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Mechanisms of meteorological drought
propagation to agricultural drought in
China: insights from causality chain

Check for updates

Zhiwen You1,2, Xunlai Sun2,3, Huaiwei Sun1,2,4,5 , Lu Chen2,6, Mengge Lu2, Jie Xue7, Xuan Ban8,
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Previous studies have overlooked the nonlinear dependency of drought propagation, limiting our
understanding of its mechanisms. By establishing a causality chain, this study identifies the nonlinear
propagation pathways of meteorological drought to agricultural drought across different climatic
zones in China from 2000 to 2018 and elucidates the driving factors contributing to the divergences in
propagation characteristics among these regions. The findings indicate a linear drought propagation
time (DPT) of approximately twomonths, occurring around 25 times on average, demonstrating peer-
to-peer drought propagation overall. Temperature and surface air pressure emerge as the primary
driving factors, accounting for over 50% of the observed drought propagation. The interplay between
precipitation (P), soil moisture (SM), and potential evapotranspiration (PET) explains the disparities in
nonlinear propagation across different regions. Increased area wetness enhances nonlinear drought
propagation, while linear propagation decreases. This study offers crucial insights for improving
drought management and agricultural water resource strategies.

Drought, an inevitable natural phenomenon and one of the most devas-
tating hazards worldwide, often leads to significant socioeconomic and
ecological losses1. Meteorological droughts primarily occur due to below-
average precipitation levels. The subsequent propagation of meteorological
droughts throughout the hydrological cycle, marked by limited precipita-
tion and enhanced atmospheric dryness, leads to decreased soil moisture.
This, in turn, affects crop growth and leads to agricultural drought2,3. This
subsequent decrease in soil moisture further diminished surface runoff or
base flow, resulting in hydrological drought4. The fundamental nature of
drought propagation lies in a causal relationship5–7. Macroscopically, this
relationship exists between meteorological drought and agricultural
drought, as meteorological drought causes agricultural drought5. Micro-
scopically, it also involves a causal linkage among various meteorological
variables8. Therefore, understanding the linkage between meteorological

and agricultural droughts is crucial for attributing the causes of agricultural
drought hazards and mitigating adverse consequence9.

Since 1980, stress on global water resources has been rising, primarily
attributed to population growth, socio-economic advancements, and shifting
consumption patterns. This trend is particularly pronounced in agricultural-
reliant nations like China10, indicating increased challenges to maintain food
security in the country. The wave of industrial modernization has led to a
surge in productivity, subsequently driving up demand forwater resources in
both the energy and industrial sectors11. Traditionally, agricultural droughts
triggered by meteorological droughts with significant precipitation deficits
are seen as linear relationships12. However, accelerated groundwater extrac-
tion and a constant increase in production and domestic water supply have
shortened the drought propagation duration, intensifying drought nonlinear
propagation. This means that even mild meteorological droughts can now
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trigger severe agricultural droughts13. Water shortages in agricultural irriga-
tion exacerbate the risk of agricultural droughts, amplifying their impact on
agriculture and posing a significant threat to food security14,15.

Drought propagation is the transition of drought indicators from
meteorological conditions to alternative forms of drought within the ter-
restrial segment of the overall hydrological cycle, according to Van Loon16.
In recent years, the development of causal analysis methods provided new
perspectives for exploring this issue. These methods are capable of identi-
fying and determining causal relationships between two time series vari-
ables, demonstrating significant applicability in the elucidating of drought
propagation relationships6. Previous studies have demonstrated a sig-
nificant causal connection between drought-related meteorological vari-
ables, notably precipitation (P) and soilmoisture (SM)17,18. Furthermore, the
reciprocal feedback among these variables can facilitate drought propaga-
tion. The transition from meteorological drought to agricultural drought
represents the agricultural system’s response to meteorological drought13.

Due to the difficulty and complexity of interpreting drought propa-
gation phenomenon, previous research often assumed a linear relationship
between meteorological and agricultural droughts, presuming that agri-
cultural droughts were solely dependent on the propagation of meteor-
ological droughts13,19. However, recent studies have revealed the intricate
nature of these relationships. For instance, Wang et al.20 found that agri-
cultural droughts may undergo nonlinear amplification or diminishment
due to meteorological drought propagation, indicating the presence of
hidden complexities. Dai et al.21 explored the propagation characteristics
and mechanisms from meteorological to agricultural drought in various
seasons and noted that the transition is influenced by multiple factors,
suggesting nonlinearity. All these observations suggest that the transition
from meteorological to agricultural drought is intricate and nonlinear22,23.
Predicting drought nonlinear propagation, which is more challenging and
needed than linear propagation, as drought nonlinear propagation often
leads to significant losses12.

In order to further analyze the nonlinear propagationmechanisms of
droughts, numerous scholars have made various attempts. Fang et al.24

utilized mutual information (MI) based on entropy theory to detect the
nonlinear and chaotic dependencies in the propagation from meteor-
ological drought to hydrological drought. Zhou et al.12 introduced the
directed information transfer index (DITI) to study the nonlinear
dependence, establishing the relationship between the characteristics of
meteorological and hydrological droughts. Zhao et al.13 further detected
nonlinear information about drought propagation time and rate using a
nonlinear dynamic system and chaos theory, providing new perspectives
on the complexity of drought propagation. However, most studies are
limited to relatively small research areas and primarily focus on the
analysis and quantification of non-linear propagation characteristics of
drought, lacking in-depth exploration of the non-linear propagation
mechanisms and their driving factors.

