N1 virus has also been demonstrated to
induce DNA damage in both in vitro and in vivo models, as evidenced by
comet assays and γH2AX foci, in addition to elevated oxidative stress
markers in the blood of infected patients194,195.

Chromosomal abnormalities are observed in both cultured cells and
the leukocytes of infected patients. In vitro studies utilizing the comet assay
on human leukocytes infected with the H3N2 strain A2/HK/68 demon-
strated thepresence ofDNAdamagewithin twohours,with apeakobserved
at 24 h196. Similarly, infection of HeLa cells with the H3N2 strain A/Udorn/
317/72 resulted in DNA breaks, leading to apoptosis after 36 h197.

Furthermore, the DNA mismatch repair pathway is involved in the
survival of infected cells. Moeed et al. demonstrated that caspase-activated
DNase (CAD)-dependent DDR enhances immune responses by activating
mitochondrial pro-inflammatory functions. The activation of CAD induces
DNA damage responses, which involve kinase signaling, the NF-κB and
cGAS/STING pathways, as well as neutrophil recruitment and cytokine
production. In mice lacking CAD, reduced lung inflammation, increased
viral load, and weight loss indicate that CAD plays a role in linking host
defenses to cell death mechanisms198.

Ebola virus (EBOV)
The outbreak of the Ebola virus disease in 2014 resulted in a large numberof
human deaths. There are no direct indications on the host DNA damage by
the virus, however bioinformatic analysis reveals the presence of ATM
recognitionmotifs in all Ebola virus proteins, this suggests a potential role of
DNA damage response pathways and ATM kinase in pathogenesis of the
Ebola virus disease199. Moreover, EBOV VP24 matrix protein involved in
virus budding and nucleocapsid assembly199,200 binds to Emerin, a nuclear
membrane protein that interacts with lamins. Mutations or disruptions in
laminproteins are linked tomanynuclear abnormalities,DNAdamage, and
diseases collectively termed laminopathies. EBOV VP24 disrupts these
nuclear interactions by binding to emerin, lamin A, and lamin B, which

results in the nuclear membrane rupture and the activation of the DNA
damage response200–206. Furthermore, transcriptional modifications, extra-
cellular signal-regulated kinase (ERK) pathway activation, BAF displace-
ment and downmodulation and alterations in nuclear morphology are
linked to VP24 expression207. These alterations have the potential to harm
DNA by activating the DDR mechanisms207.

Zika virus
The Zika virus (ZIKV) was initially identified in Africa in 1947. However,
it was not until 2015 that it gained significant attention due to an outbreak
in Brazil that was linked to congenital malformations and Guillain-Barré
Syndrome208,209. ZIKV promotes endoplasmic reticulum (ER) stress and
utilizes ER-derived vesicles for viral replication, thereby disrupting cal-
cium ion (Ca²+) homeostasis between the ER and mitochondria. This
disruption results in the production of reactive oxygen species (ROS),
whichmay lead to cellular damage210. Infection of humanneural stem cells
(hNSCs) by the African MR766 ZIKV strain results in elevated histone
γH2AX phosphorylation, which is indicative of DNA damage. Interest-
ingly, this phosphorylation occurs independently of the usualATM/ATR-
Chk1/Chk2DNAdamage signaling pathways. ThedistributionofγH2AX
in MR766-infected is diffuse and nuclear, indicating extensive DNA
damage211.

Picornaviridae
Single-stranded RNA viruses of the Picornaviridae family can infect both
humans and animals. This group includes cardioviruses, such as the ence-
phalomyocarditis virus (EMCV), and enteroviruses, which encompass
poliovirus, coxsackievirus, and rhinoviruses212.

EnterovirusA71 is a causative agent of hand, foot, andmouthdisease in
cattle and also represents a significant threat to human health, particularly
among young children. Infection of children results in elevated γ-H2AX
expression in lymphocytes, which serves as a marker for DNA double-
strand breaks. Similarly, γ-H2AX forms complexes with viral proteins and
the viral genome in newborn mice and is also detected in nucleated blood
cells in infected sheep. The addition of antioxidants has been shown to
reduce this effect, which suggests that oxidative stress may play a role in
Enterovirus-induced DNA damage213–215.

The activation of DDR pathways, including kinases such as ATM,
ATR, CHK1, CHK2, and aurora kinases, has been observed upon Cox-
sackievirus B3 (CVB3) infection. Similarly, kinases involved in cell cycle
regulation, such as Greatwall kinase (GWL) and cyclin-dependent kinases
(CDK) 1/2, are also affected by EMCV and CVB3, particularly during
mitosis. The viruses have been observed to disrupt cell cycle regulation, with
CVB3 causing cyclin D degradation and a potential interaction between the
viral VP1 protein and CDK assemblies. Such disruptions are frequently
associated with DNA damage and cell cycle arrest216–221.

The activationof theDDRand thepresenceofDNAdamagehave been
documented in other enteroviruses, including EV-D68 and EV-A71. This
indicates that the induction of DNA damage is a common event across
picornavirus infections. This shared capacity is a significant aspect of the
genotoxicity of picornaviruses, contributing to their ability to manipulate
host cellular processes to facilitate viral replication and persistence222,223.

