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Voltage imaging is a powerful technique for studying neuronal activity, but its effectiveness is often
constrained by low signal-to-noise ratios (SNR). Traditional denoising methods, such as matrix
factorization, impose rigid assumptions about noise and signal structures, while existing deep learning
approaches fail to fully capture the rapid dynamics and complex dependencies inherent in voltage
imaging data. Here, we introduce CellMincer, a novel self-supervised deep learning method
specifically developed for denoising voltage imaging datasets. CellMincer operates by masking and
predicting sparse pixel sets across short temporal windows and conditions the denoiser on
precomputed spatiotemporal auto-correlations to effectively model long-range dependencies without

large temporal contexts. We developed and utilized a physics-based simulation framework to
generate realistic synthetic datasets, enabling rigorous hyperparameter optimization and ablation
studies. This approach highlighted the critical role of conditioning on spatiotemporal auto-
correlations, resulting in an additional 3-fold SNR gain. Comprehensive benchmarking on both
simulated and real datasets, including those validated with patch-clamp electrophysiology (EP),
demonstrates CellMincer’s state-of-the-art performance, with substantial noise reduction across the
frequency spectrum, enhanced subthreshold event detection, and high-fidelity recovery of EP signals.
CellMincer consistently outperforms existing methods in SNR gain (0.5-2.9 dB) and reduces SNR
variability by 17-55%. Incorporating CellMincer into standard workflows significantly improves
neuronal segmentation, peak detection, and functional phenotype identification, consistently
surpassing current methods in both SNR gain and consistency.

Voltage imaging utilizes fluorescent reporters, either small-molecule dyes or
genetically encoded proteins, to measure the membrane potential of elec-
trically active cells. Compared to traditional patch-clamp electrophysiology
(EP), voltage imaging offers higher throughput and is less invasive. This
technique has been used to monitor neuronal electrical activity during
behavioral assays in vivo', as well as to characterize the functional effects of
pharmacological and genetic perturbations in primary and iPSC-derived
mammalian neurons in vitro™’. The increased throughput, control, and
flexibility of voltage imaging have enabled significant advances in our
understanding of biology. Recent developments have improved the
brightness of both voltage-sensitive dyes' and heterologously expressed
voltage-sensitive proteins’. However, the achievable signal-to-noise ratio
(SNR) remains limited compared to conventional patch-clamp techniques

due to factors such as dye quantum yield, short exposure times (<2 ms)
needed to capture neuronal action potentials, and constraints on excitation
intensity to prevent sample damage.

Limitations on SNR have two practical effects. First, small-magnitude
electrical events of interest, such as subthreshold post-synaptic potentials,
could be lost in the background temporal noise. Previous work powered by
tracking the timing of action potential firing between neurons provided
some insight to how neurons might wire together in small circuits. However,
the site of inter-neuronal communication is the synapse. A measure of
synaptic connectivity, demonstrated as subthreshold activity measured at
the soma, would provide a greater understanding of how neuronal circuits
are formed and how synaptic connections are modified during different
forms of plasticity. Second, cells expressing relatively low amounts of

"Data Sciences Platform (DSP), Broad Institute of MIT and Harvard, Cambridge, MA, USA. 2Department of Computer Science and Engineering, Oakland University,
Rochester, MI, USA. *Spatial Technology Platform (STP), Broad Institute of MIT and Harvard, Cambridge, MA, USA. “Stanley Center for Psychiatric Research at the
Broad Institute of MIT and Harvard, Cambridge, MA, USA. *Departments of Molecular & Cell Biology and Chemistry and Helen Wills Neuroscience Institute, UC

Berkeley, Berkeley, CA, USA.

e-mail: brice@broadinstitute.org; mehrtash@broadinstitute.org

npj Imaging | (2024)2:51


http://crossmark.crossref.org/dialog/?doi=10.1038/s44303-024-00055-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44303-024-00055-x&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44303-024-00055-x&domain=pdf
mailto:brice@broadinstitute.org
mailto:mehrtash@broadinstitute.org
www.nature.com/npjimaging

https://doi.org/10.1038/s44303-024-00055-x

Article

fluorescent reporters can be lost in a comparatively high autofluorescent
background, lowering the effective throughput of voltage imaging.

These technical challenges have motivated the development of data-
denoising algorithms to computationally enhance the SNR and enable the
recovery of obscured and subtle fluorescent signals. Matrix factorization is
an effective class of algorithms for fluorescence image denoising™, as the
sparse and static signal sources (e.g. neurites) in these imaging assays create
an ideal setting for approximating entire fluorescence recordings as low-
rank decompositions. Principal component analysis (PCA), non-negative
matrix factorization (NMF), and penalized matrix decomposition (PMD)*
are popular implementations of this concept. These approaches, while being
highly efficient and effective at data denoising, suffer from a number of
caveats. These include: (1) implicit parametric assumptions on the nature of
the noise that are theoretical approximations of the actual complex data-
generating process; (2) usage of spatiotemporal regularizations to encourage
robustness and model identifiability, such as total variation penalty or
temporal continuity, that are often violated (e.g. spike events, spatially
heterogeneous expression of the fluorescent reporter); (3) making strong
assumptions about the background fluorescence component to allow their
approximate subtraction as a simple data preprocessing step. These mod-
eling assumptions, while laying a strong foundation, ultimately hamper the
expressivity of conventional denoising algorithms.

We envision that the ideal denoising algorithm should minimize the
explicit assumptions made about the noise process while maximizing
the potential to learn the complex spatiotemporal relationships that govern
the signal. Deep neural networks (DNNs), which have no theoretical limit to
complexity, can in principle solve the issue of denoising model expressivity.
However, deep learning denoising models pretrained on large datasets of
natural images’ are ill-equipped to operate in the low-SNR regime of
fluorescence imaging'’, requiring a suitable model to be trained from scratch
for this data domain. This immediately poses a challenge for supervised
learning approaches which require clean images as a learning target, which
are not available in voltage imaging. A powerful recent training strategy,
called self-supervised denoising, circumvents the requirement of having
clean ground truth data by exploiting a key property of many noise pro-
cesses: by appropriately partitioning the raw data into compartments, and
predicting one compartment from the other, it is often possible to eliminate
predictors of noise while retaining the ability to predict the underlying signal.
Noise2Noise (N2N)"', Noise2Self (N2S)"?, and Noise2Void" are prominent
examples of self-supervised denoising techniques proposed for images.
These methods have consistently been shown to produce state-of-the-art
results, including in fluorescence imaging, even compared to counterparts
that are trained on pairs of noisy and clean data'’. In particular, the
Noise2Self algorithm, the foundation upon which we built our method,
operates on the following elegant and simple principle: suppose a sparse set
of pixels are masked out from a noisy image, and a neural network is trained
to predict the value of the sparsely masked pixels from the rest of the image,
i.e. the majority of pixels. Assuming that the noise in the masked pixels is
uncorrelated with the rest of the pixels, the optimal predictor can at best
predict the noiseless signal component; in practice, it can excel at this task
given the strong spatial correlations and redundancy in biological images. It
follows that the optimal masked pixel predictor in turn behaves as an optimal
pixel denoiser. Noisy data itself provides the needed evidence for teasing out
the signal component, circumventing the need for clean training data.

One of the main challenges in extending self-supervised image
denoising approaches to spatiotemporal data, such as voltage imaging
recordings, is that these datasets contain thousands of frames, and that
each frame is individually too signal-deficient to self-supervise its own
denoising. At the same time, GPU hardware memory constraints and
efficient training considerations prevent us from ingesting and processing
entire voltage imaging movies with neural networks to exploit frame-to-
frame correlations. The middle ground strategy adopted by several authors
is to process the movie in overlapping and truncated local denoising
temporal contexts, i.e. chunks of adjacent frames. For instance, Li et al."
developed DeepCAD-RT, a Noise2Self-like denoising method based on

their earlier DeepCAD" method which reconstructs whole masked frames
from temporally downsampled movie chunks, and they demonstrated its
capacity to restore a high imaging SNR from low-SNR calcium imaging
recordings. Lecoq et al.'® developed Deeplnterpolation, a Noise2Noise-like
whole-frame interpolation-based deep learning method acting on small
temporal windows which also allowed them to increase the SNR and
retrieve a significantly higher fraction of neuronal segments from calcium
imaging. Zhang et al.”” developed DeepSeMi, a self-supervised-learning-
based denoising framework which applies an asymmetric convolutional
kernel to several isometric transformations of a given data patch to predict
input pixels without including them in their own predictive contexts, and
demonstrated its capacity to increase the signal-to-noise by 12 dB over
various imaging conditions. Platisa et al."* developed DeepVID, a deep
convolutional neural network simultaneously trained under self-
supervision to predict whole frames from a short window of pre- and
post-frames and individual pixels from the remaining same-frame context,
which enabled high-speed, deep-tissue imaging in active mice. Eom etal.”
developed SUPPORT, a self-supervised learning method for predicting
pixels from their full spatiotemporal contexts, which was able to achieve
precise denoising of various forms of fast microscopy imaging.

These existing approaches are sub-optimal for one or more of the
following important reasons. (1) Unless the local denoising context is
impractically large and contains hundreds of movie frames, the neural net-
work is incapable of estimating long-range pixel-to-pixel temporal correla-
tions that are arguably key to effective signal extraction and noise removal. As
we will show in later sections, explicitly precomputing and supplementing
the short-context local denoiser with such information results in a striking
boost in the denoising performance. (2) Methods relying on leave-frame-out
denoising approach, including DeeplInterpolation, DeepCAD-RT, and
DeepVID, are best suited for denoising calcium imaging data. The perfor-
mance of these methods degrade strikingly when applied to voltage imaging
data (see “CellMincer outperforms existing methods at denoising simulated
volt-age imaging data”). The much faster temporal dynamics of voltage
imaging data compared to calcium imaging implies that each movie frame
contains unique signal that cannot be inferred from the adjacent frames with
high fidelity. For instance, the evidence for a neuronal spike is most pro-
minently present in a single frame. This issue has been independently
acknowledged and addressed in SUPPORT" and DeepSeMi"".

In this work, we introduce CellMincer, a self-supervised deep-learning
method specifically designed for denoising voltage imaging datasets based on
the Noise2Self denoising framework. CellMincer introduces several key
refinements over the currently existing self-supervised movie denoising
methods to address the aforementioned caveats. The key methodological
contributions of CellMincer include: (1) development of an efficient and
expressive two-stage spatiotemporal data processing deep neural network
architecture, comprising a frame-wise 2D U-Net module for spatial feature
extraction, followed by a pixelwise 1D convolutional module for temporal
data post-processing; (2) replacing the common task of whole-frame pre-
diction with masking and predicting a sparse set of pixels from a small
number of adjacent frames; this training methodology allows the denoiser to
have access to the unique information contained in any individual frame as
well as the supporting context in its neighboring frames; (3) precomputing
spatiotemporal auto-correlations at multiple length scales, and providing
such precomputed statistics as a conditioner to the denoiser neural network
(that otherwise processes smaller spatiotemporal regions of the movie at a
time); (4) developing and leveraging a physics-based simulation framework
to generate highly realistic pairs of clean ground truth and noisy recording
realization for hyperparameter optimization and performing ablation studies
to tease apart the roles of various modeling choices in a controlled setting.