Despite these efforts, there is still a lackof systematic and comprehensive
studies that differentiate between linear and nonlinear drought propagation
across China, elucidate the reasons for regional variations, and provide a
unified and reliable methodology for analyzing nonlinear propagation
mechanisms. This study aims to fill these gaps by establishing a causality
chain to identify the propagation paths of droughts. Specifically, the Stan-
dardized Precipitation Evapotranspiration Index (SPEI) and the Standar-
dized SoilMoisture Index (SSMI) are utilized to representmeteorological and
agricultural droughts, respectively. The Convergent Cross Mapping method
is employed to analyze the nonlinear propagation pathways and features of
drought, which is a novel approach in this researchfield5,17.Machine learning
models basedon theXGBoost algorithmare utilized to investigate the driving
and influencing factors of drought propagation, considering significant fac-
tors such as the linearDrought PropagationTime (DPT). Thesemethods can
robustly explain the linear and nonlinear dependencies in drought propa-
gation. By comprehensively examining drought propagation characteristics
and mechanisms, this study provides valuable insights for regional decision-
making in drought prevention and mitigation.

Results
Drought propagation time, counts and intensity
Based on the maximum Pearson correlation coefficient (MPCC) method,
we studied the delayed impact of drought propagation, with a specific focus
on the linear propagation time frommeteorological drought to agricultural
drought, as depicted in Fig. 1a. Thefindings revealed that the propagation of
meteorological drought to agricultural drought in China is primarily con-
centratedwithin a two-month period, encompassing approximately 71.46%
of the total area. Meteorological drought induces a decline in terrestrial
moisture, subsequently indicating a reduction in soil moisture (SM).
Notably, these changes occur rapidly, with the linear drought propagation
time (DPT) being less than one month in nearly one-third of the region,
providing robust support for this observation. Furthermore, the linear
response of agricultural drought to meteorological drought demonstrated a
high sensitivity, with an average correlation coefficient of 0.7 (Fig. 1b).
Nevertheless, it is worth noting that in certainwater-limited regions, such as
the central area of Tibet, the time for linear drought propagation may be
prolonged due to constraints in water availability, resulting in a longer
required period for drought propagation. Through a comprehensive
assessment, this study employed the SPEI of 1-month scale to construct a
causal chain that links the propagation of meteorological drought to agri-
cultural drought. This approach aims to provide more timely guidance for
agricultural production and water resource management.

During the period from 2000 to 2018, the average number of drought
propagation events in China was approximately 25, demonstrating sig-
nificant regional variations. Notably, the eastern regions of the country
experienced a comparatively higher frequency of drought propagation,
while the western regions, particularly the Qinghai-Tibet Plateau region,
experienced fewer occurrences. The observed pattern of drought propaga-
tion aligns with the spatial distribution of wet and dry conditions across
China, where wetter areas tend to exhibit a higher frequency of drought
propagation events, compared to dryer regions.

The spatial distribution of drought intensity in China is presented in
Fig. 1d. A stronger drought propagation indicates a more comprehensive
transition from meteorological drought to agricultural drought. With an
average DIP of 1.09, China experiences a peer-to-peer drought propagation
level overall. The distribution pattern highlights a greater intensity of pro-
pagation in humid area compared toarid ones (Fig. 1e), indicating that areas
with frequent drought occurrences also exhibit more extensive drought
propagation. Nevertheless, specific regions, notably the central region of the
Qinghai-Tibet Plateau, exhibit significantly heightened drought propaga-
tion intensity. This phenomenon may be attributed to various factors such
as altitude, soil texture, and topography of the plateau region. These ele-
ments influence P distribution and impede water infiltration into the soil,
subsequently exacerbating soil drought in the region25.

Causality chain of drought propagation
A causality chain has beenmeticulously established to illustrate the process
of drought propagation, taking into account various meteorological factors
(Fig. 2a).Meteorological drought, which often acts as the precursor to other
types of drought, typically stems from fluctuations in temperature. Both
Potential Evapotranspiration (PET) and Precipitation (P) are highly sen-
sitive to temperature changes. On one hand, PET demonstrates a positive
correlation with temperature variations. On the other hand, the increase in
temperature elevates VPD, enhancing the atmospheric water storage
capacity and exacerbating the deficit of land water, thereby intensifying
meteorological drought. Concurrently, fluctuations in both P and PET also
lead to rapid variations inSM, subsequently altering the agricultural drought
conditions. To validate the constructed causality chain for drought propa-
gation, the Causality Chain Model (CCM) was employed.

Temperature exerts a substantial influence on both P and PET across
various areas, playing a pivotal role in the drought dynamics (Figs. S1-S2).
Even in arid area, there exists a significant causal relationship between
temperature and P (Cross mapping skill reaching approximately 0.9,
p < 0.01, Fig. S1). Additionally, both the theoretical analysis and the results
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Fig. 1 | Characteristics of the propagation from meteorological drought to
agricultural drought. a Drought propagation time (DPT), b linear correlation
relationship, c drought propagation counts (DPCs), d drought intensity propagation
index (DIP) of metrological drought propagation to agricultural drought in China

from 2000-2018, e DIP and DPCs of metrological drought propagation to agri-
cultural drought under different dry-wet areas. The orange, yellow, light green, and
dark green panels in the figure represent the extents of the arid, semi-arid, semi-
humid, and humid regions in China, respectively.
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of causality test also highlight a strong influence from temperature to PET.
The main differences among these four areas lie in the interdependencies
between P and SM, as well as between PET and SM (Fig. 3).