HTLV-1 and HTLV-2
HumanT-lymphotropic viruses (HTLVs) are deltaretroviruses that possess
a distinctive capacity to transform primary T cells in vivo and in vitro,
despite the absence of a proto-oncogene in their genome.HTLV-1, themost
prevalent of the HTLVs, has infected ~10 million individuals worldwide,
predominantly in regions such as Africa, the Caribbean, and Japan. The
virus can be transmitted via blood transfusion, sexual contact, or from
mother to child during birth or breastfeeding. While a significant propor-
tion of individuals remain asymptomatic, 3–5% eventually develop severe
conditions, such as adult T-cell leukemia/lymphoma (ATLL), HTLV-1-
associated myelopathy (HAM), or tropical spastic paraparesis (TSP), fol-
lowing a latency period spanning decades224,225.
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HTLV-1 is a complex retrovirus that encodes typical retroviral genes
(gag, pol, and env) and unique nonstructural proteins from the pX region.
The aforementioned proteins include Tax and Rex, which are indispensable
for viral replication, as well as p30, p12, p13, and HBZ, which facilitate host
cell manipulation and viral survival. With regard to tropism, HTLV-1
displays a primary affinity for CD4+ T cells, whereas HTLV-2 exhibits a
proclivity for CD8+ T cells. The elevated Tax-mediated transcription in
CD4+T cells substantiates HTLV-1’s proclivity for transforming these
cells, although a considerable viral load is also maintained in CD8+ T cells.
However, there is a paucity of knowledge regarding the in vivopathogenicity
and mechanisms of HTLV-2226–229.

The genotoxicity of HTLV-1 is strongly associated with the Tax and
HBZ proteins. Tax activates the NF-κB pathway, which is critical for cell
survival and inflammation, while HBZ engages with cellular transcription
factors (e.g. E2F1, JunB, and CREB) that drive cell proliferation and
transformation. Furthermore, HTLV-1 impairs immune signaling by acti-
vating the Jak/Stat pathway via Tax, thereby promoting cell survival and
proliferation230,231.

The auxiliary protein p12, while not indispensable for viral replication
or T-cell immortalization, provides further evidence of viral genotoxicity. It
regulates T-cell proliferation by interacting with the 16 kDa subunit of the
vacuolar ATPase complex, which is essential for lysosomal and endosomal
function, and by binding to calcineurin, which releases calcium ions from
the ER and activates the NFAT pathway. NFAT, a pivotal transcription
factor, orchestrates calcium signaling with T-cell activation and amplifies
cellular pathways that HTLV-1 exploits for viral survival and replication.
Intriguingly, studies utilizing an infectious HTLV-1 molecular clone indi-
cate that deleting p12 does not markedly influence viral replication, sug-
gesting redundancy in viral proteins for sustaining the virus’s genotoxic
effects232–237.

SARS-CoV-2
The global health crisis precipitated by the SARS-CoV-2 virus has resulted
in millions of deaths and long-term consequences affecting multiple organ
systems, including respiratory, cardiovascular, neurological, and psycho-
logical impairments. Patients with severe forms of the disease exhibit ele-
vated levels ofDNAdamage in their blood cells, particularly amongyounger
individuals and those with more severe manifestations of the disease238,239.
Oxidative stress represents a pivotal mechanism underlying this DNA
damage, with elevated oxidative stress markers observed in patients. Fur-
thermore, elevated expressionofDNAdamage response genes andγ-H2AX
was observed in the cardiac tissue of SARS-CoV-2 infected individuals, even
in the absence of direct viral infection240,241. Additionally, SARS-CoV-2 spike
proteins can bind with Cu(II) ions, which results in the generation of
excessive ROS within the mitochondria. This phenomenon may further
contribute to the development ofDNAdamage. SARS-CoV-2 also degrades
the DNA damage response kinase CHK1, leading to increased DNA
damage, activation of pro-inflammatory pathways, and the onset of cellular
senescence. DDR may, in turn, facilitate viral entry by enhancing ACE2
receptor expression, a process associated with telomere shortening and
angiotensin II-induced ROS production. However, it is challenging to
ascertain the virus’s direct contribution to DNA damage, particularly since
many severely affected patients have pre-existing conditions, such as dia-
betes and cardiovascular disease, which are known to increaseDNAdamage
independently of SARS-CoV-2 infection242–247.

DNA viruses
Epstein-Barr virus
Since its initial isolation in 1964, the Epstein-Barr virus (EBV) has grown to
be a significant human tumor virus. EBV is associated with some malig-
nancies, with an estimated 90%of the human population infected. Through
a variety of epigenetic processes that it has evolved, the virus can impact its
host and aid in the onset and spread of cancer248.