Using benchmarking experiments performed on simulated data and
real voltage imaging data with paired patch-clamp EP recordings as a proxy
for ground truth, we show that CellMincer yields state-of-the-art results as
measured in terms of several practical metrics. These include a modal peak
signal-to-noise ratio (PSNR) gain of 23.3 dB compared to raw data simu-
lated over a range of noise conditions (an increase of 1.7-2 dB over the next
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best-benchmarked methods), a 14dB reduction in high-frequency
(>100 Hz) noise (a further reduction of 3-10.5dB from the next best
methods), a 2-6 percentage point increase of F;-score in detecting sub-
threshold events compared to the benchmarked methods across all voltage
magnitudes in the 0.5-10 mV range (in which the baseline F;-score ranges
from 5% to 14%), and an 8% increase in the cross-correlation between low-

——————————
Channel Contraction

16 18 20

APSNR (dB)

22

Performance with conditioning on global features

3 25-50mA
[ 50-75mA
[ 75-100 mA
[J 100-125 mA
[ 125-150 mA
[ 150-175 mA
[ 175-200 mA

Probability Density

16 18 20

APSNR (dB)

noise EP recordings and voltage imaging. A striking result from our ablation
study is the pivotal role of conditioning the denoiser on precomputed global
features, resulting in a nearly 5dB (or approximately 3-fold) boost in
average PSNR gain, as well as a highly-concentrated distribution of PSNR
gain across all frames and electrical stimulation amplitudes (see Fig. le).
Finally, to demonstrate the utility of CellMincer to real end-to-end
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Fig. 1 | Overview of voltage imaging data and CellMincer denoising model. a A
simplified schematic diagram of a typical optical voltage imaging experiment (left).
The spatially resolved fluorescence response is recorded over time to produce a
voltage imaging movie. A key component of CellMincer’s preprocessing pipeline is
the computation of spatial summary statistics and various auto-correlations from
the entire recording, which are concatenated into a stack of global features (right).
b An overview of CellMincer’s deep learning architecture. ¢ The conditional U-Net
convolutional neural network (CNN). At each step in the contracting path, the
precomputed global feature stack is spatially downsampled in parallel

(F - 7' — " — ...) and concatenated to the intermediate spatial feature
maps. d The temporal post-processor neural network. The sequence of pixel

embeddings are convolved with a 1D kernel along the time dimension, producing a
single vector of length C. A multilayer perceptron subsequently reduces this vector to
a single value. e A comparison of model performance on simulated data before and
after introducing global features as a U-Net conditioner. Using global features
confers an average increase of 5 dB to the denoiser, roughly corresponding to a 3-fold
noise reduction. The presented data consists of several segments in which the
simulated recording was performed under several neuron stimulation conditions,
which are reported as separate distributions of PSNR gain. For further elaboration,
see “Optimizing CellMincer network architecture and training scheduleusing
Optosynth-simulated datasets” in “Methods”.

biological hypothesis testing, we compare the voltage imaging of chronically
tetrodotoxin-treated and unperturbed cultured hPSC-derived neurons, and
demonstrate that CellMincer denoising enables reliable identification and
segmentation of nearly 2-fold as many neurons as in the raw data, improved
identification of spiking events, and ultimately significantly enhanced sta-
tistical separation between the two functional phenotypes.

Results

CellMincer self-supervised denoising framework

The CellMincer denoising pipeline involves three stages: (1) data pre-
processing and global feature extraction; (2) self-supervised pretraining of
the denoising neural network; (3) inference of denoised movie. In the pre-
processing step, we take a recording X(f, x, y) represented as a three-
dimensional tensor with shape T(time) x W(width) x H(height). We treat
each pixel as a separate time series of T samples, fit a low-order polynomial
function to each, and thereby decompose the movie as a sum of smooth
trend and detrended residual tensors. The trend tensor primarily represents
the background fluorescence, whereas the residual detrended tensor
represents a noisy measurement of the electrical activity. This step, in
contrast with the trained neural network component of our pipeline, is
merely a heuristic to improve model performance by removing what the
user would reasonably deem irrelevant to the signal of interest. Going for-
ward, we apply a scaling factor to the detrended data before performing
inference over the normalized result, after which we invert the scaling factor
and add back the smooth trend component. This detrending and scaling
step is critical for model training stability, as the presence of a high-
magnitude background obscures the functional component of the data,
preventing the network from disentangling the small-scale signal from the
even smaller-scale noise. This both prevents the issue of floating-point
underflow induced by a high-magnitude input and allows the model to
generalize better to out-of-sample data, the background activity of which is
likely to differ substantially from that of the training data.

To set the stage for self-supervised pretraining, we calculate various
summary statistics for each pixel, including temporal mean, temporal var-
iance, and all bidirectionally lagged spatiotemporal auto-correlations with
adjacent pixels. These statistics are computed separately for both the slow
moving average and the fast residual components of the detrended movie,
and at two different spatially downsampled resolutions to account for auto-
correlations with longer spatial lags. Finally, we concatenate these pre-
computed statistics as a tensor # of shape F x W x H to represent pixelwise
global statistics, where F = 74 is the total number of computed statistics per
pixel. “CellMincer preprocessing and global feature extraction details” in
“Methods” fully describes our preprocessing and feature extraction stage.
This step is schematically referred to as global featurizer in Fig. la.

We present the denoising strategy we employ in CellMincer in two
stages for clarity. First, we describe the architecture of the DNN that we
purport to be capable of performing efficient denoising. Next, we describe
the self-supervised training strategy a la Noise2Self that allows the denoiser
to train without clean targets.

Our proposed denoising DNN takes as input a series of 27+ 1 con-
secutive frames, corresponding to time points f — 7, ..., t— 1, , t+1, ...
t+ 7, from the detrended movie and aims to predict a denoised recon-
struction of the frame in the middle, at time point t. We refer to 7 as the

temporal order, and to 27+ 1 as the context size of the local denoiser.
Crucially, the DNN additionally takes the precomputed global feature stack
Z as a conditioner to supplement the local denoiser with long-range spa-
tiotemporal statistics. The architecture of the denoising DNN consists of a
single-frame spatial feature extractor followed by a temporal post-processor
(see Fig. 1b). The spatial component is implemented as a U-Net convolu-
tional neural network (CNN) with a small but consequential modification:
to condition the convolutional operations on %, we concatenate an
appropriately spatially downsampled copy of # prior to each convolution
block on the contracting path (see Fig. 1c). The conditional U-Net extracts
deep, native-resolution C-channel single-frame embeddings from each of
the 27+ 1 consecutive frames (see Fig. 1b). The resulting embeddings are
concatenated into a 4D tensor of shape (27+ 1) x Cx W x H:

thr

At—T:t+T,0,x,y) = /\ NNy et [Xdetrendea s % 0 | Z |, (1)
t'=t—71

where /\ denotes concatenation along the time dimension. This inter-

mediate tensor is routed to the temporal post-processor, which consists of a

series of temporal convolutional layers, reducing each set of pixel embed-

dings across all frames to a final output pixel. The output of the temporal

post-processor represents a denoised reconstruction of the middle frame:

X((iieel;l:eifled(ied(t7 x7y) = NNpost—processor ["Q/(t —1:t+71,c xvy)] . (2)

Note that the temporal post-processor treats pixels (x, y) as independent,
only operating on time and U-Net feature channels (see Fig. 1d). This two-
stage constrained network design enables efficient spatiotemporal data
processing by logically compartmentalizing the flow of information; the
U-Net facilitates information mixing across pixels within individual frames,
while the post-processor convolves information across frames for individual
pixels. Refer to “CellMincer neural network design, training schedule, and
implemen-tation details” in “Methods” for architectural details.

We train the CellMincer denoiser in a self-supervised fashion as fol-
lows. At the beginning of each training iteration, pixels chosen at random in
the frame at time ¢ are replaced with Gaussian noise with pixel-specific in-
distribution mean and variance before the frame is fed into the network:

Xdetrended(t7x7y) = [1 - M(x7y)}Xdetrended(t7x7y)
+M(x, ) N [u(x, ), o(x, )] .

Here, M(x, ) is a binary mask containing a sparse number of ones, and u(x,
¥) and o(x, y) correspond to the temporal mean and standard deviation of
the detrended movie at position (x, y). These masked pixels are then used as
the training targets, where the L, loss is computed between the network’s
predicted values and their pre-masked values with the following loss
function:

3)

& = Zx,y M(x7y)” NNCellMincer [ . |5(detrended(t7 x>)’)| s 7‘9/7]
_Xdetrended(tvxvy) ||p7

where NNceaigincer = NNpog—processor NNu_nee (see Fig. 1b). Here, ... | and
| ... refer to the 7 preceding and the 7 following frames surrounding the

(4)
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frame at time ¢, respectively. As for a choice of pixel loss function, we have
experimented with both p = 1 and 2 and found the latter to result in higher
PSNR (see “Optimizing CellMincer network architecture and training
scheduleusing Optosynth-simulated datasets” in “Methods”). Even though
these pre-masked target values do not represent actual ground truth but
noisy realizations, their noise contribution cannot be predicted by the neural
network provided that the masking mechanism decorrelates the pixel noise
between masked and unmasked compartments (7 -invariance, see ref. 12).
In fluorescence imaging, the main source of noise is pixelwise Poisson-
Gaussian noise, which is uncorrelated across pixels, allowing us to satisfy the
J-invariance condition as a matter of masking individual pixels.
CellMincer’s implementation additionally permits the use of alternate
masking mechanisms (e.g. inclusion of margin around each masked pixel) if
needed to account for correlated noise. Crucially, the training protocol
includes only the masked pixels in its prediction task, directing the network
to solely infer pixel values without their noise components. At inference
time, this function is applied across all pixels uniformly, yielding our desired
denoising outcome without additional masking. This training strategy
allows CellMincer to operate very efficiently at inference time, when we feed
the noisy detrended movie in (27 + 1)-length overlapping sliding windows
to the network and denoise each window’s entire middle frame. To avoid the
typical practice of producing truncated results, we augment all model inputs
with appropriate spatial padding at training and inference time, and we pad
the beginning and end of the denoised movie with 7 copies of its first and last
frame respectively.

Our implementation of CellMincer can jointly train on many datasets
across multiple GPUs to produce a highly generalizable model, but satis-
factory results can be achieved by training on a single voltage imaging
dataset with as few as 5000 frames. For a more detailed exploration of the
effect of training data size and imaging resolution on CellMincer’s perfor-
mance, see Sec. 2 and Sec. 3 in Supplementary Material. Owing to the
model’s self-supervised training scheme, the dataset to be denoised can also
serve as the model’s only training data.

Architecture optimization of CellMincer via realistic physics-
based simulations

To optimize the architecture and hyperparameters of CellMincer and study
the impact of various design choices on the baseline denoising performance,
one needs noiseless ground truth voltage imaging data. While experimental
sourcing of true noiseless data is impractical due to technical limitations (e.g.
the trade-off between signal-to-noise ratio and sampling rate, photo-
bleaching and sample heating at higher illumination), we can aim to gen-
erate such ground truth recordings and their noisy realizations via carefully
crafted simulations. These simulated data can then be used to study and
optimize the model architecture and serve as a benchmark to evaluate the
performance of CellMincer compared to other denoising methods.

To these ends, we developed Optosynth, a methodology for generating
physics-based synthetic optical voltage imaging data using single-neuron
morphological reconstructions and paired EP measurements from the Allen
Brain Patch-seq dataset’ . In brief, Optosynth simulates a noiseless voltage
imaging readout by sampling neurons from a Patch-seq dataset, arranging
them on a synthetic imaging field, and modeling the fluorescence signal
density as an appropriate conversion function of the measured membrane
potential. To produce realistic voltage imaging readouts, we additionally
include low-passing of EP to the fluorescence sensor sampling rate, action
potential wavefront propagation and decay, variability in fluorescent reporter
expression, point spread function (PSF), and static and dynamics background
autofluorescence. We generate noisy readings from noiseless simulations by
adding Poisson shot noise and Gaussian sensor thermal noise. Optosynth’s
simulations are highly customizable, enabling generation of synthetic datasets
that can represent a wide range of experimental conditions, noise levels, and
magnifications. A detailed description of Optosynth is provided in “Simu-
lating realistic voltage imaging datasets using Optosynth” in “Methods”.

The CellMincer model is specified by a large set of hyperparameters
which determine the architecture of the underlying DNNG, the self-

supervised training parameters, and the optimizer scheduling. To optimize
over this hyperparameter space, we first identified a baseline configuration
that specifies a design empirically capable of denoising our Optosynth
datasets and training it to sufficient convergence. We then constructed a
series of single-hyperparameter variations of the baseline configuration and
evaluated their performance on Optosynth data. Our hyperparameter
variations included the inclusion or exclusion of global features #, the
length of the denoising window 27+ 1, the U-Net parameters (depth,
number of channels), the temporal post-processor architecture, the loss
function, and the rate of pixel masking during self-supervised training. Our
evaluation procedure consisted of training the model on a subset of our
Optosynth data, denoising both the training data and unseen data (biolo-
gical replicates generated using Optosynth) with our trained model, and
computing the denoised imaging’s peak signal-to-noise ratio (PSNR) with
respect to the ground truth. These results determined our final selection of
hyperparameters used in subsequent benchmarking experiments. While
our greedy hyperparameter search procedure is unlikely to locate the
globally optimal model configuration given the dependencies between
CellMincer’s hyperparameters, we believe that this process produced a
suitable optimum where a complete grid search would be computationally
infeasible. In particular, our central finding that the inclusion of pre-
computed global features largely overshadows all other optimizations sug-
gests to us that there is relatively little room for further model improvement.
A more thorough elaboration of these optimization experiments can be
found in “Optimizing CellMincer network architecture and training sche-
duleusing Optosynth-simulated datasets” in “Methods”.

