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Quantifying the compounding effects of
natural hazard events: a case study on
wildfires and floods in California
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Compounding weather events occur when two ormore weather hazards combine to produce societal
or environmental impacts. Despite the potentially catastrophic damage these hazards can cause to
critical infrastructure, the quantification of such compounding hazards lags behind. This study
presents a newmethod for analyzing how consecutive severe weather events interact and compound
damage over time. The framework examines whether initial events amplify the impact of subsequent
disasters, using flexible lag identification to determine optimal recovery periods. Applied to California
wildfires and subsequent floods, it reveals regional variations in compounding effects and their
temporal evolution. By quantifying these compounding hazards, this methodology provides crucial
insights for policy makers and resilience managers to address climate change risks and the dynamic
nature of compounding hazards.While developed for California, this approach can be applied globally
to assess compounding hazards and inform disaster preparation strategies.

In recent years, the frequency and intensity of these extreme weather
events have exhibited a rapid and concerning escalation attributed, in
some part, to climate change and increased measures of physical
exposure1–3. This escalation has heightened the urgency to model and
quantify such extreme events, particularly as they relate to the resilience
performance of interconnected infrastructure systems and the risk of
compound events4,5. In ref. 6, the authors defined a typology of com-
pounding hazards, and they defined compound hazards as ‘combina-
tions of multiple drivers and/or hazards that contribute to societal or
environmental risk’. The authors in ref. 5 narrowed this definition of
compounding hazards to pertain specifically to infrastructure systems,
wherein compounding hazards are defined as two or more hazard
impacts that co-occur such that they concurrently affect interdependent
critical infrastructure systems, thereby presenting multiplicative risks
that may exceed the operating or functional capacity of systems and
communities. In particular, compound events may lead to cascading
effects that amplify the magnitude and complexity of disruptions6.

The emerging field of compound events research represents a critical
paradigm shift in environmental risk assessment, moving beyond tradi-
tional single-hazard approaches to a more holistic understanding of inter-
connected environmental threats7. Compound events are characterized by
multiple drivers that interact in complex ways, potentially amplifying their
destructive potential8,9. The typology defined by the authors in ref. 6

categorizes compound hazards as either preconditioned, multivariate,
temporally compounding, and spatially compounding. Of particular
interest to this paper will be preconditioned hazards, which are defined in
ref. 6 as an instancewhere “oneormorehazards can cause an impact, or lead
to an amplified impact”. With this typology established, a discussion
naturally followed about how compound driver play-out in terms of the
disaster risk reduction (DRR) cycle and how to incorporate tools into risk
assessments10–12.

As the uncertainty around how to refer to compound events and how
to incorporate them into existing disaster frameworks decreased, there still
existed a lack of quantitative methods developed around real-world appli-
cations of these frameworks. It is now possible to see this trend shift on an
international scale, especially in the case of flood-related compound
events13,14. As the body of research on these topics grow, there are many
perspectives fromwhich the quantitative methods can be applied.Whether
the impact of a compounding event is measured via its damage to crops15,16,
its event complexity17, or its ability to disrupt energy systems18, there is a
continued need to quantify the damage of these compound events in a
manner that is useful to decision makers and emergency managers.

As compound events increase in their frequency and intensity, the
overall risk exposure of assets and communities often increased without
recognition. Of particular interest to policymakers and infrastructure
operators are sequences of compound events and impacts that exceed the
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threshold for designed resilience. The concept of resiliencewas developed as
away tomanage uncertainty, including from the prospects of compounding
events. Resilience, in this context, refers to the capacity of a system—be it a
community, ecosystem, or infrastructure network—to absorb and recover
from disturbances, adapt to changes, and maintain an elasticity for its
essential functions and structures19,20. A system’s resilience is one that can
withstand and recover from extreme events while retaining its core identity
and functions in amanner thatmay bemeasured by a wide variety of social,
economic, environmental, and institutional factors. Systems that may have
been considered resilient to individual hazards may find themselves over-
specialized and overwhelmed when they face multiple, interacting shocks
and stresses.

While extensive literature exists on multi-hazard events, quanti-
fying these effects remains less explored.Many studies usemathematical
modeling with fragility curves, damage simulations, graphical networks,
and ensemble models to examine different relationships between
events21–24. However, these approaches often fall short of calculating the
extent to which damages are amplified by preceding hazard events and
impacts. This study aims to address these critical gaps by introducing a
novel, quantitative framework for analyzing compounding events, risks,
and impacts specifically in regard to the impact on infrastructure. This
approach provides two key contributions to the field of environmental
risk assessment and resilience planning. First, the study establishes an
objective mathematical framing for defining and computing impacts of
compounding threats. Furthermore, the proposed framework addresses
missing and biased data issues25 and over-dispersed infrastructure
damages using Negative Binomial Regression to model the impacts of
storm events26,27 and incorporate prior expert knowledge28. An overview
of the methodology is presented in Fig. 1.

This framework is evaluated through a case study of California, which
frequently experiences wildfires followed by periods of heavy rainfall,
leading to increased risks of post-fire flooding and debris flows. California
was split into 6 regions based on the Koppen climate zones to examine
regional variation of compounding hazards (Fig. 2). Post-fire flooding
would fall under the preconditioned compounding hazard category in the
typology developed in ref. 6. Theweather andhazard data are fromNOAA’s
National Center for Environmental Information (NCEI) Storm Events
database29 and meteo-stat30. To deal with the high number of zero damages
in NCEI, our framework uses a hurdle-model31,32. Our framework is
transferable to other regions. This framework contributes a standardized
basis for identifying and classifying compounding threats across diverse
geographic, climatic, and meteorological contexts, which offers the possi-
bility for comparative analyses and prioritization among risk managers and
policymakers.