DDR pathway is activated during lytic EBV reactivation in response to
a number of stimuli, including chemical inducers and human

immunoglobulin G (IgG) cross-linking. However, it should be noted that
theDDR response varies across different EBV-infected cellmodels. Proteins
involved in theDDRplay a pivotal role in the lytic replication of EBVDNA,
with the ATM kinase being specifically localized to the viral replication
compartment. Inparticular, the phosphorylated formofp53 (p53 serine 15),
whichdepends onATM, interactswith theBZLF1proteinduring lyticDNA
replication, indicating that p53 plays a regulatory role in EBV gene
expression during this process249–253.

Overexpression of BZLF1 has the capacity to circumvent the ATM
pathway in the induction of early lytic genes. In several cell lines, activation
of the ATM pathway correlates with the peak of BMRF1 and BZLF1
expression.ATMknockdown inEBV-infectedepithelial results in the loss of
the viral replication compartmentdespite thewidespread expressionof early
lytic proteins254–256.

Sp1 transcription factor accumulates at sites of DNA damage, where it
is phosphorylated by ATM Sp1 is essential for the repair of double-strand
breaks and is hyperphosphorylated by ATM during HSV-1 infection.
Phosphorylated Sp1 plays a pivotal role in the establishment of the viral
replication compartment during EBV lytic reactivation, binding to viral
DNA replication proteins within this compartment256–259.

Parvoviridae
Human parvovirus B19 (B19V) is a human pathogen that belongs to the
genusErythroparvovirus of the Parvoviridae family, which is composed of
a group of small DNA viruses with a linear single-strandedDNA genome.
Due to a limited genetic resource, Parvoviruses use host cellular factors for
efficient viral replication. Parvoviruses interact with the DNA damage
machinery, which has a significant impact on the life cycle of the virus as
well as the fate of infected cells. The B19V infection-inducedDDRand cell
cycle arrest at late S-phase are two key events that promote B19V repli-
cation. B19Vmainly infects human erythroid progenitor cells and causes
mild to severe hematological disorders in patients. It can also infect
non-erythroid lineage cells such as kidney cells and myocardial
endothelium260–262.

Infection of humandermalfibroblasts by parvovirus B19 is followed by
induction of both single-strand and double-strand breaks as evidenced by
comet assay and γH2AX staining263. The viral nonstructural protein, NS1
covalently binds to cellular DNA, induces single-strand nicks in it, then it is
modified by PARP, an enzyme involved in the repair of single-strand DNA
breaks. The DNA nick repair pathway initiated by poly(ADP-ribose)poly-
merase and theDNA repair pathways initiated by ATM/ATR are necessary
for efficient apoptosis resulting from NS1 expression264. Thus infection by
B19 might lead to genotoxic lesions.

KSHV(HHV-8)
Endothelial cells are susceptible to infection by Kaposi’s Sarcoma-
Associated Herpesvirus (KSHV), which can result in cellular transforma-
tion and the emergence of diseases such as Kaposi’s sarcoma (KS), primary
effusion lymphoma (PEL), and the plasmablastic variant of multicentric
Castleman’s disease. Genotypic variations of KSHV have been observed
across different geographical regions, with notable differences between sub-
SaharanAfrica and theMediterranean. These genotype variations appear to
be associated with specific disease manifestations265.

KSHV primarily persists in a latent, episomal form; however, similarly
to EBV, it is capable of undergoing spontaneous lytic reactivation in a
limited subset of cells, resulting in the production of new virions.
Throughout both the latent and lytic phases, KSHV expresses genes that
modulate the DDR by phosphorylating key proteins, including the tumor
suppressor p53, and activating the ATM pathway5,9,266,267. The capacity of
KSHV to establish andmaintain latency is closely linked to its promotion of
cell division and inhibition of apoptosis, which ultimately results in
increased DNA damage and chromosomal abnormalities. During KSHV
infection, several components of the DDR, including ATM, ATR, DNA-
PKcs, and others, are transcriptionally downregulated. This allows the virus
to evade apoptosis and control cell cycle checkpoints. This modulation of
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the DDR is of great importance for the facilitation of KSHV replication and
persistence within the host9,268–270.

Conclusion and perspectives
Viruses, particularly those that persist and integrate into the host genome
can cause significant genotoxic stress, leading to various biological con-
sequences. During evolution, viruses developed ingenious mechanisms to
exploit or manipulate the host’s genotoxic stress response for their benefit.
To name just a few,HPVE6 and E7 degrade p53 and Rb, disabling the cell’s
ability to repair DNA damage and control the cell cycle271; EBV latent
membrane proteins LMP1 and LMP2 mimic growth factor signaling,
promoting cell survival and proliferation despite DNA damage272.

It is evidently much more difficult to fight the consequences of geno-
toxic stress than with the stress itself. Some potential strategies include
targeting viral oncoproteins that promote genotoxic stress and oncogenesis.
For example, vaccines like theHPVvaccine prevent infectionwith high-risk
HPV types, reducing the incidence of related cancers. In some cases,
modulating the DNA damage response in virus-infected cells may help
improve treatment outcomes, e.g. PARP inhibitors are being explored as
potential therapies in HPV-associated cervical cancer273. Thus, under-
standing the mechanisms of virus-induced stress is crucial for compre-
hending how viral infections contribute to cancer, aging, and other diseases
and for the development of new therapeutic strategies.
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