Foremost, we found that conditioning the U-Net on global features
produced the most significant improvement by wide margins, up to 5dB
gain in PSNR (see Fig. 6b, rows 1-3). Without inclusion of global features,
model performance gains relied heavily on increasing the local denoising
temporal context windows (see Fig. 6b, rows 1, 4-7; the context size is varied
from 5 to 21 frames ~10—42 ms). We note that such large temporal context
sizes exceed the observed temporal correlation lengths in voltage imaging
(see lagged cross-correlations in Fig. 2d and Fig. 3c), suggesting that the
unconditioned denoiser is taking advantage of large context sizes to infer
pixel-to-pixel spatial correlations rather than temporal correlations. To
further underscore this point, we note that PSNR gains of a denoiser
explicitly conditioned on precomputed global auto-correlations saturate
between 5 and 9 frames ~10—18 ms, which coincides with the typical
temporal correlation length in neuronal activity (see Fig. 6e, rows 1-5).
Clearly, precomputing global features and conditioning the denoiser is a
much more effective and computationally efficient alternative to using
longer denoising context windows.

Another advantage of conditioning the denoiser on precomputed
global features is achieving more robust PSNR gain characteristics across
different stimulation amplitudes. This can be seen by comparing the violin
plots of PSNR gain distributions for unconditioned and conditioned
denoisers in Fig. 6. The PSNR gain distribution of the unconditioned
denoiser (baseline, first row, panel b-¢)) varies from +16 dB to 423 dB, and
is highly variable in particular for recordings at lower electrical stimulation
amplitudes (shown in blue). This observation further underscores that the
performance of an unconditioned denoiser relies on its ability to infer
correlations solely from the local context, which can be unreliable when
neurons are not active under low stimulation. In contrast, the PSNR gain
distributions of all conditioned model variants (rows 2-2, panel b—c, and all
rows of panel e—f) are tightly concentrated from +22 dB to +24 dB.

Besides the crucial importance of conditioning the denoiser on global
features, we find that other design decisions (like U-Net depth, number of
channels, loss function selection, and the amount of masked pixels) have a
surprisingly small effect on model performance. This indicates that Cell-
Mincer works reliably and does not require extensive parameter fine-tuning
when used with other voltage imaging datasets. A more detailed description
of these optimization experiments and their results are provided in “Opti-
mizing CellMincer network architecture and training scheduleusing
Optosynth-simulated datasets” in “Methods”.
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Fig. 2 | Benchmarking CellMincer and three other denoising methods on
simulated voltage imaging. a Sample denoised frame visualizations (grayscale
images) and their residuals with respect to simulated ground truth imaging (red/blue
images). Both the denoised and residual images are shown as relative change in
fluorescence AF/F with respect to a frame-averaged polynomial regression of the
baseline (see “CellMincer preprocessing and global feature extraction details” in
“Methods”). b Sample denoised ROI-averaged neuron traces (color), overlaid with
the ground truth (black). ¢ Distributions of single-frame PSNR gain achieved
through denoising. Each distribution corresponds to a different value of simulated

-40 =20 0 20 40
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O\.5
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photon-per-fluorophore count Q (shown in the legend), which is the measure of raw
data SNR in Optosynth simulations (see “Simulating realistic voltage imaging
datasets using Optosynth” in “Methods”). The dashed vertical line over the top four
rows is a guide for the eye and indicates the mode of CellMincer’s PSNR gain
distribution for the lowest SNR data (corresponding to Q = 5). The plot at the bottom
row shows the SNR distributions of the raw datasets at different Q levels.
d Distributions of lagged cross-correlations between denoised single-neuron traces
and their ground truths. Their medians are overlaid with peak correlations at At =0
labeled. Abbreviations: GT (ground truth).

CellMincer outperforms existing methods at denoising simulated
voltage imaging data

For our benchmark evaluations, we included a selection of denoising
algorithms applicable to spatiotemporal data. Importantly, the algorithms
share the precondition that clean reference data for training is not needed.
SUPPORT" is a self-supervised learning method for removing Poisson-
Gaussian noise from voltage imaging data. DeepVID'®, a deep convolutional
neural network trained under self-supervision to predict whole frames and
individual pixels in voltage imaging data. DeepSeMi'” is a self-supervised-
learning-based framework that uses blind-spot kernels in training to denoise
voltage imaging data. DeepCAD-RT" is a self-supervised deep-learning
algorithm for denoising calcium imaging data. Penalized matrix

decomposition (PMD)’ is a training-free algorithm based on a regularized,
low-rank factorization of the data. As a baseline, we also include the original
implementation of Noise2Self (N2S)"* for images, which denoises movie
frames individually.

To cover a range of scenarios characterized by differing noise condi-
tions, we chose four different SNRs by varying the number of photons-per-
fluorophore Q in simulations (see “Simulating realistic voltage imaging
datasets using Optosynth” in “Methods”). With this design choice, our aim
was to conduct a broad evaluation of each method across a range of imaging
qualities, which in practice can vary widely with the choice of fluorescent
reporter, the stimulation protocol, and the sensor characteristics, among
other factors. For each level of SNR, denoted in increasing order as Q = 5, 10,
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Fig. 3 | Benchmarking CellMincer and two other denoising methods on paired

optical and patch clamp datasets. a Sample denoised ROI-averaged neuron traces

(color), aligned to the EP-derived ground truth (black). b Inlays of subthreshold
activity as indicated in the previous column, magnified. ¢ Distributions of lagged
cross-correlations between denoised single-neuron traces and their corresponding
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aligned EP signals. Their medians are overlaid with peak correlations at At =0
labeled. d Average noise reductions at varying frequency ranges achieved through
denoising. e Peak-calling accuracy F;-scores over a range of EP peak prominence
levels, using the EP signal as ground truth. Abbreviations: ROI (region of interest).
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Fig. 4 | Comparing the spiking activity of chronically tetrodotoxin (TTX)-
treated vs. control hPSC-derived neurons with raw and CellMincer-denoised
Optopatch voltage imaging data. a Raw and denoised versions of a sample frame,
colored with the neuron components identified in their corresponding datasets.

b Corresponding ROI-averaged single-neuron traces detected in both versions of the
above frame. ¢ Spike count distributions, separated by neuron population and sti-
mulation intensity. Spikes were identified in each detected neuron’s trace and binned

Stimulation period (increasing intensity)

by their stimulation intensity. The separation between the sets of green (TTX-
treated) and purple (Control) boxplots in each respective plot indicates the degree to
which we were able to identify the difference in spiking activity in the data.

d Detected neuron counts in the raw and denoised versions of each dataset.

e Statistical power of the Wilcoxon Rank Sum test applied to the neuron population
differentiation hypothesis, reported as the negative logarithm of its p-value.

50, 200, we generated five synthetic datasets using Optosynth at an imaging
rate of 500 Hz with associated ground truth. For each of the benchmark
methods, we decided whether to provide the data in its original form or as
the pixelwise detrended version produced by CellMincer’s preprocessing
step. From early empirical results, we found that the baseline algorithms
PMD and N2S perform significantly better on detrended data, while the
various self-supervised voltage imaging denoisers contain their own pre-
processing steps and were thus given the original data. We then trained
CellMincer and each of the other training-based denoising methods on
three of the five datasets and subsequently used them to denoise all five
datasets. PMD, which is a single-sample denoising algorithm, was used to
individually denoise the five datasets instead. With these denoised datasets
along with the original noisy datasets, we conducted a series of evaluations
centered on comparing them to our ground truth imaging. We present our
Optosynth benchmarks in Fig. 2. Of the methods benchmarked here,
DeepVID and DeepSeMi did not produce comparable results, leading us to
omit them from Fig. 2. Their results are included in the extended Optosynth
benchmark in Fig. 4 in Supplementary Materials.

To visualize imaging quality, our first benchmark evaluation compared
the results of denoising a single movie frame in both absolute intensity and
residual intensity with respect to ground truth, of which CellMincer,
SUPPORT, and PMD exhibit notably cleaner residual frames (Fig. 2a).
CellMincer and PMD exhibited slight and moderate misjudgements of
certain neuron spiking intensities respectively, while DeepCAD-RT and

N2S were less effective at removing noise throughout the frame. Our next
evaluation explored the resolution of single-neuron signals from the ima-
ging. To extract these signals, we inferred single-neuron masks from the raw
data (refer to “Procuring fluorescence intensity traces and aligning to joint
electro-physiology data” in “Methods”) and used them to produce ROI-
averaged traces. We overlaid these traces with their respective ground truth
for a sample neuron (Fig. 2b) and observed significantly less noise from
CellMincer, SUPPORT, and DeepCAD-RT. We noted that CellMincer
occasionally overstates the intensity of action potentials, SUPPORT at times
fails to register subthreshold events, and DeepCAD-RT does not fully
reconstruct spiking events.

After establishing a visual evaluation of CellMincer and the compared
methods, we sought to quantify these differences with the PSNR metric. In
column ¢, we compared the distributions of single-frame PSNR gain
achieved by denoising. Each frame PSNR was computed over the union of
pixels contained in the neuron ROIs gathered from all five datasets, and only
frames during stimulation periods were considered. These restrictions
mitigated the influence of background pixels in our performance metric. We
found that CellMincer demonstrates a consistent lead in PSNR gain over the
other algorithms. Additionally, CellMincer is more consistent across our
range of input SNRs, while the other methods yield a clear reduction in
PSNR gain for higher-quality datasets. This is consistent with one of our
core findings that the inclusion of global features, unique to CellMincer, acts
as an equalizing factor for data with varying SNR. This finding ties in with
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Table 1| Selected summary statistics from the PSNR gain
distributions shown in Main Fig. 2¢

Algorithm Q Mean PSNR Mode PSNR IQR
CellMincer 5 23.25 23.66 0.75
10 23.02 23.67 0.80
50 22.76 23.75 1.41
200 20.50 22.12 2.02
SUPPORT 5 23.10 23.16 1.57
10 22.29 22.66 1.80
50 20.71 20.82 2.12
200 19.21 19.80 2.42
PMD 5 22.01 22.16 1.14
10 21.64 21.88 1.23
50 20.58 21.11 1.50
200 19.43 20.76 1.68
DeepCAD-RT 5 16.41 16.86 0.79
10 15.01 15.40 0.70
50 12.68 13.37 0.59
200 10.59 11.67 0.56
N2S 5 8.61 8.38 0.64
10 8.47 8.61 0.78
50 8.26 7.99 0.63
200 7.02 6.24 1.40
DeepSeMi 5 9.80 9.74 0.37
10 8.76 8.86 0.40
50 11.81 13.75 1.70
200 9.31 12.71 2.90
DeepVID 5 -1.69 —-1.33 0.72
10 3.33 3.75 1.08
50 —15.45 -15.13 0.58
200 -10.37 —10.00 0.53

Both the distribution mean and mode are included to contrast the central PSNR tendency, which is
influenced by outlier frames, with the expected denoising outcome for a “typical” frame. The
interquartile range (IQR), included as a representative statistic for distribution spread, was
calculated using the distribution mode as its center.

our ablation study on the impact of global features (Fig. le), in which we see
that a CellMincer model without global features exhibits a similarly over-
dispersed PSNR gain distributions at different neuron stimulation ampli-
tudes, correlated with large jumps in SNR. Quantitatively, the modal PSNR
gain describes the effectiveness of a method for a “typical” frame, while the
(mode-centered) interquartile range (IQR) encapsulates the general var-
iance around this point. In Table 1, we provide the mean PSNR, modal
PSNR, and IQR for each method’s PSNR gain distributions, which we briefly
summarize here. Compared to the best competing method SUPPORT,
CellMincer exhibits an improvement in modal PSNR of +0.5 dB at SNR
level Q = 5, an improvement of +1.01 dBat Q = 10, +2.93 dB at Q = 50, and
+2.32 dB at Q =200. Additionally, CellMincer exhibits a reduction in IQR
from SUPPORT of 52% at Q = 5, 55% at Q = 10, 33% at Q = 50, and 17% at
Q =200. For reference, the SNR distribution of the raw datasets are given at
the bottom of column c for each of the four simulated scenarios.

Finally, we aimed to show that CellMincer does indeed reconstruct the
activity exhibited in the ground truth single-neuron traces without temporal
bias. In column d, we computed the distributions of lagged cross-
correlations between the denoised and ground truth traces over the Opto-
synth neurons at Q=10 and overlaid the median. All cross-correlations
sharply peaked at At = 0, and CellMincer exhibited a zero-lag median cross-

correlation of p = 0.81, comparable with that of SUPPORT (0.82) and sig-
nificantly higher than of DeepCAD-RT (0.68) and PMD (0.65).