Results
California serves as a case study to show the flexibility, comprehensiveness,
and limitations of such a complex undertaking. California’s geographic and
climatic diversity makes it particularly susceptible to compounding natural
hazards. Wildfires have increasingly become a significant hazard, particu-
larly in California, where their frequency and severity have escalated in
recent years33. Furthermore, wildfires serve as a prime example where there
is an existing body of literature on their effects34,35, allowing one to incor-
porate prior knowledge to stabilize inferences.Wildfires profoundly impact
soil properties by removing vegetation cover and organic matter and
altering soil structure due to heat36. This alteration increases the suscept-
ibility of bare soil to erosion and runoff during precipitation events37,38.
Additionally, the heating from wildfires can bake the soil surface, reducing
its capacity to absorb water and increasing surface runoff rates39–41.

The relationship between wildfires and severe flooding can also be
indirect. Both hazards may share climatic conditions that facilitate their
occurrence. Extendedperiods of drought,marked byhigh temperatures and
lowprecipitation, create ideal environments forwildfire ignition and spread.
These drought conditions can also precondition soil by drying it out,
reducing its moisture content, and increasing its susceptibility to hydro-
phobicity when exposed to high temperatures during a wildfire42,43.
Therefore, the compounding effect is not strictly causal but includes

Fig. 1 | The framework from the beginning stages through to the end where policy, mitigation strategies, and decisions are formed.

Fig. 2 | Counties mapped to Koppen Climate Zones.
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correlated possibilities. Our approach examines both potential causal rela-
tionships and correlated factors, recognizing the complex interactions
between wildfires and flooding in our analysis. Because of these competing
phenomena that lead to a single measured impact, it is important to note
that the effects we can quantify are not necessarily causal. In other words,
our methodology highlights a comparison between hazards that occur after
a previous hazard and those that do not. This distinction is crucial for
accurate interpretation and subsequent policy decisions.

The optimal time lags between wildfires and floods at a regional
scale (Fig. 3a) show variability in the expected time between the two
hazard events across the state. These time lags vary between 6 to 30
months, as determined by the maximum of the cross-correlation func-
tion methodology. As an example of the cross-correlation function can
vary as a function of time lag, we show the results for the Central Coast in
Fig. 3b. The correlations are normalized by the maximum correlation in
the time series for clarity. The time lags found with our methodology
align with estimates from previous studies on the effects of wildfires on
flooding34. While preexisting literature can be used to establish the time
lags, this study uses a proposed cross-correlationmethod to demonstrate
its applicability to any potential hazard pair whether there is preexisting
notions on their temporal relationship.

Figure 4 shows the compounding effect of wildfires on floods in the
six Koppen climate regions of California. The 95% credible intervals are
included in Fig. 4b to guide the interpretation of these compounding
effect values. A compounding effect greater than one suggests a hazard
pair that has multiplicatively worse outcomes in terms of property

damage. In several cases, the credible intervals include a value of one,
indicating an uncertainty whether the hazard pair truly is compounding.
Possible reasons for this result include but are not limited to extremely
damaging precursor fires that do not leavemuch property to be damaged
by the ensuing flood events or previously enacted policies that have
successfully reduced the impact of floods.

As represented in Fig. 4, there is significant geographical variability
in the compounding effects of wildfires on flooding. We note that the
Central Coast exhibits the most substantial effect on average. In parti-
cular, each additional preceding wildfire resulted in flood property
damages increasing multiplicatively by a factor of 9.7 on average. The
damages were highly variable for this region, resulting in a wide pos-
terior interval.We note that the coastal regions have the widest posterior
intervals, indicating that the compounding effects in this region were
highly variable. In the central coast, for example, this variability may be
arising because these regions are more prone to extreme flooding con-
ditions, which can lead to a large spectrum of interactions between
wildfires and floods. The fatter tails for these regions indicate that while
mild and moderate impacts are possible, high-impact compounding
effects are more likely in these regions.

The central coast compounding effect was followed by the San
Joaquin region. In San Joaquin, each precedingwildfire resulted in a 30%
increase to property damages, on average.We also note that San Joaquin
region of California had a less variable posterior distribution, yet still a
credible interval that excludes 1, indicating a more concentrated com-
pounding effect in this region. So, while a compounding effect in this

Fig. 3 | Times lag betweenwildfires andflooding in
California regions. Plots are of the month that
maximized the cross correlation function between
wildfires and flooding, along with an example of a
cross correlation function for San Joaquin. a Time
Lags for all six regions in CA. b An example of the
optimal time lag calculation for San Joaquin
California.

Fig. 4 | Compounding effect of wildfires followed by flooding in California. The
map is of the point estimate of the compounding effect and the other displays the
95% credible intervals for the compounding effect. Values greater than 1 represent a
compounding effect. a Regional differences in the compounding effect that wildfire

occurrence has on the property damage incurred by secondary floods.
b Compounding effect by region, including 95% credible intervals. For each region,
we plot themean and 95% credible interval that were obtained by sampling from the
posterior distribution.
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region is highly likely, extremely high impact compounding effects are
unlikely. These findings underscore the importance of regional analyses
and caution against generalizing results across different geographical
contexts.