The significance of the cross-mapping skills is notable, reaching a value
of 0.75 (with p = 0.02) in humid area where P is abundant, changes in soil
moisture (SM) relymore heavily on P. Consequently, when P levels decrease
in these areas, SM rapidly changes, leading to agricultural drought. This
explains the generally faster drought propagation time (DPT) in humid area
compared to arid area. Furthermore, the causal relationshipbetweenPETand
SMexplains the regional disparities in drought propagation (as shown in Fig.
3e–h). In arid area with water scarcity, PET is unlikely to result in significant
changes due to water limitations. However, in humid area with abundant
water, an increase in PET will swiftly trigger alterations in SM. The cross-
mapping skills between PET and SM reach a value of 0.7 (with p < 0.01).

The combined causal relationships among P, PET, and SMaccount for
the regional differences in drought propagation. To quantitatively observe
the nonlinear drought propagation under different dry and wet conditions,
cross-mapping skills between P, PET, and SM were calculated for all grid
points inChina.Grid pointswith statistically significant causal relationships
(p < 0.05) were identified, and a statistical analysis of the AI and cross-
mapping skills for these points was conducted (Fig. 4). In arid and semi-arid
regions (AI values range from 0 to 0.5), the causal relationship between P
and SM is particularly sensitive to changes in regional humidity. As AI
increases, this causal relationship is significantly strengthened, indicating a
pronounced enhancement in the nonlinear propagation of drought. This
causal relationship begins to stabilize when AI is above 0.5, reaching a
plateau rather than further growth. A similar pattern is observed in the
relationship between PET and SM. This once again underscores the close
correlation between the nonlinear intensity of drought propagation and the
regional moisture status and changes in moisture conditions12.

Also, as shown inFig. 4, thedependencybetweenmeteorological factors
and SM determines the strength of drought propagation. The stronger the
dependency, the higher the risk of drought propagation. In other words, a
stronger dependency between water deficit (D) and SM indicates a faster
land-atmosphere water exchange rate. If there is an anomaly in either side of
the land-atmosphere water exchange, it can easily lead to a cascading effect.
This also implies that in humid area with a faster land-atmosphere water
exchange rate, drought propagation is more likely to occur.

Drivers and impact factor of drought propagation
XGBoost was used to simulate the DPCs in different areas, and the model
developed has a good prediction effect. (R2 > 0.75, Fig. 5a–d). Significant
alterations in P and PET have resulted in meteorological drought (Fig.

6a–d). As temperatures continue to rise, the intensification of meteor-
ological drought further impacts SM, ultimately leading to agricultural
drought. However, there are certain factors that can hinder this causal
process, including runoff and vegetations. Temperature significantly
influences the rate of evapotranspiration from terrestrial water bodies,
resulting in variations in soil moisture content, which subsequently affects
the propagation of drought. When considering DPCs as the target variable,
the SHAP values of temperature across all areas consistently indicate its
unparalleled importance in drought propagation, making it the primary
determinant of drought propagation frequency (as shown in Figs. S3–S6).

In addition to the factors already considered within the causal chain of
drought propagation, surface air pressure emerges as a significant influencer,
surpassing even P and SM. This is because surface air pressure interacts with
temperature (as shown in Fig. 6e–h). The calculation and description of
evapotranspiration using the Penman-Monteith method also suggest that
surface pressure controls the actual water vapour pressure26. Furthermore,
surface pressure, in conjunction with temperature, controls changes in VPD,
which affects P and ET, and thereby drought propagation, by influencing the
atmospheric demand for moisture27. In nearly all areas, temperature and
surface air pressure are mutually dependent and together dominate drought
propagation by influencing P and PET (Fig. 6e–h). These two variables
account for over 50% of the occurrences of drought propagation. Addition-
ally, the impact of runoff on drought propagation is observed to be more
pronounced in arid area compared to humid area, indicating increased
sensitivity towater availability in arid area. In these areas, runoff plays amore
significant regulatory role in drought propagation than in humid area.

The XGBoost model can likewise simulate DIP in different areas
(R2 > 0.65, Fig. 5e–h), the contribution of temperature on the intensity of
drought propagation diminishes as water availability decreases, especially in
arid and semi-arid area (Figs. S7–S10). External moisture, such as P, and
runoff in arid area, regulate the propagation of drought significantly more
than in humid area, which may be due to the fact that evapotranspiration
from the humid area consumes part of the water from P and runoff. Com-
pared to arid area, humid area appears to have more frequent land-air
moisture exchange due to the coupling of various factors, and sufficient
moisture amplifies the effects of various factors on the propagation of
drought,making the processmore complex (Fig. 7). But in dry-wet transition
area, runoff and soil moisture becomes particularly important factors. This
suggests that the primary factors influencing these water deficit areas are the
water storage attributes of the area, specifically the available water content.
Unlike humid area with frequent rainfall, these areas exhibit the unique
characteristic that the intensity of drought propagation is strongly influenced
by runoff and SM, and that changes in DIP are more related to their own

Fig. 2 | Causal chain of drought propagation
detected by CCM. a Causality chain and the
involved variables. b Causality chain of drought
propagation in humid area and arid area. The solid
green line in the figure indicates a strong causal
relationship (cross mapping skill greater than 0.9),
and the red dashed line points out the causal rela-
tionship difference between humid and arid area.
Cross mapping skill was calculated by CCM, details
refer to Figs. 8 & 9 and Figs. S1 & S2.
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water storage capacity. On the contrary, in humid area, DIP is more affected
by variable meteorological factors and is prone to erratic behavior, which in
turn triggers severe drought propagation and even flash droughts.