CellMincer improves the detection of subthreshold events in real
voltage imaging data with paired electrophysiology

To extend our evaluation of CellMincer to real data, we further evaluated
CellMincer on 26 external datasets from a previously published study with
simultaneous voltage imaging with chemically-synthesized voltage-sensi-
tive fluorophore, BeRST**, and patch-clamp EP recordings, the latter of
which can be repurposed as a high-confidence source of ground truth.
BeRST is a chemically-synthesized far-red voltage-sensitive fluorophore.
Previously, we showed that BeRST can be used in cultured rat hippocampal
neurons to track changes in neuronal activity in models of development and
disease™. Data from that study contained simultaneous recordings of BeRST
fluorescence (voltage imaging) and single-cell patch clamp recordings (EP)
that could serve as a ground truth for benchmarking of CellMincer. Please
refer to “Simultaneous BeRST fluorescence voltage imaging and single-
cellpatch-clamp EP recording experimental procedure” in “Methods” for
the details of the experimental procedure.

Our aim in the following benchmarking experiments was to extract
single-neuron denoised imaging traces and compare them to their asso-
ciated patch-clamp EP signals. While both modalities operate on the same
underlying neural activity, they differ substantially in sampling rate, noise
characteristics, and artifacts. It is thus necessary for us to minimally resolve
these data modality incompatibilities by applying a series of common filters
and transformations to map them onto a shared scale. These include
removing a slowly-varying trend from both measurements, temporal
alignment of the two recordings, and performing a global affine transfor-
mation on the detrended fluorescence recordings to make them comparable
in scale to EP recordings (in mV). See “Procuring fluorescence intensity
traces and aligning to joint electro-physiology data” in “Methods” for a
detailed description of our alignment procedure.

Using an analogous approach to that presented in our simulated data
benchmarking, we trained the deep learning-based models on as many as all
26 of the available joint datasets, depending on the capabilities of the model
implementations. DeepCAD-RT was excluded from this benchmark due to
difficulties with training it on large quantities of data, as well as its previously
noted poor performance in reconstructing spiking events (see Fig. 2). With
these trained models, we identified a subset of 22 datasets exhibiting dis-
cernible activity suitable for benchmarking purposes. Each model was used
to denoise these benchmarking datasets, while PMD, as before, denoised
each dataset individually. From the resulting denoised datasets, we extracted
ROI-averaged traces and aligned them to their corresponding EP signals.
The concordance between these aligned traces to the underlying EP activity
forms the basis of our benchmark results, shown in Fig. 3.

Our first step was to visualize the quality of our imaging traces after
mapping them to the EP scale. From plotting these traces against their
corresponding EP signals (Fig. 3a), we found that CellMincer again exhib-
ited significantly less noise than the other algorithms while aligning to the
baseline more accurately than SUPPORT. The improvement is particularly
apparent when examining the baseline trace relative to subthreshold activity
(Fig. 3b). To characterize this noise reduction, we computed the spectral
power, binned by frequency, of the residual signal before and after denoising
for each algorithm (“Metrics for evaluating denoising performance on real
voltage imagingwith paired EP” in “Methods”). We plot the reduction in
power of these residuals, measured in dB, across the frequency range
(Fig. 3d). At frequencies above 100Hz, CellMincer achieves an average noise
reduction of 13.9 dB, greater than that of SUPPORT (10.9), PMD (3.2) and
N2S (0.6). This quantifies the visually identifiable differences in perfor-
mance from the inset traces (Fig. 3b), which contributes to the resolution of
low-magnitude signals from the noisy baseline. Using a process analogous to
that in our simulated data benchmark, we also compared the distributions of
lagged cross-correlations between the voltage imaging and EP data (Fig. 3c).
CellMincer similarly exhibited a higher median cross-correlation (p = 0.90),
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comparable to that of SUPPORT (0.91), while the other algorithms
remained on par with the raw data (0.83).

After demonstrating that CellMincer, by way of its enhanced noise
reduction, could potentially resolve signals of a smaller magnitude than that
which can be seen by the other algorithms, we sought an approach to
quantify this small-signal reconstruction fidelity. Due to difficulties with
reliably processing these imaging traces with tools designed for EP signals,
we devised an analytic method based on peak-calling (“Metrics for evalu-
ating denoising performance on real voltage imagingwith paired EP” in
“Methods”). From this analysis, we plotted the peak-calling accuracy of each
algorithm as an F;-score, binned over several ranges of peak magnitudes
(Fig. 3e), and found that CellMincer exhibited a 12-194% increase in F;-
score over the other benchmarked algorithms and the raw data across peak
magnitudes between 0.5 and 3 mV. At the 0.5-2 mV and 5-10 mV ranges,
only CellMincer and SUPPORT show any statistically significant
improvement over the raw data, with CellMincer outperforming SUPPORT
significantly for small-magnitude events. In the higher magnitude regime in
which peaks are more easily differentiated from the noisy baseline, SUP-
PORT’s performance approaches that of CellMincer. These evaluations
demonstrated that on real voltage imaging, CellMincer produces significant
quantitative improvements in the reconstruction of single-neuron traces
when compared to traces derived from the raw data and from data denoised
by standard algorithms. These improvements have meaningful implications
for the potential uses of CellMincer denoising to recover underlying sub-
threshold activity using voltage imaging data.

CellMincer improves neuron segmentation and detection of
subtle changes in neural activity

To demonstrate the utility of CellMincer in a representative end-to-end
biological hypothesis testing workflow, we present a complete such analysis
with and without CellMincer as a data-denoising component, and we
quantify the impact of CellMincer on improving the detection of subtle
phenotypic changes. Specifically, we compare the spiking activity of
unperturbed and chronically tetrodotoxin (TTX)-treated cultured hPSC-
derived neurons via Optopatch voltage imaging. TTX is a voltage-gated
sodium channel blocker that, when used to treat cultured neurons, prevents
them from firing action potentials. Prolonged silencing with TTX increases
intrinsic excitability of neurons™. This homeostatic plasticity is also dis-
played in hPSC-derived neurons’. We incubated hPSC-derived neuronal
cultures in 500 nM TTX for 48 h and washed it out prior to Optopatch
recordings. Parallel unperturbed cultures were incubated in TTX-free
media. In both cases, we subjected the neurons to eight stimulation periods
in increasing intensity and measured their action potential via Optopatch
voltage imaging. Please refer to “Optopatch voltage imaging of chronically
TTX-treated and unper-turbed hPSC-derived neurons” in “Methods” for
the details of the experimental procedure.

We analysed the obtained recordings as follows. We performed a
pixelwise detrending preprocessing step on both raw and denoised datasets,
computed independent spatial components using a PCA/ICA decomposi-
tion approach”, and identified neuronal components through careful
comparative review of the obtained components and the activity traces. We
finally derived an ROI-averaged trace from each identified neuron for
downstream analysis, which focused on counting and comparing the sta-
tistics of high-amplitude action potential spikes. Additional details are
provided in “Methods for segmenting and spike-counting voltage imaging
datasets” in “Methods”.

Figure 4 showcases a segmentation of identifiable neurons on a sample
frame from the raw and CellMincer-denoised analysis. It is evident that: (1)
among the neurons that are reliably identifiable in both the raw and
denoised dataset, CellMincer more clearly delineates their boundaries. This
is particularly evident among the cluster of overlapping neurons shown on
the left side of the field of view in Fig. 4a); (2) CellMincer enables better
separation and detection of more neuronal components, in particular
neurons with fainter fluorescence signal, as well as more reliable spike-
counting. To substantiate the latter, we plotted the ROI-averaged traces

from three neurons side-by-side in Fig. 4b (color-matched to the neuron
components shown in Fig. 4a). As explored in the previous experiments, the
most salient improvement brought about by CellMincer is in the form of a
significant reduction in the background noise (see Fig. 3c). In the present
context, this has the effect of highlighting subtler spiking events and
enabling them to be called with greater confidence (compare the raw and
denoised traces shown in Fig. 4b). The total number of confidently detected
neurons are shown in Fig. 4d and establishes that in most recordings,
CellMincer denoising allows identification of twice or more as many neu-
rons with distinct spiking patterns. As a result of improved neuron seg-
mentation and spike counting following denoising, aggregating spike
statistics over more neurons results in a larger statistical separation between
the control and chronically TTX-treated populations. This can be visualized
by comparing the boxplots shown in Fig. 4c. To further quantify this finding,
we performed a Wilcoxon rank sum test, the result of which is shown in
Fig. 4e. Notably, CellMincer denoising yields significantly greater statistical
power to separate the two conditions, with this separation increasing at
higher stimulation intensities, as evidenced in the tail-end of Fig. 4e.
Interestingly, the lowest stimulation intensity shows a deviation from this
trend, yet it still aligns with the overall conclusion that chronically TTX-
treated neurons exhibit heightened excitability.

Discussion

We introduced CellMincer, a self-supervised deep learning method speci-
fically designed for denoising voltage imaging datasets, and discussed several
key methodological refinements over the existing approaches. These
include: (1) an efficient and expressive two-stage spatiotemporal data pro-
cessing deep neural network architecture, comprising a frame-wise 2D
U-Net module for spatial feature extraction, followed by a pixelwise 1D
convolutional module for temporal data post-processing; (2) performing
self-supervised training by masking a sparse set of pixels rather than entire
frames, allowing the model to access both intra- and inter-frame informa-
tion as needed for effective denoising of voltage imaging datasets; (3) con-
ditioning local denoisers on a set of precomputed spatiotemporal auto-
correlations at multiple length scales, resulting in a significant boost in
denoising accuracy; (4) introducing a physics-based simulation framework
to generate highly realistic pairs of clean and noisy voltage imaging movies
for the purpose of hyperparameter optimization and ablation studies. We
evaluated CellMincer’s performance on both simulated and real datasets,
including an external previously published dataset comprising 30 voltage
imaging experiments with simultaneous patch-clamp EP recordings™, and
established that CellMincer outperforms the existing denoising approaches.
Finally, we demonstrated the utility of CellMincer in downstream analyses,
resulting in a more robust identification of neurons and spiking events and
ultimately a higher statistical power for separating neuron populations
based on functional phenotypes.

CellMincer denoising holds the potential to advance the study of
complex neuronal communication through multiple avenues. Firstly,
traditional methods often involve measuring postsynaptic potentials at
the cell body to understand synaptic transmission. However, the inherent
biophysical properties of synapses, coupled with the intricate dendritic
morphology, such as shape, branching, and diameter, can distort elec-
trical signals originating at the synapse. Consequently, the activity
recorded at the soma may not accurately depict events at the synapse. This
discrepancy poses a challenge in electrophysiological techniques, which
predominantly require recordings at the soma. CellMincer, however,
presents a promising solution by facilitating the direct examination of
electrical activity at the synapse through voltage imaging techniques and
computational SNR enhancement. Secondly, CellMincer denoising
enables the collection of usable data even from low magnification
recordings with low signal-to-noise ratios (SNRs). For instance, enough
data was acquired in seconds to clearly separate the TTX-treated groups
(Fig. 4). This stands in contrast to single cell recordings either by patch-
clamp EP or high magnification voltage imaging, which would take
multiple recording days.
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CellMincer’s improved performance over similar denoising methods
largely stems from precomputing global movie features and using these
features as a conditioner for the denoiser network that otherwise operates on
small temporal contexts. The inclusion of global spatial features alongside
CellMincer’s localized context processing allows the algorithm to exploit
persistent long-range correlations in the data without directly ingesting the
entire dataset with a neural network, an intractable computational opera-
tion. These carefully crafted features (see “CellMincer preprocessing and
global feature extraction details” in “Methods”) meaningfully contribute to
data modeling because the neuron signal sources are generally fixed in space,
making the behavior of individual pixels, as well as pixel-pixel relationships,
highly consistent. Our ablation studies reveal that providing global features
to the denoiser results in a striking 3-fold boost in the PSNR (or approxi-
mately a 5 dB gain). While increasing the denoising context size endows the
local denoiser with more global information and improves its performance,
we notice that there is still a ~4 dB gap between an unconditioned denoiser
with a context size of 21 frames and a conditioned denoiser with a context
size of only 9 frames, see Fig. 6.