The results for the year and precursor count interaction term (Fig. 5)
revealed spatial patterns about how the compounding effects may be
changing over time across California. The regression coefficients for the
interaction term show that the Sacramento region of California exhibited a
larger coefficient for this interaction term, suggesting a stronger temporal
trend in the relationship between precursor wildfire events and flood
damage in these areas. That being said, there is significant uncertainty in
most of the estimates, in particular in the Northern Coast, and so nothing
definitive can be said about these regions.

Notably, the Sacramento region of California showed the stron-
gest evidence of a positive effect for the year and precursor wildfire
counts interaction term when considering the 95% credible intervals
(Fig. 5a). This finding indicates that in these regions, the impact of
precursor wildfire events on flood damage has been increasing over
time. In other words, for a given number of precursor wildfire events,
the associated flood damage in recent years tends to be higher com-
pared to earlier years in the study period. Further research is needed to
understand the underlying drivers of these regional differences and
temporal trends.

Aside from the distribution and time lag of precursor count vari-
ables, it is vital to ensure themodel fits the data well. For example, for the
Northern Coast the posterior predictive checks were less reliable com-
pared to other regions, suggesting that the model may not adequately
capture the complexities of the data here. This lack of fit could be due to
the variability in the multiple imputed datasets or small sample size

(Table 1) for this region, also. Therefore, caution should be exercised in
interpreting the coefficients for the North Coast. The Southern and San
Joaquin regions showed moderate compounding effects of wildfires on
floods. The results were more consistent compared to the Central Coast,
indicating a more predictable relationship between these hazards in
these areas. Additionally, the posterior predictive checks indicate that
the model fits well in these regions.

Lastly, we demonstrate our proposed evaluation criteria to deter-
mine to what degree a hazard pair is compounding in Table 2. These
criteria were developed to include information on the results of our
framework and outside factors that may be critical for practitioners who
aim to use this for decision making. For our case study of wildfires and
floods, we observe that the hazard pair is most compounding, and thus
poses the greatest risk, in the coastal regions. The conclusion is sup-
ported by the fact that these regions check nearly all the boxes in our
evaluation framework, indicating a strong and consistent compounding
effect. Decision-makers in these areas, therefore, should be particularly
vigilant in preparing for this hazard pair.

Conversely, in a region like Sacramento, the pair does not appear to be
compounding. That does not mean a wildfire and flood can never be
compounding events, but merely that within our framework they are not a
compounding hazard pair, and thus would not be as high of a risk for
catastrophic damage as compared to the same hazard pair happening to the
coastal regions.With the criteria outlinedhere, our framework indicates that
thewhilewildfires andfloodsmaypose great individual risks to Sacramento,
their combined impact is less significant compared to coastal regions.

In summary, the occurrence of wildfires in certain regions can
potentially increase the risk of severe flooding. Leveraging the Bayesian
approach allows us to quantify this compounding effect in a rigorous way.
Furthermore, our evaluation framework provided a way to assess if the
hazard pair ofwildfires andfloodingwas compounding, and towhat degree,
in a systematicway to assess regional-level risk, empowering stakeholders to
make informed decisions and enhance preparedness for compounded
hazard scenarios.

Discussion
Thefindings of our study, underscore the regional variation anduncertainty
in nonlinear impacts of multiple, simultaneous environmental stressors.
Our study introduces a flexible and threat agnostic framework, Bayesian
Hurdle Negative Binomial Regression, to quantify these interactions,
emphasizing the importance of how one hazard can amplify the effects of

Fig. 5 | Changes over time in the compounding effect of wildfires on flooding in
California, asmeasured by the interaction term coefficient.Themap on the left is
the point estimate, while the other is the 95% credible interval. Values greater than 1
indicate the compounding effect has increased over time. a Regional differences in

the year and precursor count interaction term. b Interaction coefficient by region,
including 95% credible intervals. For each region, we plot the mean and 95%
credible interval that were obtained by sampling from the posterior distribution.

Table 1 | Sample sizes of flood occurrence in the dataset

Region Sample size

Southern 328

San Joaquin 439

Sacramento 300

Northern Interior 47

North Coast 85

Central Coast 272
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another over time. This approach, which systematically captures the tem-
poral dynamics between sequential weather events through the use of
precursor counts and defined time lags provides a critical advancement in
risk assessment.

In the case study presented, we applied the proposed framework to the
state of California to demonstrate its flexibility and comprehensiveness in
analyzing the compounding effects of natural hazards. The results revealed
optimal time lags between wildfires and floods across different regions of
California, ranging from 6 to 30 months. This suggests that the timing of
subsequent flooding in this case can be highly dependent on regional factors
such as topography and climate. The cross-correlation method used not
only alignswith the study at hand but demonstrates its applicability to other
hazard pairs providing a robust tool for future risk assessments. Infra-
structure managers across the state of California or broader US, have the
ability to be proactive understanding the time until significant damage
may occur.

Geographically, the compounding effects of wildfires on floods were
most pronounced in the central coast, where the damage variability was
high, indicating a broad range of potential impacts. Regions with significant
coastal exposuremay bemore susceptible to extreme flood events following
wildfires, likely due to the interplay between coastal hydrology and fire-
altered landscape but understanding the potential compounded effect of
coastal flooding due to wildfires enables risk managers to build local resi-
lience towhat typicallymayhave been a usualflood. In contrast, California’s
southern region also exhibited notable effects, albeit with less variability
suggesting this area might experience more predictable but still significant
compounding impacts.