Discussions
Previous research on drought propagation has primarily relied on linear
assumptions, which align with practical realities, as reported by Dai et al.22.
However, the drought propagation process can be both linear and non-
linear, as emphasized by Zhao et al.13 and Guo et al.4. The inherent causality
of drought nonlinear propagation is emphasized by Shi et al.5. The current
study aims to construct a causal chain fordroughtpropagation, revealing the
contributing factors to regional disparities in drought nonlinear propaga-
tion. The CCM method is primarily utilized to detect nonlinear causal
relationships, specifically in terms of drought propagation paths based on
meteorological variables. This approachoffers a complementary perspective
to the field of drought nonlinear propagation research. Nevertheless, it is
important to acknowledge the coexistence of drought linear propagation, as
pointed out by Yu et al.28. Therefore, we conducted a statistical analysis of
linear correlation coefficients using AI to investigate the relationship
between regional wet and dry conditions (Fig. S11). The findings suggest
that as the wetness of the area increases, the drought linear propagation risk
will gradually decrease. This indicates that inconsistencies in regional
moisture conditions play a key role in drought propagation29. The drought
nonlinear propagation is in fact the result of the exacerbation (ormitigation)

of drought propagation due to other factors affecting drought propagation
(e.g., wind speed, vegetation), thus exhibiting non-linearity of propagation.
This exacerbating (or mitigating) effect is manifested by affecting the
exchange of moisture13,25, and thus drought nonlinear propagation is gra-
dually diminished as the amount of moisture decreases.

The sensitivity of SM to P offers the most straightforward explanation
for drought propagation19. Our findings indicate that the stronger causal
relationships among P, PET and SM in humid area contribute to more
severe drought propagation compared to arid area. This aligns with the
patterns identified by Li et al.29. Nevertheless, the water exchange process
between soil and the atmosphere is influenced not only by PET and P30, but
alsomodulated by various other factors, including groundwaterflows31. The
altered water linear response between soil and the atmosphere in arid area
was more pronounced, with a weaker nonlinear response. This variation
was not solely attributed to localmoisture conditions, butmay also be linked
to regional elevation, soil slope, and texture32.

Our research indicates that temperature and surface air pressure are the
primary driving factors influencing the propagation of meteorological
drought into agricultural drought (Figs. 6–7). From a physical standpoint,
increased temperature exacerbates the evaporation of water vapor, altering
its content in the atmosphere and subsequently disrupting precipitation
formation and distribution patterns33. This directly reduces the opportu-
nities for soil moisture to be replenished through precipitation, leading to
deteriorating soil moisture conditions. Moreover, rising temperatures

Fig. 3 | Causality relationship betweenP and SMas
well as PET and SM. a–d P and SM, e–h PET
and SM.
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significantly enhance potential evapotranspiration, causing rapid loss of soil
moisture to the atmosphere34. As a result, crop root systems struggle to
absorb sufficient water from the drying soil, hindering growth and accel-
erating the transition frommeteorological drought to agricultural drought.
Consequently, the alteration of the evapotranspiration process induced by
temperature changes is a critical mechanism in the transformation of
meteorological drought into agricultural drought25.

Additionally, surface air pressure plays an important role in drought
propagation through its interaction with temperature. Changes in surface
air pressure can modify atmospheric circulation patterns, influencing the
direction and intensityofwater vapor transport35. According toYuan et al.36,
surface air pressure and temperature jointly regulate the vapor pressure
deficit, impacting atmospheric demand for moisture and subsequently
influencing precipitation and evapotranspiration processes. When
meteorological drought occurs, if changes in surface air pressure lead to an
increased atmospheric demand for moisture while water vapor transport is
insufficient, effective replenishment through precipitation becomes
challenging37. This can result in the continued worsening of meteorological
drought, gradually extending into the agricultural sector and further
depleting soil moisture, thereby intensifying agricultural drought.

The synergistic effects of temperature and surface air pressure sig-
nificantly amplify the influence on drought propagation, highlighting the
urgent need for agricultural practices to mitigate the risks of drought
transmission stemming from these two factors.

Based on the above results, while also referring to the data on agri-
cultural distribution and phenology in China published by Luo et al.38 and
Han et al.39, we have proposed the following drought mitigation and

regulatory strategies for agricultural production in different regions in a
tailored manner:

In arid regions, where drought-tolerant crops such as cotton and wheat
aremainly grown, the growing season is short anddroughts occur frequently.
Considering that temperature and surface air pressure are critical factors
influencing drought propagation, alongside the significant impact of pre-
cipitation, it is essential to strengthen the construction of water conservancy
facilities and promote water-saving irrigation technologies such as drip
irrigation7. Additionally, deep plowing practices should be adopted to
improve soil’s water-holding capacity. It is also important to select and breed
drought-tolerant crop varieties and to adjust cropping structures basedon the
availability of water resources26. Establishing a comprehensive monitoring
system to provide early warnings of impending droughts is paramount.
Furthermore, enhancing ecological restoration efforts is crucial formitigating
and managing the risks associated with linear drought propagation.