Another advantage of leveraging precomputing global features in
conditioning short-context denoisers is computational efficiency. Existing
denoising methods that rely on long contexts to achieve satisfactory
denoising performance will inevitably demand relatively larger computa-
tional resources. For instance, when extended to a training corpora of 26
datasets (“CellMincer improves the detection of subthreshold events in real
volt-age imaging data with paired electrophysiology”), DeepCAD-RT’s
computational resource demands exceeded our limits and we had to exclude
it from the benchmarking. Likewise, Deeplnterpolation', another self-
supervised deep neural network denoiser, could not be made to process our
datasets and was thus also not included in benchmarking. In contrast, we
were able to efficiently train CellMincer on our largest training corpora
using widely-available commodity GPUs.

While the performance gap between CellMincer and SUPPORT is
smaller compared to the gap between CellMincer and the other evaluated
algorithms, we find that CellMincer demonstrates more consistent perfor-
mance across different frames and varying noise levels. As shown in the
PSNR distributions in Fig. 2c and summarized in Table 1, CellMincer
outperforms all other benchmark methods by achieving a substantially
better combination of a higher modal PSNR gain and a smaller interquartile
range (IQR). This indicates that for a “typical’ frame, CellMincer is the
superior denoiser by a significant margin. We hypothesize that this per-
formance advantage stems from the use of global features as a conditioner in
our denoiser model, as supported by our optimization study (see Fig. 6). In
that study, model variants lacking global features (a—c) exhibit highly
overdispersed and multimodal PSNR gain distributions, whereas variants
incorporating global features (d—f) produce sharp unimodal distributions-a
distinction not observed with any other hyperparameter variation examined
in the experiment.

The pre-training approach we employed to train the CellMincer model
on voltage imaging data might not be optimally tailored to handle other
functional imaging modalities, such as calcium imaging, characterized by
substantially different spatiotemporal dynamics. A characteristic difference
in the dynamics of voltage imaging and calcium imaging is the presence of
single spiking events occurring within 5 to 10 frames. The performance gap
between CellMincer and DeepCAD-RT on voltage imaging suggests that
the most effective fluorescence imaging denoisers are highly specific to their
target domains. CellMincer’s architecture uses a context window length on
par with the timescale of a typical voltage imaging spiking event, and its
training scheme maximizes the utility of this context by enabling inference
from same-frame pixels. Conversely, DeepCAD-RT predicts whole frames
from a large, temporally downsampled neighborhood of frames, a strategy
that foregoes mutual information carried by proximal pixels in exchange for
training scalability. Our hypothesis of the specificity of the model (and self-
supervision task) to the data domain is further reinforced by an experiment
in which we compare the performance of CellMincer and DeepCAD-RT on
calcium imaging data (refer to Sec. 1 in Supplementary Materials). Both

algorithms were trained on seven low-SNR calcium imaging datasets'’, and
their denoised outputs were compared to high-SNR versions of the same
datasets. We noticed a significant drop in the performance of CellMincer on
denoising calcium imaging data, and improved performance of DeepCAD-
RT, which is opposite to our findings on fast voltage imaging data. We
concluded that CellMincer’s capacity to model short-term fluctuations
becomes a hindrance when the underlying signal has inherently slow
dynamics, whereas DeepCAD-RT’s whole-frame masking and the implicit
bias of slow dynamics become advantageous.

A notable difficulty in conducting the analysis of neuron imaging traces
in relation to corresponding EP activity is the lack of available tools for
analyzing waveforms that diverge from the highly specific characteristics of
EP. The Electrophys Feature Extraction Library (EFEL)*, one such tool, can
extract a variety of EP features such as spike half-widths but is much less
conclusive when the input signals are adapted from fluorescence imaging.
Our solution, prominence-thresholded peak calling, is motivated by the
biological significance of partial and total depolarization events, indicative of
subthreshold activity and action potentials respectively. Thus, identifying
peaks in the EP represents a sensible first-order approximation for the
locations of these events and can function as a task to which we subject our
imaging traces. While most action potentials stand in such stark contrast to
the surrounding baseline that they are evident in any form of the trace, the
elevated baseline noise in the traces produced by PMD, N2§, and the raw
data is likely to hide less pronounced EP events and introduce more false
positives. Although the absolute peak-calling performance across all
methods is low, primarily owing to the inherent incompatibilities between
the 50 kHz EP signal and its derived 500 Hz imaging, our assessment is that
for EP peaks between 2 and 5 mV, there is indeed information in the raw
data that corresponds to this activity but is not immediately visible, and
CellMincer is distilling this information to allow for more confident
judgments.

We would like to contrast our approach to model optimization and
benchmarking, i.e., using Optosynth simulated data and voltage imaging
with paired electrophysiology, with the more standard approach of using
paired low-SNR and high-SNR recordings. While high-SNR recordings
could plausibly substitute for the theoretical ground truth imaging, in
practice they suffer from two drawbacks: (1) they are laborious to acquire at
scale, limiting the range of imaging conditions on which the model can be
tested, and (2) the source of noise in high-SNR recordings, while diminished
in magnitude, remains the same as that of their low-SNR counterparts,
making it possible for models tuned and evaluated in this manner to favor
the retention of these shared noise components-an outcome antithetical to
the primary objective in voltage imaging denoising. The use of Optosynth as
an imaging simulation framework permits the mass generation of realistic
imaging data with clean ground truth, where imaging and noise conditions
can be freely varied through parameterization. Furthermore, using simul-
taneously measured “gold standard" electrophysiology to gauge signal
reconstruction from image-denoising circumvents concerns regarding the
retention of undesired voltage imaging artifacts, while also allowing us to
address questions related to high-frequency and low-amplitude electro-
physiological behavior, such as subthreshold events.

A limitation of CellMincer’s default self-supervised training scheme is
that in uniformly sampling random crops of the training data, CellMincer
spends an overwhelming majority of its computation time on static back-
ground pixels as opposed to pixels containing meaningful neuronal activity.
We introduced an option in CellMincer to increase its sampling efficiency
without introducing network bias by oversampling such meaningful data
crops, defined as exceeding the top n% of average luminosity across all crops
in the dataset for n chosen between 0.1 and 1, to 50% of each training batch
(importance sampling). We can then correct the loss calculation knowing
the constructed ratio of meaningful samples. While this feature was not
incorporated into the models used in our main benchmarking experiments,
we found that it reduced the performance gap between CellMincer and
DeepCAD-RT on calcium imaging. We expect further exploration of this
direction, namely adaptive sampling and hard sample mining in the context
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of self-supervised training, will find applications beyond the present
domain.

Precomputation of global features should be carried out with addi-
tional considerations in situations where either neuron locations or noise
characteristics could be non-stationary (e.g. certain in vivo recordings). In
such cases, the temporal distributional shift along a long recording interval
may render any one set of precomputed global features less relevant to
variable local contexts of the recording. Since CellMincer’s objective func-
tion is unbiased (see Eq. (4)), conditioning on poor (or even irrelevant)
global features will not degrade the performance of the method. Indeed, this
is again evidenced by the concentration and unimodality of our PSNR gain
distributions around the modal performance (see Fig. 6), as this outcome
would not arise if CellMincer was overwhelmingly favoring certain frames at
the detriment of others for which the global features are less relevant. We can
thus estimate an upper bound on CellMincer’s performance degradation for
non-stationary recordings of —5 dB, which is the difference in performance
between CellMincer with and without global features. While SUPPORT and
DeepSeMi both claim to denoise non-stationary recordings effectively,
CellMincer’s performance bound still exceeds the reported performance of
DeepSeMi, while a direct comparison with SUPPORT would require further
experimentation. However, to take full advantage of the notion of feature-
conditioning, we stipulate that a more effective strategy in denoising non-
stationary data would be to pre-segment the movie into approximately
stationary intervals and denoising each section separately using its own
precomputed features. This is streamlined by CellMincer’s ability to pre-
train on and denoise an arbitrary collection of recordings.

We believe that CellMincer’s architecture is adequately powered for
denoising many forms of fluorescence imaging modalities of electrically
active cells. Optimizing the hyperparameters and training schedule of
CellMincer for related data domains (e.g. calcium imaging) would be a
natural avenue for future work. While our analysis shows that CellMincer
satisfactorily operates on a single dataset (both for training and denoising),
we hypothesize that training a generalist large-scale CellMincer foundation
model on a large and diverse biomedical imaging corpora (and perhaps
using more scalable architectures such as the Vision Transformer™) is
another promising area of future research. Intriguingly, inspecting and
building on the saliency and attention maps underlying the Vision Trans-
former could lay a novel roadmap for segmenting a wide range of functional
imaging datasets into functional units, much like the recently demonstrated
utility of self-supervised models of natural images (e.g. DINOv2™) in seg-
menting natural images and performing various other image-based
downstream tasks.

Throughout its development and benchmarking, CellMincer has been
tested on voltage imaging data from multiple institutions, recorded using
both older and newer technologies. As a result, CellMincer is highly ver-
satile, capable of ingesting TIF, BIN, and NumPy formats without the need
for conversion. Unlike other voltage imaging denoising algorithms that
require fixed patch and stride sizes, CellMincer processes entire frames at
inference time without fixed dimension specifications. This flexibility allows
models trained on data of a particular dimension to perform inference on
datasets of varying sizes seamlessly. These implementation features con-
tribute to a level of accessibility and ease of deployment that surpasses our
experiences with other denoising methods.

Additionally, the CellMincer code release was designed with a
strong emphasis on usability and ease of deployment. We have incor-
porated various diagnostic feedback mechanisms to assist users,
including plots to visualize the trend-fitting preprocessing step and
previews of the denoised output as .AVI movie files. To address depen-
dency issues commonly encountered with similar tools, we have pro-
vided a stable Docker image for public use. In our experience with
CellMincer on datasets of approximately 5000-7000 frames, pre-
processing typically takes 5 min, with inference time around 10 min per
dataset. Furthermore, we have prepared workflows on the Terra platform
to facilitate easy, parallelizable remote execution of the tool, offering an
additional avenue for accessing CellMincer.

We have made available separate pre-trained CellMincer models on
synthetic Optosynth data from “CellMincer outperforms existing methods
at denoising simulated volt-age imaging data”, the BeRST voltage imaging
data from “CellMincer improves the detection of subthreshold events in real
volt-age imaging data with paired electrophysiology”, and the Optopatch
voltage imaging data from “CellMincer improves neuron segmentation and
detection of subtlechanges in neural activity”. Even though training a
CellMincer model from scratch can take 10-12 h on a typical dataset and
publicly available commodity GPU (see “CellMincer neural network design,
training schedule, and implemen-tation details” in “Methods”), using one of
the pre-trained models as is or fine-tuning it presents a faster and less
computationally intensive approach to the adoption of our method. In the
future, we hope that the availability pre-trained CellMincer foundation
models on a large and diverse voltage imaging dataset, combined with
efficient model selection and fine-tuning strategies, will further reduce the
computational cost of using CellMincer.

Methods

CellMincer neural network design, training schedule, and
implementation details

The neural network architecture of CellMincer consists of a U-Net which
produces deep embeddings of individual frames and a temporal post-
processor which reduces a sequence of frame embeddings into a single
denoised frame (see Fig. 1b).

Our U-Net design allows for the augmentation of the input frame with
our precomputed global features. This augmentation can occur either by
concatenating the two before passing it through the U-Net or by repeating
this concatenation at each step of the U-Net’s contracting path, iteratively
downsampling the global features in tandem with the frame embedding (see
Fig. 1). We find that this repeat global feature augmentation reinforces the
network bias toward using the global features, improving downstream
performance. In addition, our U-Net implementation is not limited to a
specific input dimension (as often required by conventional implementa-
tions), as demonstrated by our protocol of training on small imaging crops
while using whole frames at evaluation time. This allows the model to train
on imaging corpora with mixed dimensions and generalize to arbitrarily
sized inputs without needing to dissect the input into uniformly-sized
patches. Without padding each convolution layer, our U-Net produces
image contraction, so we apply reflection padding to the input to achieve our
desired output dimensions.

The temporal post-processor takes as input a short window of frame
embeddings from the U-Net, convolves the time dimension, and collapses
the feature dimension, producing a single output for each pixel. In this
manner, no further spatial entanglement is introduced, so we do not include
global features at this computation step (see Fig. 1d).