In regions which exhibited themost varied and extreme compounding
effects of wildfires on floods, the findings suggest that extreme, catastrophic
weather events, whether it was wildfires or floods, alter the distribution for
the precursor variable such that there is a higher probability of observing
extremevalues far from thenorm for the hazard that follows, such as aflood.
For example, an extreme wildfire season with numerous fires can create
conditions that significantly alter the probability and magnitude of sub-
sequent flooding events. These so-called tail events are critical to consider in
resilience planning because they can lead to disproportionately large
impacts compared to more frequent less sever events. The variability seen
through this framework, such as in the central coast’s compounding effect,
can be used to drive more local resilience policy planning noting the dif-
ference in effects across the state of California.

Temporal trends, addressed through the precursor and year interac-
tion variable reveal that in certain regions, particularly Sacramento, the
compounding effects onwildfires andfloodshave intensifiedover time.This
trend could be attributed to factors such as climate changing patterns, urban
growth and expansion, and alterations in land-use, which may amplify the
risk of compounded hazard events. The increasing interaction between
hazards over time points to growing need for adaptive risk management
strategies that account for both short and long-term shifts in hazard
dynamics. Inmost regions, there was toomuch uncertainty in the estimates
to draw definitive conclusions.

While this study represents an advancement in the quantification of
compounding effects in multi-hazard scenarios, it also highlights several
areas for future research and development. First, there is a need formore in-

depth analyses of specific hazard pairs, leveraging more detailed, threat-
specific datasets. This could involve integrating high-resolution climate
models, remote sensing data, and on-the-ground observations to create
more comprehensive andgranular riskprofiles. Suchdetailed analyses could
reveal nuanced interactions between hazards that may not be apparent at
broader scales, further refining our understanding of compounding risks.

Second, future work should explore the use of non-economic variables
to measure the impact of environmental hazards. While property damage
provides a quantifiable and comparablemetric across different hazard types,
it does not capture the full spectrum of impacts on communities and eco-
systems. Incorporatingmetrics relating to public health, ecosystem services,
social vulnerability, land-use, and post-event economic output could pro-
vide a more holistic view of hazard impacts and support more compre-
hensive resilience strategies. Furthermore, compounding effects onproperty
damage could be compared to othermeasures suchas social vulnerability, to
better understand the specific impact these effects have on communities.
Thismulti-dimensional approach to impact assessment aligns with broader
sustainable development goals and could help identify synergies and trade-
offs between different resilience-building measures.

Third, expanding the framework to includenon-natural threats such as
cyber, social, and political risks represent an important frontier for com-
prehensive risk assessment. In our increasingly interconnected world, the
boundaries between natural and human-induced hazards are often blurred,
and the potential for cascading failures across different systems is high.
Developingmethodologies that can integrate these diverse risk factors could
provide invaluable insights for national security, critical infrastructure
protection, and societal resilience planning. This expansion would require
interdisciplinary collaboration, bringing together experts from fields such as
environmental science, computer science, social sciences, and political sci-
ence to develop truly integrated risk assessment frameworks.

The implications of this research for policy and disaster risk man-
agement are substantial, directly supporting the development of more
effective adaptation strategies and improved resilience planning. Our fra-
mework provides decision-makers with a nuanced and accurate tool for
assessing compound risks, enabling more informed and effective policy
formulation. For instance, the ability to quantify the compounding effects of
sequential hazards allows for precise risk assessments and the development
of targeted mitigation strategies. This is especially crucial for infrastructure
planning and urban development, where understanding the potential for
cascading failures can inform more resilient design and investment deci-
sions. Through a climate change perspective, with our framework, practi-
tioners will be able to track these trends in an intuitive manner, as we
continue to see an increase in the frequency and severity of extremeweather
events.

The potential applications of our framework extend beyond traditional
disaster risk management to inform a wide range of policy areas. For
example, in urban planning, our approach could be used to develop more
resilient zoning regulations andbuilding codes that account for the potential
compounding effects of multiple hazards. In agriculture, it could inform
crop selection and farming practices that are robust to a range of potential
climate scenarios, as well as optimal pricing strategies for risk transfer via
insurance based on historical and future forecast environmental com-
pounding threats. For public health systems, understanding the

Table 2 | Application of the evaluation criteria for the wildfire and flooding case study

Positive coefficient Positive interval Good model fit Dense population Social vulnerability Region

� � � � � Southern

� � � � San Joaquin

� � � Sacramento

� Northern Interior

� � � North Coast

� � � � Central Coast
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compounding effects of environmental hazards could support more effec-
tive emergency response planning and resource allocation.

In conclusion, this study represents a significant step forward in our
ability to understand, quantify, and prepare for compounding environ-
mental threats. By providing a flexible, robust, and comprehensive frame-
work for analyzing multi-hazard scenarios, we contribute to the
development ofmore effective and adaptive riskmanagement strategies. As
we face the challenges of a changing climate and increasingly complex
environmental risks, such innovative approaches will be crucial for building
resilient communities and ecosystems.

Methods
Overview
Despite ongoing theoretical discussions exploring the ramifications of
compounding threats, there remains a pressing need to quantify the asso-
ciated risks and their implications for resilience design and management.
This quantification is important for several reasons. First, it allows formore
accurate and precise risk assessment, which may help communities and
policymakers to allocate resources more effectively and to strategically
prioritize investments in vulnerable infrastructure. Second, it provides a
basis for investments that serve multiple adaptation co-benefits that can
address multiple, interacting hazards simultaneously. Finally, it contributes
to amore nuanced understanding of system vulnerabilities and Thresholds,
which reciprocallymay informresiliencedesign andperformance standards
in infrastructure systems.