In semi-arid regionswhere crops such aswheat and corn are cultivated,
precipitation patterns tend to be unstable19. Given the significant roles of
surface pressure and soil moisture in drought propagation, it is highly
advisable to utilize greenhouses to regulate air pressure during crop growth
and to establish rainwater harvesting facilities for supplementary irrigation
during drought periods. Additionally, the promotion of drought-tolerant
crop varieties is essential, along with the implementation of crop rotation
and fallowing systems. Agronomic practices, including deep plowing,
should be adopted to enhance the water absorption capacity of the soil3.
Moreover, a moderate development of facility agriculture can serve to
mitigate the adverse effects of droughts, thereby ensuring more stable
agricultural productivity.

Fig. 4 | Cross mapping skills between various
variables and SM under different Aridity Index.
a P-predicted SM. b PET-predicted SM.
c D-predicted SM. d Linear correlation between D
and SM. e AI after removing the seasonal trend in
different regions. f Spatial distribution of annual
variation rates of AI.
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In semi-humid regions with diverse crops, precipitation is unevenly
distributed. Since runoff and soil moisture affect drought propagation, it is
necessary to optimize the irrigation system for precise irrigation. Addition-
ally, drainage systems should be enhanced to prevent droughts that may
result from waterlogging. Strengthening soil moisture monitoring and

promoting water-saving technologies are also critical26. Moreover, it is
important to adjust the planting structure strategically to mitigate
drought risks.

In humid regions where rice, fruits, and vegetables are primarily cul-
tivated, precipitation is plentiful, yet droughts and floods often alternate14.

Fig. 5 | Effectiveness of XGBoost model in simulating DPCs and DIP in different areas. a–d DPCs, e–h DIP.
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Given that drought propagation is significantly influenced by meteor-
ological factors and is subject to non-linear dynamics, it is essential to
enhance the development of water conservancy projects to effectively bal-
ancefloodcontrol anddrought resilience. Furthermore, the implementation
of precision agriculture should be prioritized to facilitate targeted irrigation
and fertilization practices. Improvements to farmland drainage and irriga-
tion systems are also necessary. Additionally, emergency plans for sudden
droughts should be established, and contingency water sources should be
reserved to mitigate the risks associated with non-linear drought
propagation26. Through these measures, we can effectively address drought
risks and safeguard agricultural production and ecological health.

In the context of uncertainty analysis, the uncertainty present in the
data product introduces a level of uncertainty into the results of this study40.
Notably, a distinct causal link between temperature and P as well as PET is
evident in both the ERA5-Land and CMFD datasets, with cross mapping
skills exceeding 0.9 (Figs. S12-S13). This indicates that temperature plays a
significant role in drought propagation.

To further assess the robustness of the model predictions, we incorpo-
rated multiple meteorological datasets, including Global Land Data Assim-
ilation System (GLDAS) and Global Land Evaporation Amsterdam Model
(GLEAM), alongside the original meteorological data used in this study, to
conduct cross-validation experiments for the CCM model (Figs. S14–S19).

Fig. 6 | Drivers of DPCs in various areas.
a–d Corresponding contribution of multiple vari-
ables. e–h SHAP values for regionalised differences
of DPCs explained by temperature.
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The results indicate that by substituting the precipitation and potential eva-
potranspiration data from the CMFD dataset for the P and PET used in this
study, as well as replacing the soil moisture data with precipitation data from
the GLDAS and GLEAM datasets, similar outcomes were observed. Specifi-
cally, the convergent cross-mapping ability between P or PET and SM is
notably higher in humid area compared to arid area (Causality error<0.085).
This underscores the reliabilityofour study’sfindings and theconsistencyand
interchangeability of P andPETbetween theCMFDandERA5-Landdatasets
in examining variable causality. Furthermore, in-situ observations have
demonstrated that ERA5-Land performs well in simulating SM41, providing
further support for the robustness of the results of this study.

Moreover, there are inherent uncertainties in drought indices for
droughtmonitoring. Although the SPEI and SSMI selected for this research
effectively characterize meteorological and agricultural droughts, respec-
tively, their applicability varies across different regions in China, which
spansmultiple climatic zones. For instance, SPEImay not accurately reflect
localizedmicroclimatic differences, and its accuracy can be compromised in
complex terrains where spatial variability of meteorological elements is
significant14. Similarly, SSMI faces limitations in accounting for differences
in vegetation root uptake of soil moisture. The efficiency of soil moisture
utilization varies among different vegetation types and growth stages, which
somewhat restricts the precision of SSMI in evaluating agricultural drought.
Moreover, significant differences in soil texture and structure across various
climatic regions canalso influence the accuracy of SSMI in reflecting the true
status of soil moisture7.

It is worthmentioning that only monthly data from 2000–2018 were
utilized in this study. Though this sample length is sufficient for ensuring
the robustness of causality detection42, the inherent lag effects associated
withmonthly scales in identifying drought processesmayhinder real-time
disaster risk assessment and mitigation, thereby limiting its potential
social benefits. Utilizing drought indices with finer temporal resolutions
can further enhance the accuracy of drought warnings. For example, the
China Meteorological Administration employs a rolling 90-day window
to calculate the SPEI on a daily basis, thus enabling more precise identi-
fication of the specific dates when drought conditions begin or end43–45. In
fact, unlike traditional drought dynamic monitoring, the primary objec-
tive of this study is to explore the intrinsic connections between meteor-
ological drought and agricultural drought by constructing a causal chain.
By investigating the driving factors that influence the propagation

between these two forms of drought, we aim to provide theoretical gui-
dance for drought prevention and mitigation in agricultural production.
The approach we propose demonstrates broad applicability, and the
future use of longer time series and higher temporal resolution datasets
will undoubtedly enhance the credibility of the identified drought pro-
pagation patterns, while also facilitating the exploration of their dynamic
changes.