Through optimization trials, we determined an Adam optimizer with
standard momentum parameters (8; = 0.9, 8, =0.999) was most effective
for training CellMincer. We applied a cosine-annealed learning rate with
linear warmup’', parameterized at .. = 10™*. To increase the diversity of
imaging used to train our model, we configured our training samples to
consist of small 62 x 62 crops padded with 30 pixels on each side, striking a
balance between the minibatch diversity and the training signal that comes
from each entry in the minibatch. With this configuration, we were able to
maximize GPU utilization by training on minibatches of 20 samples per
GPU (reduced to 10 samples for our largest model variant). We found that
50,000 training iterations generally led to sufficient model convergence
when using a training set of limited size (1-5 recordings). More investigation
is needed to determine whether a longer training period is needed to make
full use of a larger training set.

In the course of CellMincer’s development, we explored a series of
variations on its architecture and training schemes, some of which are
reported in detail in “Optimizing CellMincer network architecture and
training scheduleusing Optosynth-simulated datasets” in “Methods”. Of
those omitted from our results, we considered single U-Net architectures
that combined spatial and temporal processing, either by using a 3D U-Net
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to model time or by concatenating the frame sequence within the feature
dimension. While our time as features model was computationally more
efficient, we could not reach the expressivity and performance afforded by
our current two-stage design. We also experimented with the choice of
learning rate schedule, opting for an empirically validated cosine annealing
with 10% linear warmup™'. This schedule mitigates early instability while the
model performance is highly variant while improving convergence near the
end of training. In addition, we briefly explored the use of stochastic weight
averaging”, and discovered that it had a paradoxically negative impact on
performance. Our hypothesis is that the contours of our model’s loss
landscape are highly nonconvex so that an averaging of local optima
removes us from the optimal parameter manifold.

We implemented CellMincer as a CLI tool in the PyTorch Lightning
framework, which offers ease of scalability with multi-GPU training. To
offer a sense of training costs and runtime, a CellMincer model trained on a
single dataset using one NVIDIA Tesla T4 GPU for a standard 50,000
iterations would take 12-16 h to finish, while a larger operation using 26
datasets and 4 GPUs may take 6-7 days. In practice, we found that training a
fresh model to denoise a new dataset is not necessary. For instance, in our
end-to-end hypothesis testing experiment (“Methods for segmenting and
spike-counting voltage imaging datasets” in “Methods”), we simply used a
model previously trained on a different voltage imaging corpus (recorded
under similar conditions) and did not involve any of the datasets in the
experiment. Denoising a typical dataset with CellMincer, by contrast, takes
no more than a few minutes on any GPU setup.

CellMincer preprocessing and global feature extraction details
Before a voltage imaging movie X(t, x, y) is received as input to a CellMincer
model, our pipeline applies several preprocessing steps to: (1) approximately
isolate the background fluorescence; (2) normalize the dynamic range of
background-subtracted data prior to denoising; (3) precompute a number
of global movie statistics for conditioning the local denoiser. In this section,
we detail the data preprocessing and global feature extraction stages of the
CellMincer pipeline.

Data preprocessing and trend isolation. Background fluorescence is a
dynamic imaging artifact both highly individual to its source dataset and
magnitudes larger than the true fluorescence signal, so removing it aids
the network in identifying neuron action potentials. To model this
background activity separately for each (x, y) pixel, we temporally
interpolate each pixel’s trace with a low-order polynomial (with a default
value of 1,01y = 3) to obtain the following decomposition:

X(t7 x’y) = Xtrend(t7x7y) + O detrended Xdetrended(tv x7y)‘ (5)

By design, Xi;eng approximately captures the smooth temporal trend and
DC bias offset in the recording, whereas X getrended represents the normalized
residual fluorescence signal. When specified by the user, we obtain the
smooth trend fit only from the resting periods (typically the beginning and
the end segments of a recording segment). When such resting periods are
not included in the recording, we regress over the entire recording and use a
lower order polynomial (71,01, = 1) to avoid overfitting to the neural activity.
We note that normalizing the detrended component by its standard
deviation over all pixels and time points, 0getrended> allows CellMincer to
train over multiple datasets and data sources (see Eq. (5)). After denoising
such a detrended dataset, CellMincer applies a reconstituting step in which
the scaling factor is inverted and the removed trend is added back (Eq. (5)).
This process generates denoised data at the original raw capture scale,
making it suitable for any downstream analysis pipeline that ingests raw
data. Additionally, CellMincer outputs the detrended component of the
denoised data, which can be utilized in downstream applications that benefit
from such input, such as segmentation.

Precomputing global features. After the preprocessing stage of the
CellMincer pipeline, we precompute the global features as follows. First,

we further decompose Xgetrended( X, ¥) into slow and fast components:

1 fe
Xdetrended(tv X,)/) = X?i?t?ended(t’ X, y) + Xdaesttrended(t7 X, y)7 (6)

where Xscll‘;‘t’ﬁended(t7 x,y) is the moving average of Xgetrended(t, X, ¥) Over a
short window. For a 500 Hz recording, we calculate the moving average over
10 frames, corresponding to 20 ms. The goal here is to separate the neural
activity into fast transients (e.g. spikes) and slower features (e.g. subthres-
hold activity). We calculate the same set of global features from the two
components independently. We define the general spatially-resolved
temporal auto-correlation function as such:

1 T
PIX: AL, Ax, Ayl(x,y) = ) X(t,x,9) X(t = At,x = Ax,y — Ay).
t=1

@)

The first three global features are: (1) the square root of
p[Xs(li‘émn dedi 050, 0](x, ¥), i.e. the pixelwise slow temporal variability; (2) the
square root of p[X& . -0,0,0](x,y), ie. the pixelwise fast temporal
variability; (3) the temporal mean of X$2¥ . (¢, x, y), i.e. the mean pixel-
wise slow activity. In addition to these, we include 17 other normalized and
spatially-resolved auto-correlation functions as follows:

P[Xscll(e)‘gended; Atv Ax7 A)’](xd’) P[Xfciaztrended; Ata Ax? Ay](x7y)

p[XScll(égended; 07 0, O](x7y) +e ' P[ngitrended; 07 0, 0](x7y) +e 7

for Ax, Ay € {—1, 0, 1}, At € {0, 1}, and excluding Ax=Ay=At=0. Put
together, these amount to 37 feature maps. Next, we spatially downsample
both Xslow . and X . bya factor of two, such that each image-space
pixel corresponds to the average signal over a two native-resolution pixels.
We calculate the same set of 37 features maps, and upsample the obtained
feature map by a factor of two back to the original resolution. The rationale is
to bring more distant spatially-lagged auto-correlations into a feature map
in the native resolution. In principle, this procedure can be repeated multiple
times to capture further dilated and averaged auto-correlations. We stop the
procedure at the second level, obtaining F = 2 x 37 = 74 spatial feature maps
in total which we collect and concatenate into a Fx Hx W tensor.
Conveniently, the F channels of this tensor encode a standardized set of
spatiotemporal auto-correlations at different lengthscales, which can be
used by the model to infer covarying groups of pixels without having access
to the full movie.

®)

Simulating realistic voltage imaging datasets using Optosynth
In order to optimize the architecture and hyperparameters of a data
denoising technique and study the impact of various design choices on the
bottom line denoising performance, one needs noiseless or high-SNR
ground truth data. To generate such ground truth recordings and their noisy
realizations, we developed a physics-based simulation companion software
called Optosynth in which we aimed to carefully model salient aspects of the
phenomenology of voltage imaging. We briefly describe the key steps
involved in Optosynth simulations as follows (see Fig. 5 for a graphical
overview).

Data procurement and preprocessing. We used Allen SDK*’ to access
Allen Brain Atlas data, and procured 485 neurons from mouse primary
visual cortex (VISp) from the Allen cell types database with paired
morphology and EP data (Patch-seq)**>*. We minimally preprocess
reconstructed morphology data as follows. We scale the image-space
pixel from the original 0.1144 um/pixel by a factor of 10 to 1.144 pm/
pixel, representative of the typical magnification of voltage imaging
experiments. We project the 3D morphology into a 2D binary mask.
Allen morphology reconstructions only provide the location and radius
of the soma. We use this information to generate a synthetic soma shape
circumscribed by a random Fourier curve with 3 frequency components
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Fig. 5 | Overview of Optosynth voltage imaging simulation environment.

a Single-neuron paired morphology and EP data downloaded from Allen Brain
Atlas; b Generating experiment manifest, including selecting neurons and sweeps for
each segment of the experiment, and random sampling and precomputing various
simulation accessories; ¢ Schematic illustration of the generation process of a movie
frame: depending on the position of a pixel on a given neuron, an action potential
wavefront propagation delay is read off from the precomputed delay map and is used
to select the appropriately delayed timepoint on the EP voltage trace. The voltage
value is converted to fluorescence amplitude in combination with the precomputed
reporter heterogeneity and spike decay maps. This process is repeated within an
efficient vectorized algorithm for all pixels for a given neuron and for all other

neurons in the simulation. A background frame is generated and added to the total
fluorescence amplitude map generated by the neurons. A point spread function
(Gaussian blur) is applied to the total fluorescence map to generate a clean movie
frame. The application of pixelwise Poisson-Gaussian noise with specified para-
meters (thermal noise strength, quantum yield) generates a noisy movie frame. This
process is repeated for each frame in the stimulation segment and for all other
segments in the simulation. d From top to bottom: (1) neuronal masks juxtaposed in
different colors; (2) a simulated frame before the addition of background and PSF;
(3) the same frame after the addition of background and PSF; (4) the same frame
after the addition of Poisson-Gaussian noise.

and a wiggle amplitude of no more than 20% of the soma radius. We also
minimally preprocess the EP data by truncating the sweeps to 2s in
duration, amounting to 0.5s of resting recording, 1s of electrical sti-
mulation, followed by another 0.5 s of resting recording. For each neuron,
we keep track of the stimulation current amplitude (pA) and the mem-
brane potential (mV) time series.

Setting up the simulation. The Optosynth simulation configuration is
used to generate a manifest for the experiment. The key user input is the
number of desired stimulation segments for the full experiment, and is
given to the tool as a list of [I;, I,,..] stimulation amplitude intervals.
Based on this specification, we filter the pool of available Patch-seq
neurons to the subset of neurons that have at least one sweep within each
stimulation interval. Relaxing the stimulation current to fall within an
interval (in contrast with matching a specific value) allows more flex-
ibility in choosing neurons for simulation, because not all Patch-seq
neurons have received the same set of stimulation amplitudes.

Simulating the neuron fluorescence density. For each neuron, we
precompute a spike decay map «(r), a delay map 7(r), and a fluorescent
reporter spatial density map p(r) as follows:

_ ||l‘ - rsoma”

a(r) = exp ) (%)
Zdecay
r—r
() = — 7~ Lol (9b)
Vprop
PO ~ f iy [ GPUO, o) Pl P |- (909
(i = 17 tet ?Nneurons)'

Here, risa 2D position vector, Fyom, refers to the soma location of the neuron
of interest, £4ccay is a specified signal decay lengthscale, vp,rop is the action
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potential propagation velocity””. We sample p(r) from a Gaussian process
with zero mean and an isotropic Gaussian kernel with lengthscale £;eporter-
The fiamp function linearly rescales the dynamic range of the randomly
generated density map to the specified lower and upper limit, p,epolter and
p ;;‘POI),(er , respectively. We randomly place each neuron on the imaging field,
together with a random rotation, displacement, and scale factors. To this
end, we take the initial binary mask of the 7'th neuron and apply a general
isotropic affine transformation on the mask to obtain the final mask on the
imaging field, which we refer to as M(x) € [0, 1]. The precomputed spatial
maps and the geometric placements on the imaging field are held constant
for all stimulation segments in the experiment, as well as potentially other
simulated trials involving the same neurons.

The spatial fluorescence density emanating from a pixel at position r at
time t emanating from the 'th neuron, F(x, 1), is calculated as follows:

VL (6) = Frp [VO®): fin], (10)
VO(r, 1) = a(r) Vi) (t — 7(r) + (1 — a(x)) V,, (11)
FO(r, 1) = MO() p 1) Foo 12)

T+ exp[—B(VO(r.) -

Vrise) ] '

First, we apply a low-pass Fourier filter 7, with cutoft frequency f; p on the
patch-clamp EP recording of i’th neuron, VO(#), to obtain V(') (1).
This provision is to simulate the lagged response of one’s ch01ce of
fluorescent reporter to voltage transients. To obtain the effective spatial
membrane potential of the neuron, Vi(x, 1), we linearly admix the resting
potential V, = —70 mV and the appropriately time-delayed and low-passed
EP recording, see Eq. (11). Finally, the fluorescence density is obtain by
converting the spatial membrane potential to fluorescence and multiplying
by the precomputed reporter density and neuron mask, see Eq. (12). We use
a sigmoid function to convert voltage to fluorescence, and set the sigmoid
slope 8 < 1 to work mostly in the linear regime. The two parameters F.. and
Viise are automatically determined by the user’s specification of two points
on the voltage conversion curve, (Vy, F;) and (Vs, F).