As outlined in Fig. 1, the research design is centered on four major
steps: (i) data processing; (ii) precursor counts and optimal time lags; (iii)
quantification of the hazard pair multiplier; and (iv) evaluation. The
Methods section provides a more detailed outline of the following data sets
and methodologies. In the data processing step, datasets from various
sources were merged to create a set of variables that incorporates hazard
event information as well as contextual information about the region of
impact and additional weather drivers. NOAA’s National Center for
Environmental Information (NCEI) Storm Events database29 was used to
evaluate hazard impacts on property. This dataset includes an event’s
location, time, and impact in the form of property damage, as well as several
other variables. This event datawas used in conjunctionwith property value
data gathered for the state of California to inform the capacity of regions to
have damage inflicted upon them. Historical weather variables, such as the
amount of precipitation experiencedduring the event,were included aswell,
using meteo-stat (v.1.6.8; ref. 30). Preprocessing for this data included
aggregations, deduplication, and the handling of missing values. We
employed Multiple Imputation by Chained Equations (MICE) to robustly
estimate missing values.

In the second step, the study analyzed the frequency of natural hazard
events in the dataset. This allowed for a regional understanding of which
hazard pairs are co-occurring in time and space. At this step, the analysis
incorporated the temporal aspect in the form of time lags, where one can
identify the separation in time expected between two hazard events.
Understanding where and when event pairs happen begins to address the
risk of multi-hazard events but does not quantify the impact these multi-
hazard events have on a critical infrastructure system. To transform these
frequency and temporal analyses into actionable insights, this analysis uti-
lized the concept ‘precursor counts’ to tie the spatial and temporal frequency
of events into one value. This variable is critical in quantifying the com-
pounding impact of the hazard pair co-occurring in the following step.

The third step in our compounding hazard frameworkwas to calculate
the multiplicative effect a precursor condition (first event type) has on a
second event type. This calculation is done using the data and analytics
calculated in steps 1 and 2 using a Bayesian Hurdle Negative Binomial
Regression (BHNBR) model31,32. The coefficient on the precursor counts
variable is taken as the multiplicative effect of the impact (i.e., the com-
pounding effect) that the hazard pair has on expected property damages
relative to the second event happening in isolation. This study also incor-
porated an interaction term between the year and precursor counts to

investigate how the relationship between precursor events and a secondary
event’s damage might change over time, potentially due to factors such as
climate change or land-use modifications. Weakly informative priors were
incorporated in this model to balance prior beliefs with data influence. At
this stage, posterior predictive checking is also used to evaluate model fits,
ensuring reliability and validity. With this approach the analysis was also
able to provide confidence intervals on the multiplicative compounding
factor, giving decision-makers a range from which to expect these com-
pounding effects. This interval is a crucial aspect of the process, in that it
guarantees that even extreme events (e.g., “1-in-1000-year floods”) are
factored into the calculations.

The final step in the research design was a qualitative the evaluation of
the previous steps. Key to this stage is the expert judgment needed to assess
the model and develop mitigation strategies for hazard pairs that pose risks
to the regions being assessed. Because steps 1 and 2 provide situational
awareness forwhen,where, andhowdamaging ahazardpair canbe, theuser
of this tool will be able to prioritize hazard pairs based on their own criteria.
This design proposed an evaluation methodology with a set of criteria
including model fit based on the posterior predictive checking, a positive
precursor count regression coefficient, population density in the region,
social vulnerability of the population, and a positive 95% credible interval.
Understanding each of these criteria throughout the framework indicates
significant compounding hazards, guiding risk prioritization and resource
allocation before the subsequent hazard hits, thereby enhancing a com-
munity’s resilience for the future events.

The challenges in quantifying compounding threats are manifold.
They include the complexity of interactions between different environ-
mental stressors, the spatial and temporal variability of extreme events, and
the limitations of historical data in capturing emerging trends and unpre-
cedented scenarios. Moreover, the cascading and nonlinear nature of
impacts from compounding threats often defies simple additive models,
necessitating more sophisticated analytical approaches. This framework
aims to capture much of the complexity involved in the quantification of
compounding threats, while leaving room for flexibility and expert input.

Data processing
The main source of data used in this study comes from NOAA’s National
Center for Environmental Information (NCEI) Storm Events database.
Previous studies (e.g. refs. 44–46) have used this dataset as a basis for their
research into specific natural hazards and their impacts. Although this
database has its limitations and biases25,47, it is one of the most compre-
hensive, open-source resources for historical natural hazards events, with
national coverage over a substantial timescale (1996–2022). Once this data
was downloaded from the source, we performed several processing steps to
clean up the database and to add additional information about drivers and
economic variables.

First, weather events were aggregated to the county-level, to ensure a
sufficient number of data points and distinct boundaries for analysis. The
original data, designated by the National Weather Service’s (NWS) public
forecast zones (NWSM 10-507), required mapping these zones to counties
to achieve consistency in the representationof events. If an event occurred in
a zone that intersectswith two counties, the damageswere allocated between
the counties based on the proportion of the zone’s area within each county.
This approach differs from that taken by SHELDUS48, where damages are
split evenly between counties, as our method ensures a more accurate
representation of the impact based on the affected area. After reallocating
the damages to their respective counties, we removed any duplicate entries
fromthedataset toensure that each rowrepresented auniqueweather event.
This stepwas crucial formaintaining the integrity of our data. Subsequently,
property and crop damages were adjusted for inflation, using 2022 as the
reference year, to provide a consistent economic perspective across the
timescale of the dataset.