Furthermore, it is recognized that additional factors like vapor pressure
deficit (VPD) and groundwater storagemay also play an important role10,46.
The current causality chain’s exclusion of these factors could limit its ability
to capture all drought propagation patterns. Future research could consider
incorporating a more extensive and nuanced causality chain, incorporating
additional relevant variables. This would offer a deeper understanding of
drought propagation’s complexity, revealing potential patterns and pro-
viding a stronger scientific foundation for further exploration.

In summary, this study constructed a causality chain for drought
propagation, aiming to elucidate the mechanisms and processes involved.
The results were encouraging, indicating that the causality chain effectively
captured the nonlinearities of drought propagation across diverse areas. It
was revealed that the time of meteorological-agricultural drought propa-
gation in China typically spans around 2 months, with an average DPCs of
approximately 25 occurrences, showing peer-to-peer drought propagation
overall. Five keyvariables (i.e., P, Temp,PET, SMandD) are fundamental to
understanding the impact of drought propagation and offer intuitive
insights into its pathways29. Among these factors, temperature stands out as
the predominant driving factor for drought propagation, with temperature
and surface air pressure explaining over 50% of the instances of drought
propagation.

The CCM method demonstrates potential applications in detecting
nonlinear drought propagation, revealing significantly stronger drought
propagation in humid area compared to arid area. This disparity arises from
the nonlinear causality of SM in humid area on P and PET, which is nearly
twice as pronounced as in arid area.More interestingly,moving fromarid to
humid area, nonlinear drought propagation increases by nearly 1.5 times,
while linear propagation remainsminimally affected by dry-wet conditions.
As the wetness of the area increases, the nonlinear propagation of
meteorological drought to agricultural drought will gradually increase and
linear propagation will gradually decrease. The natural moisture conditions
within watersheds emerge as the primary factor causing differences in the

Fig. 7 | Drivers of DIP and their corresponding
contribution in different areas. a Arid area.
bHumid area. c Semi-arid area. d Semi-humid area.
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frequency and intensity of drought propagation, especially inwater-stressed
area. By comprehensively examining the characteristics andmechanisms of
drought propagation, this study provides valuable insights for drought
prevention and mitigation in agricultural production.

Methods
Data sources
ERA5-Land is a high-precision reanalysis dataset, which is generated
through the land component of the enhanced resolution European Centre
forMedium-RangeWeather Forecasts (ECMWF) ERA5 climate reanalysis,
the data utilizes the laws of physics to combine the model data with
observations from around the world, resulting in a globally complete and
consistent dataset47 (http://cds.climate.copernicus.eu). With a resolution of
0.1°, monthly total precipitation (P), potential evapotranspiration (PET),
volumetric soil water layer (0–7 cm) (SM), runoff, 2m temperature, 10m
u-component ofwind (U10), 10mv-component ofwind (V10), evaporation
fromvegetation transpiration (Evavt), and surface pressure (Pres) data from
2000–2018 was used in the study. All data are cropped to China region.

China Meteorological Forcing Dataset (CMFD, available at https://
westdc.westgis.ac.cn/) is a high-precision dataset for land surfacemodelling
in China48. The near-surface air temperature, downward shortwave radia-
tion, downward longwave radiation, precipitation rate, andnear-surface air-
specific humidity from 2000 to 2018 were used in this study, and based on
these data PETwas calculated with reference to Yang et al.49. All data have a
spatial resolution of 0.1°.

Normalized Difference Vegetation Index (NDVI) is one of the most
commonlyused remote sensing indexes for vegetation research.NDVI from
2000-2018 for MOD13Q1 of Moderate Resolution Imaging Spectro-
radiometer (MODIS)was used in the study, and it has a spatial resolution of
250m and is provided as a 16-day composite, the data was processed into
monthly data using monthly maximum synthesis, resampled with a reso-
lution of 0.1° and cropped to China.

Convergent cross mapping
Convergent Cross Mapping (CCM) based on Taken's theory50 has
demonstrated considerable efficacy indiscerning causal relationshipswithin
time series of complex systems41. CCM represents an innovative approach
for detecting causality in nonlinear dynamical systems. In the context of
CCM, causal relationships are ascertained by quantifying the extent to
which the historical records of a time series in one variable reliably estimate
the state of another variable. Notably, CCM goes beyond traditional causal
analysis methods by distinguishing between bidirectional and unidirec-
tional causal relationships. The steps involved in CCM are shown in Fig. 8.

In this study, CCMwas used to detect drought nonlinear propagation
tracks. This model tests the causality relationship among the variables
involved in the chain, analyzing the propagation path of drought among
meteorological variables. The calculation of CCM was by rEDM and

mutispatialCCM package in R, for more information, please refer to Sugi-
hara et al.51 and Clark et al.42.

Different drought indexes
(1) SPEI and SSMI. The Standardized Precipitation Evapotranspiration
Index52 (SPEI) and the Standardized Soil Moisture Index53 (SSMI) are
commonly used to characterize meteorological and agricultural drought.