Simulating the background fluorescence density. Typical voltage
imaging recording is often accompanied by a source background fluor-
escence, including the static autofluorescence from the cell culture, and a
dynamic slowly-varying component due to convection currents asso-
ciated with sample heating by the stimulation laser. We simulate the
background noise by first sampling a set of patterns from a zero-mean
Gaussian process with anisotropic Gaussian kernels:

( )
Bitatic(r) ~ GP(0; ngnc ) égatlc)7 (132)
k
f‘ly)namlc (I') GP(O E(d);)namlc ? ég;f)namlc) (k = 1 rrtty K)7 (13b)
where E(Sfaf:l and ffix ” ;m . denote the spatial variation lengthscales of staticand

dynamic background patterns along the x and y axes, and K is the number of
dynamic patterns. For each dynamic pattern, we additionally sample a
slowly-varying temporal amplitude:

©8) ~ GP(O; f gymamic ) (14)

where fimnamic is the dynamic background variation frequency. We finally
compose the full background as follows:

(min) _(max)

B (l‘ t) f clamp [ 5tatlc(r ) P static s Pstatic :|
(k) ( (max) (15)
min) max
+fclamp |:% ];1 a(k)(t) denamic(r) denamlc’ pdynamlc

Generating the clean and noisy recordings. The total fluorescence
density is the sum of fluorescence density associated with the neurons and
the background:

Nneurons

Fr,t)y= Y FOr,t)+ B(r,1).

i=1

(16)

We interpret the fluorescence density F(r, t) as the density of excitable
fluorophores per voxel, such that the reporter fluorescence laser converts
F(r, t) to an emitted photon count per imaging interval via a conversation
factor Q. To account for point spreading due to imaging optics, we further
convolve F(r, t) with a normalized Gaussian point spread function (PSF)
with lengthscale €pg to obtain the clean fluorescence density:

Mr, t) = / dr’ PSF (4pge)(¥) F(x — ¥, t). (17)
The clean recording is given as:
Xclean(r7 t) =R QA(L t) + Adc> (18)

where R is the sensor voltage gain per absorbed photon, Q is the photon
emission rate per excited fluorophore, and A, is a dc offset (characteristic of
typical sensor readouts). The noisy recordings are obtained by applying a
Poisson-Gaussian noise and quantizing to integer counts:

Xnoisy(r, t) ~ |R Poisson [Q Adean (T t)] + Gaussian (07 asensor) + Ayl
(19)

Note that the SNR is implicitly controlled by the two parameters Q (number
of photons per fluorophore) and oo (sensor noise). The default values for
all the parameters are shown in Table 1 in Supplementary Materials.

To generate multiple simulated recordings from the same neurons, we
simply repeat the simulation process multiple times while keeping the
experiment manifest constant (including choice of Patch-seq neurons, as
well as their geometries and precomputed spatial maps).

Optimizing CellMincer network architecture and training sche-
dule using Optosynth-simulated datasets

We performed an extensive hyperparameter exploration to study the role of
various modeling choices and identify optimal settings. Simulated data
produced by Optosynth was an ideal setting for optimization experiments
and ablation studies because of the access to ground truth imaging and its
capacity to simulate a range of imaging conditions. The ground truth
imaging enabled the direct computation of performance metrics for model
evaluation, while the simulation versatility allowed us to test the model on
data imaged at various SNR without the overhead associated with real-world
data collection. Using Optosynth, we generated five datasets under the same
neuron density and SNR conditions, three of which were allocated to the
training set while the other two were set aside for testing.

Because a complete grid search was not feasible, we chose a baseline
configuration that produced a viable model and varied the parameters
around this baseline one at a time. Some choices, such as the use of an Adam
optimizer, the learning rate scheme, and the number of training iterations,
were decided in the baseline model and do not appear in our optimization
experiments. We determined variations on each of the other hyperpara-
meters of interest to apply to our baseline model and trained a CellMincer
model with each of the resulting configuration variants. These models were
subsequently used to denoise both the training and testing datasets, and we
computed the distribution of PSNR gain over each frame within the active
stimulation periods. The distributions of these PSNR gains and all of our
model variants are summarized in Fig. 6. We emphasize that our main
objective with these experiments was not to exhaustively identify every
incremental improvement to our architecture, but to rather study the role of
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Fig. 6 | CellMincer hyperparameter settings and their resulting models’ perfor-  temporal post-processor variants refers to the architecture of the ultimate multilayer
mance on Optosynth data. Each model was evaluated on both its training data (b,e) ~ perceptron component: C— C/2— C(A),C—C— C/2—1(B),andC—C— C—
and unseen test data (c, f). a—c Initial series of experiments using no global featuresas 1 (C). The architectural variants are ordered in increasing complexity. The pixel

a baseline. d-f Followup iteration of experiments using repeated global featuresasa  masking setting refers to the Bernoulli parameter used to decide whether each pixel is

baseline. The global features setting determines whether the precomputed global masked, a sampling process repeated for each training iteration. The second set of
features is not used (0), used to augment the U-Net input only at the beginning (1),or  experiments adjusts the original baseline model to use a conditional U-Net with
used to augment repeatedly at every contracting path step (R). The included repeated global features.
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key model hyperparameters and produce a strongly tuned model config-
uration within reasonable computational resources. While beyond the scope
of this work, further investment into model optimization could take the
form of repeating these single-parameter variation experiments on the
current configuration optimum, in which we would expect more deviations
to lead to worse outcomes. Repeating this process until all such variations
worsen model performance would produce a locally optimal model
configuration.

Our key finding was that the inclusion of global features produced a
dominating gain in PSNR. On both training data and unseen test data,
CellMincer models incorporating global features exhibited an addi-
tional 5 dB gain in PSNR over the baseline model (i.e. a striking 3-fold
increase in SNR), in contrast with other architectural variations that
yielded 0-1.5 dB over the baseline (see Fig. 6a—c). In addition, we noted
that the performance of CellMincer models without global features was
highly sensitive to the stimulation conditions of each dataset segment,
while the variant using global features is significantly more consistent,
as summarized in Fig. le. We believe this to be an outcome of the
increased intensity at higher stimulations, which in turn yields a higher
baseline SNR. This explanation for CellMincer underperforming on
higher stimulation segments is further supported by the tendency of our
other benchmark methods to underperform on higher SNR datasets
(see Fig. 2c).

Indeed, we found that the baseline model performance (which did
not include the global features) was highly sensitive to changes in the
temporal window length (i.e. the denoising context size), with longer
windows significantly improving performance. It is evident that both
modifications to this baseline model address the limited temporal context
it is provided, of which global features is by far the more effective and
computationally efficient option. To determine the architectural settings
that best synergize with the inclusion of global features, we performed this
optimization experiment again with a parallel set of CellMincer varia-
tions, all of which included repeat global features (see Fig. 6d-f). While
most of the model performance variation remained consistent with our
results in the first iteration, we observed that the performance gain
induced by larger temporal contexts plateaued at a window length of 13
frames, comparable in size to our baseline window of 9 frames. This
further supports our hypothesis that very long temporal windows can be
exploited by a model without global features as a compensatory measure,
and by explicitly including global features, we removed the need for long
contexts. The result is a network architecture that requires comparatively
fewer input frames for denoising, allowing it to denoise datasets in a
fraction of the computational time needed by comparable deep learning
architectures like DeepCAD-RT.

Metrics for evaluating denoising performance on Optosynth
simulated datasets

Peak signal-to-noise ratio (PSNR), measured in decibels, is a metric of
similarity between a clean image and its noisy realization and is defined as:

I

max

2
ﬁz:‘:lzl Z}I;I:I [Xcleanl(xvy) - Xm\isy(xvy)]
(20)

PSNR [de X | = 1010g;,

noisy ]

where I, is the maximum possible value for the signal intensity. Many of
our results are reported in PSNR gain, in which we use the PSNR between
the raw noisy data and the clean data as a baseline. Reporting the results in
terms of PSNR gain is more meaningful and comparable across different
settings as it does not depend on I, ... Structural similarity index measure
(SSIM) is another metric describing the perceived quality of noisy digital
images. We chose to reports on results in terms of PSNR given the flexibility
itaffords (e.g. the ability to be restricted over arbitrary spatial regions such as
foreground or background pixels), as well as its wide adoption in the
fluorescence imaging community.

Procuring fluorescence intensity traces and aligning to joint
electrophysiology data

Our analyses of single-neuron traces are contingent on identifying repre-
sentative ROIs over which the fluorescent signal is averaged, which is also a
common practice in the field. To determine neuronal ROIs, we select a small
set of seed pixels that belong to a neuron’s soma and calculate cross-
correlations between these pixels and every other pixel in the raw recording.
On the resulting cross-correlation map, we choose a manually tuned
threshold that captures the soma region and apply the watershed algorithm
to add spatial continuity. The resulting ROI is then used to compute traces
for the raw recording as well as its denoised counterparts.

Our ROI-extracted fluorescence trace can be interpreted as a noisy
affine transformation of the neuron’s electrophysiological activity. In
the absence of a calibration dataset, we rely on an optimization-based
approach to align the obtained fluorescence traces (in arbitrary units) to
the EP data (in mV). We first remove the trend from the imaging trace
by median filtering with a moving one-second window (which is short
enough to correct for pipette movement but long enough to retain the
actual signal). We also removed high-frequency jitter from the patch-
clamp EP by applying a Savitzky-Golay cubic filter with a 51-point
window. These post-filter signals are more easily imposed over one
another following several linear transformations. By matching corre-
sponding peaks in both signals, the intensity trace can be transferred
onto the EP timescale. This allows us to evaluate intervals between peaks
in absolute time and to downsample the EP signal with interpolation.
We then find the affine transformation of our intensity trace that
minimizes L2 error with the EP signal, producing an aligned voltage
imaging trace. Our subsequent analyses center on evaluating the
reconstruction quality of these aligned traces. Refer to Fig. 3b for the
results of this alignment method.

Metrics for evaluating denoising performance on real voltage
imaging with paired EP

Quantifying residual noise power using short-time Fourier trans-
form. To compute the spectral noise power of a residual aligned fluor-
escence trace, we apply a short-time Fourier transform (STFT)
parameterized by window length 64 and overlap 48. While voltage
imaging, which exhibits a relative downsampling factor of 100, cannot
fully capture the underlying EP signal, the peaks of spiking events are
particularly high-magnitude points of uncertainty, making them ill-
suited for this analysis. To remove spiking events from consideration,
we exclude time intervals in which the EP signal’s total spectral power
exceeds a chosen threshold. For the remaining time intervals, we convert
the spectral powers to noise intensity (dB) and average them in each
frequency bin to produce the average noise at that frequency. By
repeating this process for each denoised signal and the raw signal, we
can compute the reductions in noise intensity, yielding the results
shown in Fig. 3d. A typical spectrogram is also shown here in Fig. 7, in
which we clearly notice spiking events as and the attenuated high-
frequency noise in the inter-spike interval in the CellMincer-denoised
results. In contrast, the spectrogram of the raw data is visually akin to
that of white noise.

Prominence-based peak calling. We can formulate the notion of
quantifying signal reconstruction quality as a peak-calling problem. We
consider peaks in the EP signal and classify them by their prominence,
as most spikes exceed 20 mV in prominence while peaks in the sub-
threshold activity fall below 10 mV. A visualization of prominence as a
signal peak feature is shown in Fig. 8. Let Xgp(#) and Xv(#) refer to the
filtered and aligned traces derived from the patch-clamp EP and the
voltage imaging (VI) respectively, and let S,(X) be the set of peak time-
points in signal X(#) thresholded above a certain prominence p. We
express our problem as an evaluation of similarity between S,(Xgp) and
Sy(Xyy) for p’ = p. As our set elements comprise points along a con-
tinuous time interval, we need to adapt the notions of precision and
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Fig. 8 | A visualization of the prominence attribute in a simplified signal with
three peaks. A moderate prominence threshold would exclude transient peaks
produced by noise fluctuations (green), and a larger threshold would exclude sub-
threshold activity (blue), leaving only the true action potentials (red).

recall to allow for fuzzy matching of nearby peaks. More explicitly, we
define:

I{tyy € Sy(Xyp) : Ttpp € Sp(Xpp) s.t. [y — tppl <Af}]
ISy (Xyp)] ’
(21a)

Prec(Xgp, Xyi; ps ) =

{tep € S,(Xgp) : Ftyy € Sy (Xyp) s.t. [y — tppl <Af}]
IS, (Xgp)l .

o
Rec(Xgp, Xyp; p, p') =
(21b)
We calculate the F,-score as usual:

Prec(...) XRec(...)
Prec(...) + Rec(...)’