Historical weather variables at the time and place of a natural hazard
event were included using the meteo-stat library in Python30. The event
location was sometimes directly specified in the original data with latitude
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and longitude values, which were used to retrieve historical weather data.
When exact coordinates were unavailable, they were obtained via the
Google Maps API (API, n.d.). If meteo-stat returned null values, the
approximate locations from the Google Maps API were adjusted by 0.1
degrees in both latitude and longitude to find a location with available
historical data, with the search radius not exceeding 0.5 degrees in either
direction. Finally, for events with remaining missing weather values, the
nearest weather stations were used as reference locations, determined
through latitude and longitude comparisons.

Socioeconomic variables added to this expanding dataset include
median housing price, number of houses, population density, and GDP for
each county and year. These variables provided additional context for
estimating property damage in a given county and year, the primary impact
variable in this methodology. For instance, median housing price was used
as a normalization factor in statistical modeling, which is crucial for com-
paring counties with varying damage potentials. Median housing prices for
single-family homes in each California county were sourced from ref. 49.
County GDP data was obtained from the U.S. Bureau of Economic
Analysis50, population estimates fromCalifornia’s Department of Finance51,
and the number of housing units from the U.S. Census Bureau52. All
monetary values were adjusted for inflation to 2022.

In order to ensure there is enough data for regression, the counties of
California were grouped into six regions. Counties which are in the same
Koppen climate regionwere grouped together, and the resulting regions are
shown in Fig. 2. Sample sizes for flooding for each of these regions is
provided in Table 1.

Multiple imputation by chained equations (MICE)
During the pre-processing phase, efforts were made to handle missing data
systematically to ensure data integrity and completeness for analysis.
Building upon this, multiple imputation by chained equations (MICE)
offers a robust statistical approach to address remaining missing data.
Introduced byRubin53,MICEgeneratesmultiple imputations to account for
the uncertainty surrounding missing values54. This method involves creat-
ing multiple complete datasets, analyzing each one separately, and then
combining the results to produce estimates and confidence intervals that
appropriately incorporate the uncertainty associated with missing data55.

In particular,we are using theCARTalgorithm toperform themultiple
imputations, due to its ability to capture complex andnonlinear interactions
between multiple variables. CART constructs binary decision trees by
identifying optimal predictors for tree splits. To impute missing values, we
determine the terminal node towhich themissing value belongs based on its
predictors. Then,we identify observed valueswithin the same terminal node
as candidates for imputation. Imputedvalues areobtainedby sampling from
this candidate group. For amore detailedexplanation, refer to ref. 56 and the
citations therein. In this study, 20 multiply imputed datasets were aggre-
gated to enhance the reliability of property damage estimates.

Precursor counts and optimal time lags
Having completed multiple imputation throughMICE, addressing missing
data concerns,we proceed to investigate anddefinewhether twohazards are
compounding. When examining a weather event Y that follows another
event X, the precursor count refers to the number of occurrences of event X
within a specified time period preceding event Y. The underlying
assumption is that a higher precursor count—or frequencyof eventX—may
be associated with a more severe manifestation of event Y. This, of course,
may not be the case, and the purpose of this paper is to provide a systematic
framework to be able to quantify this underlying assumption. In this fra-
mework, consider our interest in determining the number of wildfires that
precede a specific flood event within a shared spatial area. To calculate the
precursor count of wildfires before the flood event, it’s essential to define a
suitable time interval for identifying preceding wildfire occurrences.

This time interval varies significantly based on the characteristics of the
hazards and the region in question. While domain expertise or existing
research may offer insights into an appropriate time lag for specific

scenarios, determining this parameter analytically is often necessary, espe-
cially in novel or complex situations.

In such situations, we propose the use of cross-correlation functions
(CCFs) to identify the optimal time interval for precursor counts. Cross-
correlation is a widely used statistical technique thatmeasures the similarity
between two time series as a function of the lag between them57,58. By
analyzing the time-lagged cross-correlation between the time series of
precursor event occurrences and the time series of subsequent event
occurrences, we can identify the time lag at which the two series exhibit
maximumcorrelation.This time lag is thenused as the intervalwithinwhich
we can define precursor counts.

Let Xt and Yt represent the counts of two different weather hazards at
time t. These counts are recorded at regular intervals (daily, weekly, or
monthly) depending on the specific weather hazards being studied.

The CCF rXY kð Þ between two time series fXtg and fYtg is defined as:

rXY kð Þ ¼
P

t Xt � �X
� �

Ytþk � �Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t Xt � �X
� �2 P

t Ytþk � �Y
� �2q ð1Þ

where k is the lag, �X is themean of theXt series, and �Y is themean of theYt
series. The cross-correlation function measures the similarity between Xt
and Ytþk as a function of the lag k.

To find the optimal time lag k� where the two-time series are most
correlated, we compute rXY kð Þ for a range of lag values and identify the lag
that maximizes the cross-correlation function:

k� ¼ argmax
k

rXY kð Þ ð2Þ

the optimal time lag k� indicates the timeshift for which the occurrence of
weather hazard 1 (represented byXt) and the occurrence of weather hazard
2 (represented by Yt) are most highly correlated. This optimal time lag k�

provides valuable insights into the temporal dynamics between the two
weather hazards, allowing us to quantify the delay with which the occur-
rence of one hazard may influence the occurrence of the other.