SPEI considers both P and potential PET, effectively reflecting meteor-
ological drought conditions and accurately characterizing the impact of
changes in meteorological conditions on drought. Its applicability is wide-
spread across various climatic regions in China. In arid and semi-arid areas,
where precipitation is scarce and evapotranspiration is high, SPEI clearly
demonstrates the degree of moisture deficiency. In contrast, in semi-humid
and humid regions, despite relatively abundant precipitation, SPEI is adept at
capturing signs of drought when precipitation distribution is uneven14.

Conversely, SSMIutilizes SMas its input.Given that soilmoisture is a
critical factor affecting crop growth, SSMI holds significant significance
for agricultural drought monitoring. Its applicability is evident across
different climatic regions. In arid and semi-arid zones,where soilmoisture
is already limited, SSMI can intuitively reflect subtle changes in soil
moisture levels. Meanwhile, in semi-humid and humid areas, where soil
moisture is subject to substantial fluctuations due to precipitation and
evaporation, SSMI is effective in tracking trends in soil moisture
variation14,53.

The calculation methods for these drought indexes are based on the
mathematical algorithm of the Standardized Precipitation Index (SPI),
incorporating a normal quantile transformation to standardize the indices
for temporal and spatial comparability. Similar to SPI, both SPEI and SSMI
canbe computed atmultiple time scales to represent the cumulative drought
severity over a predefined period. In this study, SPEI and SSMI are com-
puted at each grid point using log-logistic and gamma distribution54. The
study selected SPEI at time scales ranging from 1 month to 12 months
(SPEI1-SPEI12), aswell as SSMI at a 1-month time scale (SSMI1), to calculate
the propagation time and intensity from meteorological drought to agri-
cultural drought. Additionally, the time scale of SPEI that exhibits the most
significant correlationwith agricultural droughtwas chosen to construct the
causal chain of propagation. Detailed methodologies are described in the
subsequent sections. The computation of SPEI and SSMI employs the SPEI
package in R, with specific calculations following themethodology outlined
by Vicente-Serrano et al.52.

In the study, SPEI and SSMI identify drought and classify drought
levels based on indicator values (Table S1). Since moderate and extremely
droughts are of great concern, they are the primary focus in this study. For
this study, the drought discrimination threshold is set at -1.

(2) Aridity Index. To investigate the dependency of SM on dry-wet
conditions under varying climatic conditions, climate classification

Fig. 8 | A schematic framework and steps of CCM
method.
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utilizes theGlobal Aridity Index (AI) provided by theConsultativeGroup
on International Agricultural Research - Consortium for Spatial
Information55 (CGIAR-CSI) (http://www.cgiar-csi.org). The calculation
formula for AI is as follows:

AI ¼ MAP
MAE

ð1Þ

where MAP is the mean annual P, and MAE is the mean annual PET.
According to the United Nations Environment Programme56 (UNEP),
there are five climate classes: hyper-arid (AI < 0.03), arid (0.03 < AI < 0.2),
semi-arid (0.2 < AI < 0.5), semi-humid (0.5 < AI < 0.65), and humid (AI >
0.65). To gain a deeper understanding of the mechanisms of drought
propagation and the reasons for regional disparities, China has been
categorized into distinct areas based on AI, including humid, semi-humid,
arid, and semi-arid area57. Additionally, regionswith annual precipitation of
less than 200mm are typically classified as permanently arid areas, where
meteorological droughts are often absent. In China, the 200mm
precipitation iso-line is frequently regarded as the boundary between arid
and semi-arid regions. Through comparisons conducted in this study, the
drought zones delineated by precipitation align closely with those identified
by AI. Numerous studies have indicated that these areas are also prone to
frequent meteorological drought events29,46. Therefore, to ensure the
comprehensiveness of the research area and the thoroughness of the
analysis, this study includes these permanently arid regions as part of the
research subjects.

Drought propagation time, counts and intensity
(1) Drought propagation time (DPT). In essence, a higher correlation
coefficient indicates a stronger connection between different types of
droughts58. Therefore, the linear propagation relationship of droughts
can be characterized using correlation coefficients46,59. The maximum
Pearson correlation coefficient (MPCC) method was verified to effec-
tively show the differences in response intensity and time amongdifferent
drought types60–62. Thismethod effectively assesses the linear propagation
intensity and time of droughts, commonly considering the maximum
correlation coefficient as linear drought propagation intensity and the
time scale of the maximum correlation coefficient as linear DPT, and will
be used to describe the linear propagation of meteorological drought and
agricultural drought in this study. The formulas are as follows:

Ri ¼ corr SPEIi; SSMI1
� �

1≤ i ≤ 12 ð2Þ

Timepropagation ¼ max ðRiÞscale 1≤ i≤ 12 ð3Þ

where i represents the time scale, SPEIi represents the SPEI at time scale
i-month, SSMI1 represents the SSMI sequence at one-month time scale, Ri
represents the Pearson correlation between SPEIi and SSMI1 time series,
max ðRiÞscale denotes the time scale corresponding to themaximumvalue of
Ri, and Timepropagation represents DPT.

(2) Drought propagation counts (DPCs). Given that this study focuses on
moderate and extreme drought, following the definitions of SPEI and SSMI,
SPEI < -1 and SSMI < -1was considered as criteria for drought identification.
Besides, since theDPT is nearlywithin sixmonths formost areas nationwide,
drought propagationwas definedwithin sixmonths as effective propagation.
Following the method above, DPCs was computed from 2000-2018.