F\(Xgp, Xyp; p, p) = 2% (22)

As our definitions suggest, we determine peaks to be correctly called when a
corresponding peak occurs within a At separation. In our evaluations, we set
At=2ms, corresponding to a one-frame discrepancy in 500 Hz voltage
imaging. To introduce tolerance around particular choices of prominence
thresholding, we further define:

F{(Xgp, Xyi;p) = Fy(Xgp, Xv1; 1) (23)

max
p'elp—Ap,p+Ap]

and we set Ap = 0.2 mV. We average this quantity over bins of prominences
p to produce Fig. 3e, which is the ultimate result of this analysis.

Methods for segmenting and spike-counting voltage imaging
datasets

We extract single-neuron segments from each raw movie and its denoised
counterpart using a PCA/ICA-based approach”. Similar to CellMincer’s
data preprocessing step, our first step is to enhance pixel-pixel correlations
by detrending the movie, leaving only the signal component stemming from
neural activity. Through experimentation with various signal filters, we
found that a rolling circle filter parameterized with width 3.2 frames (6.4 ms)
and height 16 (fluorescence a.u.), followed by a threshold filter to collapse
values between +15 (fluorescence a.u.) to zero, was effective at isolating
spiking events in the denoised data. We could not achieve similar success
using various combinations of filters on the raw data, so we left those datasets
unchanged. Using movie pixels as samples and time frames as features, PCA
reduces the dimension of each pixel from Ny ~10* to Npcy = 200. These
components correspond to groups of covarying pixels but not necessarily to
individual neurons. For this reason, ICA is used to subsequently unmix the
principal components into an independent component set containing our
neuron segment candidates. To detect neurons of varying signal strengths,
we use a range of parameterizations Nica € {10, 20, 50, 100} to produce the
components from which our neuron segments are selected through manual
filtering, including a careful study of ICA spatial components together with
the associated temporal trace around spike-like events.

Following the extraction of these segments, we compute inner products
between a segment mask and each movie frame and apply median filtering
with window length of 51 frames to generate its corresponding trace. From
these traces, we identify spiking events through manual filtering. This
process is aided by a peak-finding algorithm to determine spike candidates
and a segmented movie visualization to resolve ambiguous spiking sources.
These spikes are tallied across stimulation intensities, and statistical
separation between the spiking activity of unperturbed and chronically
TTX-treated neurons is computed with a Wilcoxon rank sum test.

It should be noted that through the process of computationally and
manually filtering segments, candidates with no discernible activity were
excluded from analysis, even though they may have been real neurons that
failed to express either the light-gated ion channel or fluorescent reporter.
This distinction was considerably more apparent in the denoised movies,
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potentially causing some neurons to be discarded from the denoised count
and included in the raw count despite the overall neuron count favoring the
denoised data.

Optopatch voltage imaging of chronically TTX-treated and
unperturbed hPSC-derived neurons

hPSC-derived neuron differentiation was performed as previously
described™”’, followed by Optopatch voltage imaging also as previously
described™. Methods are reproduced below for completeness.

hPSC culture. Human ESCs were maintained on plates coated with
Geltrex (Life Technologies, A1413301) in mTeSR Plus medium (Stem-
Cell Technologies, 100-1130) and passaged with Accutase (Gibco,
A11105). All cell cultures were maintained at 37 °C, 5% CO,.

Neuronal induction. hPSC-derived neurons were differentiated from an
hPSC line (H1/WAO01) using combined NGN2 programming with
SMAD and WNT inhibition in the presence of mouse astrocytes’””. On
day 0, hPSCs were differentiated in N2 medium (500 mL DMEM/F12
[1:1] [Gibco, 11320-033]), 5 mL Glutamax (Gibco, 35050-061), 7.5 mL
sucrose (20%, Sigma, S0389), 5 mL N2 supplement B (StemCell Tech-
nologies, 07156) supplemented with SB431542 (10 uM, Tocris, 1614),
XAV939 (2uM, Stemgent, 04-00046), and LDN-193189 (100 nM,
Stemgent, 04-0074) along with doxycycline hyclate (2 pg.mL™", Sigma,
D9891) and Y27632 (5 mM, Stemgent 04-0012). On day 1 and 2 media
was changed to N2 medium supplemented with SB431542 (5 uM, Tocris,
1614), XAV939 (1 uM, Stemgent, 04-00046), and LDN-193189 (50 nM,
Stemgent, 04-0074) with doxycycline hyclate (2 pg.mL ™", Sigma, D9891)
and Zeocin (1 pg.mL™", Invitrogen, 46-059). On Day 3 neuronal pre-
cursor cells were passaged with Accutase into Neurobasal media (500 mL
Neurobasal [Gibco, 21103-049], 5 mL Glutamax [Gibco, 35050-061],
7.5 mL Sucrose [20%, Sigma, S0389], 2.5 mL NEAA [Corning, 25-0250
Cl]) supplemented with B27 (50x, Gibco, 17504-044), BDNF, CTNF,
GDNEF (10 ng.mL’l, R&D Systems 248-BD/CF, 257-NT/CF, and 212-
GD/CF) and doxycycline hyclate (2 ug.mL™", Sigma, D9891) in a 24-well
format and infected with lentiviral optogenetic constructs (HT076, hSyn
Cre-off Archon-TS-darkCitrine-TSx3-ER) at 2 MOI. On day 7, the cells
were passaged with Accutase onto 10mm glass coverslip bottom dishes
precoated with Geltrex containing a monolayer of mouse cortical
astrocytes. Estimated neuron/astrocyte ratio was 1:2 with 80k neurons
plated per 10 mm dish. Cell were matured in Neurobasal media sup-
plemented with B27 (50x, Gibco, 17504-044), BDNF, CTNF, GDNF
(10 ng.mL™", R&D Systems 248-BD/CF, 257-NT/CF, and 212-GD/CF)
and doxycycline hyclate (2 pgmL™’, Sigma, D9891) with 50% media
changes twice a week.

TTX treatment and Optopatch imaging. On Day 35,500 nM TTX
(Tocris) was added to the culture media and cultures were returned to the
incubator for additional 48 hours. Parallel control cultures were kept in TTX-
free media. 10 min prior to recording the cultures were washed 3 times in
pre-warned recording solution (125 mM NaCl, 2.5 mM KCl, 3 mM CaCl2,
1 mM MgCl2, 15 mM HEPES, 30 mM glucose (pH 7.3) and adjusted to
305-310 mOsm with sucrose) to wash out the TTX. Recordings were
obtained in recording solution in the absence of TTX at 23 °C. Cellular
activity was recorded on custom-built wide-field microscope equipped with
oblique illumination lens and a wide 20x objective. The cells were stimulated
with 500 ms blue light (488 nm) at 1 Hz of increasing intensity (20 to
120 mW/cm?) for 6 s, while firing patterns were recorded under continuous
red light (635 nm) illumination at 1 kHz.

Simultaneous BeRST fluorescence voltage imaging and single-
cell patch-clamp EP recording experimental procedure
Simultaneous BeRST imaging and single-cell patch-clamp EP recordings
were performed as described previously”. Methods are reproduced below
for completeness.

Cell culture. All animal procedures were approved by the UC Berkeley
Animal Care and Use Committees and conformed to the NIH Guide for
the Care and Use of Laboratory Animals and the Public Health Policy.

Rat hippocampal neurons. Hippocampi were dissected from embryonic
day 18 Sprague Dawley rats (Charles River Laboratory) in cold sterile HBSS
(zero Ca2+, zero Mg2+). All dissection products were supplied by Invi-
trogen, unless otherwise stated. Hippocampal tissue was treated with trypsin
(2.5%) for 15 min at 37° C. The tissue was triturated using fire polished
Pasteur pipettes, in minimum essential media (MEM) supplemented with
5% fetal bovine serum (FBS; Thermo Scientific), 2% B-27,2% 1 M D-glucose
(Fisher Scientific) and 1% GlutaMax. The dissociated cells (neurons and glia)
were plated onto 12 mm diameter coverslips (Fisher Scientific) pre-treated
with PDL at a density of 30-40,000 cells per coverslip in MEM supplemented
media (as above). Cells were maintained at 37 °C in a humidified incubator
with 5% CO,. At 1 day in vitro (DIV), half of the MEM supplemented media
was removed and replaced with FBS-free media to supress glial cell growth
(Neurobasal media containing 2% B-27 supplement and 1% GlutaMax).
Functional imaging was performed on 8-15 DIV neurons to access neuronal
excitability and connectivity across different stages of development. Refer-
ences to biological replicates, or “n,” refer to the number of dissections data
were collected from.

VoltageFluor/BeRST 1 stocks and cellular loading. For all imaging
experiments, BeRST 1 was diluted from a 250 uM DMSO stock solution
to 0.1-1 uM in HBSS (+Ca2+, +Mg2+, -phenol red). To load cells with
dye solution, the media was first removed from a coverslip and then
replaced with the BeRST-HBSS solution. The dye was then allowed to
load onto the cells for 20 min at 37 °C in a humidified incubator with 5%
CO,. After dye loading, coverslips were removed from the incubator and
placed into an Attofluor cell chamber filled with fresh HBSS for func-
tional imaging at room temperature (20-23 °C).

Voltage imaging with BeRST. Voltage imaging was performed on an
upright AxioExaminer Z-1 (Zeiss) or an inverted Zeiss AxioObserver Z-1
(Zeiss), both equipped with a Spectra-X light engine LED light
(Lumencor), and controlled with Slidebook (3i). Images were acquired
using a W-Plan-Apo/1.0 NA 20x water immersion objective (Zeiss) or a
Plan-Apochromat/0.8 NA 20x air objective (Zeiss). Images
(2048 px x 400 px, pixel size: 0.325 pm x 0.325 pm) were collected con-
tinuously on an OrcaFlash4.0 sSCMOS camera (sSCMOS; Hamamatsu) ata
sampling rate of 0.5 kHz, with 4 x 4 binning, and a 631 nm LED (13 mW/
mm’, SpectraX) with a 631/28 nm excitation bandpass. Emission was
collected after passing through a quadruple bandpass dichroic (432/
38 nm, 509/22 nm, 586/40 nm, 654 nm LP and quadruple bandpass
emission filter (430/32 nm, 508/14 nm, 586/30 nm, 708/98 nm).

Electrophysiology. For electrophysiological experiments, pipettes were
pulled from borosilicate glass (Sutter Instruments, BF150-86-10), with a
resistance of 5—8 M(2, and were filled with an internal solution; (in mM) 115
potassium gluconate, 10 BAPTA tetrapotassium salt, 10 HEPES, 5 NaCl, 10
KCl, 2 ATP disodium salt, 0.3 GTP trisodium salt (pH 7.25, 275 mOsm).
Recordings were obtained with an Axopatch 200B amplifier (Molecular
Devices) at room temperature. The signals were digitized with a Digidata
1440A, sampled at 50kHz and recorded with pCLAMP 10 software
(Molecular Devices) on a PC. Fast capacitance was compensated in the on-
cell configuration. For all electrophysiology experiments, recordings were
only pursued if the series resistance in voltage clamp was less than 30 MQ.
For whole-cell, current clamp recordings in hippocampal neurons, following
membrane rupture, resting membrane potential was assessed and recorded
at I = 0 and monitored during the data acquisition.

Data availability
All data used to conduct the benchmarking experiments with Optosynth
data, BeRST voltage imaging with paired EP data, and Optopatch datasets
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for chronically TTX-treated and unperturbed hPSC-derived neurons can be
accessed either directly from the Google Cloud bucket found at gs://broad-
dsp-cellmincer-data, or through notebooks in the paper analysis GitHub
repository: https:/github.com/cellarium-ai/CellMincerPaperAnalysis.

Code availability

The code repository containing the CellMincer pipeline can be found at
https://github.com/cellarium-ai/CellMincer. The repository containing the
Optosynth simulation framework can be found at https:/github.com/
cellarium-ai/Optosynth. An auxiliary repository with reproductions of the
analysis used to produce the figures can be found at https://github.com/
cellarium-ai/CellMincerPaperAnalysis.
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