The optimal time lag identifies the starting point of thewindowused to
calculate the precursor count forweather hazard 1 (e.g., wildfires) in relation
to the occurrence of weather hazard 2 (e.g., floods). Specifically, the pre-
cursor count represents the number of occurrences of weather hazard 1
within a timewindow that begins at this optimal time lag and extendsup to a
defined end point (in our case study, threemonths prior to the flood event).
This approach allows us to capture the most relevant period during which
the occurrence of weather hazard 1 may be associated with the subsequent
occurrence or intensity of weather hazard 2.

Acknowledging the potential biases highlighted in cross-correlation
analysis of time series, it is crucial to clarify that our analysis does not assert
the presence of direct correlation or causation between the weather hazards
in study59. Instead, the identification of the optimal lag allows us to discern
potential temporal dependencies between these hazards. This lag serves as a
methodological tool to capture and quantify precursor events, thereby
enabling amore refined understanding of how the occurrence of one hazard
may precede or influence another over time. This approach enhances our
ability to later quantify compounding events associated with these hazards
more effectively, recognizing that relationships can vary over time and
space, so a static lag is not sufficient.

Bayesian hurdle negative binomial regression (BHNBR)
A Bayesian hurdle negative binomial regression (BHNBR) model is
used to accurately quantify the compounding effects of sequential
weather events on property damage. The negative binomial regres-
sion (NBR) model is particularly suitable for our analysis due to the
over-dispersion present in the property damage data, a common
characteristic of weather event counts and similar observational
datasets60,61. Traditional Poisson regression models often fall short in
performance in the presence of over-dispersed counts data62,63.
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The probability mass function of the Negative Binomial distribution is
given by:

PNB Y ¼ y;μ
� � ¼ Γ y þ α�1

� �
Γ y þ 1
� �

Γ r�1ð Þ
r�1

r�1 þ μ

� �r�1

μ

r�1 þ μ

� �y

ð3Þ

where μ is themean of the distribution, r is the dispersion parameter, andY
is the property damage count.

Furthermore, the dataset exhibits a significant prevalence of zero
values. Therefore, a Hurdle NBR model is employed to effectively manage
the challenges posed by this excess of zeros in the property damage data.
This model approach is specifically designed for datasets where zero values
are disproportionately represented64. The Hurdle NBR model consists of
twomain components: the hurdle component and the positive component.
The hurdle component addresses the likelihood of observing a zero versus a
non-zero outcome, while the positive component models the non-zero
counts using a truncated negative binomial regression approach. This
method is akin to the standard negative binomial regression but focuses
solely on positive counts.

LetYi denote the property damage count for event i. The hurdlemodel
is structured as follows:

P Yi ¼ yi
� � ¼

pi yi ¼ 0

1� pi
� � PNB Yi ¼ yi; μi

� �
PNB Yi ¼ 0; μi

� � yi > 0

8><
>: ð4Þ

where pi that the property damage is zero, μi is the mean damages, and PNB
is the negative binomial probability mass function defined in Eq. (3).

The primary objective is to associate the covariates of interest with the
mean damages, denoted as μi. Additionally, we model the probability of
observing zerodamage, representedby pi, based on the same covariates. The
model is therefore specified as follows:

log μi
� � ¼ β0 þ β1Precursori þ β2HomeValuei þ β3Durationi þ β4ti

þβ5PopDensityþ β6prcpi þ β7ti � Precursori
ð5Þ

logit pi
� � ¼ α0 þ α1Precursori þ α2HomeValuei þ α3Durationi þ α4ti

þ α5PopDensity þ β6prcpi þ β7ti � Precursori
ð6Þ

where μi is the expected property damage from event i, Precursori is the
precursor count, HomeValuei is the total home value in the county event i
occurred in, Durationi is the length of event i, prcpi is the precipitation that
occurred on the day of event i, and PopDensity is the population density in
the county event i occurred in.

The key parameter of interest in this analysis is β1, the coefficient of the
precursor count variable. The exponential of this parameter captures the
multiplicative effect of previous weather events on the property damages
caused by the subsequent event. A positive β1 indicates that prior events
amplify thedamage,while anegativeβ1 suggests amitigating effect.Another
parameter of interest is β7, the interaction term between the year and pre-
cursor counts, which measures how the relationship between precursor
events andona secondary event type’s damagemightbe changingover time.
This interaction term is important in estimating how the compounding
effects are expected to change over time.

Bayesian framework
In this study, the Bayesian approach extends the Hurdle Negative
Binomial Regression model by integrating prior distributions for the
parameters. This extension allows for the incorporation of existing
knowledge and to quantify uncertainty in a rigorous manner65. Bayesian
methods are particularly suited for this task because they provide a

framework to systematically include prior information, which is crucial
in scenarios where data are limited or noisy. This model was imple-
mented using the brms package in R, leveraging its interface with Stan, a
platform for Bayesian modeling. To maintain flexibility and stability in
our estimates, we opted for weakly informative priors, as recommended
by Gelman et al.66. These priors strike a balance between incorporating
prior beliefs and allowing the data to influence results significantly.
Unlike non informative priors, which can lead to unstable estimates,
especially with sparse data67, weakly informative priors help mitigate the
risk of overfitting and enhance the model’s robustness.