(3) Drought Intensity Propagation Index (DIP). Drought propagation
intensity is an attribute of regional drought characteristics, serving as a
quantitative parameter to express the specific propagation process of
drought features between two types of drought. It signifies the drought
transformation efficiency, specifically the degree to whichmeteorological
drought intensity propagates to agricultural drought intensity. The
fundamental assumption is that, under ideal conditions, the propagation

of meteorological drought to agriculture drought occurs in a point-to-
point manner, meaning that agricultural drought is solely influenced by
meteorological drought and provides feedback to it. In this scenario, the
intensity andduration of both types of drought are consistent, resulting in
a ratio close to 1. However, in reality, the propagation of meteorological
drought to soil drought is influenced by numerous factors, causing this
ratio to often deviate from129. To describe the process and intensity of the
propagation from meteorological drought to agricultural drought, DIP
was employed to quantify the extent to which meteorological drought
intensity propagates to agricultural drought intensity29. The calculation
formula for DIP is as follows:

DIP ¼ SISSMI1�Ln

MISPEIn�Ln
MI≠0ð Þ ð4Þ

where DIP is drought intensity propagation index, n is the timespan of
meteorological drought propagates to agricultural drought. Numerically, n
is equivalent to the propagation time (DPT) of meteorological drought to
soil drought at the grid point. SISSMI1�Ln signifies the average value of the
drought sequence in the one-month scale SSMI series, while MISPEIn�Ln
represents the average value of the drought sequence in the n-month SPEI
series. DIP in the range of [0.9, 1.1) indicates peer-to-peer propagation, DIP
greater than 1.1 indicates strong propagation, and less than 0.9 indicates
weak propagation.

Explainable machine learning
Extreme Gradient Boosting (XGBoost) is an algorithm based on Gradient
Boosting Decision Tree (GBDT), aiming to enhance the speed and pre-
dictive capabilities of gradient boosting decision trees. It utilizes a second-
order Taylor series to approximate the cost function and incorporates
regularization terms into the objective function. The foundational knowl-
edge behind themechanism and implementation of XGBoost can be found
in Chen and Guestrin63 and Bentéjac et al.64. Previous drought studies have
achieved successful results by employingXGBoost to predictmeteorological
indicators65,66. Thepredict skill of theXGBoostwas employed in this study to
quantify the contributionof eachvariable to drought propagation combined
with the SHAP explainer.

Shapley Additive explanations (SHAP) is a machine learning inter-
pretability method that provides a unified interpretability approach by
combining elements fromadditive feature attributionmethodswith Shapley
values as a measure of feature importance67,68. The interpretation of SHAP
values is straightforward: the larger the absolute SHAP value, the more
significant the contribution of that feature to the model prediction, with
negative (positive) SHAP values indicating negative (positive) impacts on
the prediction process.

In this study, SHAPvalues are calculatedon theXGBoostmodel,which
performs optimally in predicting drought propagation effects, using a tree
explainer69,70. Two XGBoost models was established by employing DPCs
and DIP as the target variables. P, PET, SM, runoff, 2m temperature, U10,
V10, Evavt, and Pres were designated as feature variables to predict the
target variables. The SHAP interpreter was employed for elucidating the
outcomes.

Selection of factors and uncertainties analysis
For the selection of driving factors of drought propagation, it is noted that
the process of meteorological drought evolving into agricultural drought is
triggered by the disruption of the water budget imbalance, which is a con-
sequence of the water exchange between land and the atmosphere. This
process concurrently results in a decrease in soil moisture (SM), ultimately
evolving into agricultural drought. Temperature plays a significant role in
this process, as it significantly enhances regional evapotranspiration49.
Additionally, in the absence of regional water vapor considerations, high
temperatures elevate Vapor Pressure Deficit71 (VPD), further reducing the
likelihood of rainfall occurrence. Consequently, temperature can be con-
sidered a driving factor in drought propagation72.
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Certainly, it is crucial to take into account the uncertainty of causality
which is related to different factors and datasets. The ERA5-Land is a
complete high-precision reanalysis dataset, which was used for analysis in
this study because it contains a complete set of variables and has performed
well in drought studies73–75. However, as a causal monitoringmethod, CCM
have considered the uncertainties of the results introducedby themethod in
its description of the significance, but it does not include errors in the data
product itself, which can lead to uncertainty in the results. More impor-
tantly, ERA5-Land is a model-generated reanalysis dataset with established
data linkages between the variables themselves, so for the natural laws
revealed by the causality in this study, it was necessary to verify the
robustness of the results using other datasets. Therefore, P and PET from
CMFD (China Meteorological Forcing Dataset) was used to verified the
results of this study.

Study framework
Figure 9 presents the framework of the study. Based on ERA5-Land dataset,
this study aims: (a) to analyze the characteristics of drought propagation in
China; (b) to analyze the driving factors and regional differences in non-
linear drought propagation in China, (c) to verified the robustness of the
results based on CMFD dataset, and (d) to examine the influencing factors
of drought propagation.

Data availability
The datasets used in this study are publicly available as follows: (1) The
monthly 0.1°meteorological variables grid data used above (2000-2018) can
be accessedviahttps://cds.climate.copernicus.eu/datasets/. (2)Thedaily 0.1°
China meteorological forcing dataset (2000-2018) can be accessed via
https://data.tpdc.ac.cn/zh-hans/data/. (3) NDVI from 2000-2018 for
MOD13Q1 of Moderate Resolution Imaging Spectroradiometer (MODIS)
can be accessed via https://lpdaac.usgs.gov/products/mod13q1v006/.
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