Weakly informative priors are used for the covariate coefficients
using the Student-t distribution instead of the normal distribution. This
decision stems from the anticipated heavy-tailed nature of the effects
being modeling. Weather hazards can exhibit highly variable impacts,
which are less likely to be tightly concentrated around a mean, parti-
cularly when considering the influences of climate change68. The
Student-t distribution, characterized by its heavier tails, more accurately
captures the potential for extreme values and offers a more realistic
representation of the uncertainty in the model.

When a positive effect between two hazards is expected, but there is a
lack of strong prior evidence, a weakly informative prior with a positive
mean μj > 0 is used, otherwise μj ¼ 0. For example, based on empirical
observations, it is expected for heavy rainfall to approximately double the
severity of flooding, in which μj ¼ ln 2ð Þ for the prcpi covariate. In order to
incorporate spatial uncertainty into the prior for the Precursori covariate,
the degree of freedom parameter for the Student-t prior is determined as
follows:

βj � Student t 7� λ � 4; μj; 1
� �

ð7Þ

where λ is calculated using min-max scaling of the region areas, ensuring
that λ ¼ 0 for the smallest region and λ ¼ 1 for the largest region. In other
words, λ is a measure of the spatial uncertainty around whether or not two
hazards occurred in the same region. In total, there are six λ values
corresponding to each of the six regions of California outlined in the “Data
processing” section.

To compute the λ values, the following steps are used:
• Calculate the mean area of the counties in each region to obtain six

average areas.
• Apply min-max scaling to these average areas to obtain λ values

between 0 and 1.

The min-max scaling is performed using the following formula:

λi ¼
Areai �min Areað Þ

max Areað Þ �min Areað Þ ð8Þ

where Areai is themean area of the counties in region i, andmin Areað Þ and
max Areað Þ are theminimum andmaximum of the average areas across the
six regions.

This scaling ensures that the degrees of freedom parameter of the
Student-t distribution smoothly interpolates between 7 for the smallest
region and 3 for the largest region, appropriately adjusting our prior based
on the region size. The average areas for the regions are computed by taking
themeanof the county areaswithin each region and then applyingmin-max
scaling to the vector of these average areas, Areas ¼ Area1; . . . ;Area6

� �
.

Posterior inference is performed using Markov Chain Monte Carlo
(MCMC) methods, with the Metropolis-Hastings algorithm, to sample
from the posterior distribution. These samples allow for an estimation of the
posterior means, credible intervals, and other summary statistics for the
parameters. Since multiple imputation was used, the posteriors obtained
from each imputed dataset are combined. In particular, the final posterior is
the equally weighted mixture of the posteriors obtained for the imputed
datasets. The posterior distributions obtained from the analysis can serve as
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valuable priors for future studies. Asmore data becomes available andmore
studies are conducted, these posteriors will help refine our understanding of
the compounding effects of weather hazards, improving the precision and
reliability of future models.

Marginal effects
As previously discussed, the framework relies on the BHNBR coefficient for
the non-zero damages, β1, to quantify the relationship between two arbi-
trary weather hazards. Equally important, however, are the marginal effects
of the precursor counts. Marginal effects are a crucial concept in regression
analysis, particularly in the context of nonlinear models like the Negative
Binomial regression. This refers to the change in the predicted outcome (in
this case, property damage) when that predictor variable (such as precursor
counts) increases by one unit, while all other variables in themodel are held
constant.

Model checking
Posterior predictive checking (PPC) is an essential step in Bayesian analysis
that allows researchers to evaluate the fit of a model by comparing the
observeddata to simulateddatadrawn from themodel’s posteriorpredictive
distribution. This technique helps identify potential discrepancies between
the model and the data, providing valuable insights for model refinement
and validation69.

PPC is basedon theconcept of generatingnewdatasets, calledposterior
predictive replicates, from the model’s posterior distribution. These repli-
cates are then compared to the observed data to assess the model’s perfor-
mance. The process involves the following steps:
1. Draw posterior samples: Obtain samples from the posterior distribu-

tion of the model parameters.
2. Simulate replicates: Using these posterior samples, generate simulated

datasets (replicates) from the posterior predictive distribution.
3. Compare toobserveddata:Compare the replicates to the observeddata

using various discrepancy measures or test statistics.

PPC offers several advantages for complex model validation70,71. First,
PPC provides a means to validate the model by assessing whether the
observed data could plausibly have been generated by the model. PPC also
aids in identifying areas where the model may not fit well, guiding
improvements or refinements to the model. Finally, of the advantages of
PPC that are relevant for this study, it also naturally incorporates the
uncertainty in the parameter estimates.

By leveraging posterior predictive checking, researchers can gain
valuable insights into the model’s performance, identify potential areas of
concern, andmake informed decisions aboutmodel refinement or selection.
This systematic approach to model evaluation is essential for ensuring the
reliability and validity ofBayesian analyses and their subsequent conclusions.

Data availability
The datasets analyzed in this study were derived from: NOAA’s National
Center for Environmental Information (NCEI) storm events database,
meteo-stat (v.1.6.8), California Association of Realtors housing data, U.S.
Bureau of Economic Analysis GDP data, California Department of Finance
population estimates, and U.S. Census Bureau housing units data. The
processed dataset generated during this study are available from the cor-
responding author upon reasonable request.

Code availability
The code used in this study is available from the corresponding author upon
reasonable request.
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