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Chill toppedhistorical Arabica coffee yield
loss among climate stressors in Yunnan,
China, followed by drought
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Existing knowledge on the coffee yield response to climate stressors has been mostly built on
evidence from traditional coffee-growing regions, the Tropics. As geographical shifts to higher
latitudes are proposed as a warming climate adaptation, understanding coffee yield response to
climate stressors in marginal growing areas is crucial. Here, we identify the critical climate stressors
and quantify their yield impact in Yunnan, China, a subtropical coffee-growing area, by using
generalized additive models. Our results show coffee yield can decrease by 18.9% per 1 °C decrease
inminimum of daily minimum air temperature duringmaturity or by 4.0%per 0.1 kPa increase in vapor
pressure deficit during flowering. During 1992–2022, chill stress topped the relative contribution to
coffee yield loss for 66% of counties, followed by drought. Our results could enrich understanding of
climate-coffee yield interactions and underscore the need to focus on chill stress in potential coffee-
growing regions under future climate change.

Coffee is one of the world’s most popular beverages, serving as a vital
economic crop inmany developing countries and contributing significantly
to local livelihoods and economies1–3. Variations in temperature, pre-
cipitation, and other climatic factors can significantly affect coffee growth,
yield, and quality4. These impacts would severely affect smallholder farmers
in developing countries, who contribute approximately 60% of the global
coffee supply5, and often lack access to advanced farming techniques and
financial instruments.Climate change is projected to alter the frequency and
intensity of climate extremes6–9, by imposing stronger heat stress or greater
precipitation variability. In response, a geographical shift in coffee growth to
higher latitude or altitude areas has been proposed to alleviate future heat
stress10,11. However, this shift could bring about other challenges such as
increased chill stress12,13. Quantifying the response of coffee yield to various
types of climate stressors would, therefore, provide a cornerstone for eval-
uating future climate impacts on coffee production in various geographical
regions.

Arabica coffee has strict climate requirements for growth. It prefers a
cool, moist, and (semi-) shaded environment14. The ideal growth tem-
perature ranges from 16 to 24 °C15, and the optimal annual precipitation is
1200–1800mm16. Coffee growth and yield responses to various types of

climate stressors have beenwell documented throughfield observations and
experimental approaches. Coffee is most sensitive to drought in its vege-
tative and berry development stages, where even mild drought conditions
can lead to reduced photosynthetic rates, decreased biomass, and lower
yields2,17. In some non-irrigated areas, extreme droughts can result in yield
reductionsof up to 80%18. Excessively high temperatures can lead to reduced
photosynthesis, leaf scorching, wilting, and increased susceptibility to dis-
eases and pests19. Prolonged exposure to low temperatures can inhibit the
growth of coffee plants20,21. Coffee trees grown at higher altitudes may
experience fewer pest and disease issues but are more vulnerable to low
temperatures due to prolonged development periods12. Coffee is also sen-
sitive to intense sunlight, which can elevate leaf temperature and increase
susceptibility to scorch disease14.

The existing literature has developed variousmodels to quantify coffee
yield response to climate factors, either to identify key climate factors and
their thresholds that critically affect coffee yield or to provide coffee yield
prediction/forecasts. Based on the global historical coffee yield dataset
documented by the Food and Agricultural Organization of the United
Nations, Kath et al.8 revealed the non-linear impact of heat and drought
stresses on the national yield of Arabica coffee using generalized additive
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models (GAMs). Their results suggest that abrupt yield shortfall could occur
beyond a growing-season maximum temperature of 29.22 °C and vapor
pressure deficit (VPD) of 0.82 kPa. Focusing on Robusta coffee, the hier-
archical Bayesianmethod helped reveal the Robusta coffee yield response to
climate variables based on farm-level survey data from Southeast Asia22.
Their results confirmed the negative effects of high temperatures and
excessive rainfall during the flowering stage. Aiming at yield prediction,
Kouadio et al.23 quantified the relationship between farm-level surveyed
yields and various agricultural meteorological indicators using an adaptive
random forest model. Similar studies have been conducted on coffee pro-
duction in Brazil18. However, these studies have primarily focused on spe-
cific regions or types of climate stressors, mostly for the traditional grown
areaswithin theTropics, and therefore lack comprehensivequantificationof
complex climate stresses within marginal growing areas. Consequently,
existing quantitative relationships remain limited in terms of region, scale,
andhazard type tomeet theneeds of loss risk assessment andclimate change
impact projection.

Herewe aimat enrichingknowledgeon coffee yield response to climate
stressors, with a special focus on a growing area to the northmost margin of
the global coffee belt, Yunnan, southwestern China. Yunnan is China’s
primary region for coffee cultivation and export, producing 143,200 tons of
coffee beans in 2022, accounting for more than 98% of the total production
of China and 1.36% of the global production. Yunnan coffee is mostly
harvested between 21° and 26° N, placing it within a marginal cultivation
zone with distinct vertical climatic characteristics24. Its high latitude and
altitude contribute to the distinctive attributes of local coffee beans25, but it is
also prone to chill and drought damage26–28. In 2017, frost damaged
10,000 ha of coffee (9.03% of the total harvest area in Yunnan), resulting in
estimated losses of approximately US$10 million. Similarly, in 2019,
drought led to damage in approximately 40,000 ha (38.3% of the total
harvest area), resulting in losses of around US$ 46 million. Therefore,
Yunnan’s coffee production is unique worldwide in terms of the

combination of climate stressors, which offers us the opportunity to further
investigate coffee yield responses to climatic stressors.

In this study, we analyze the response of Yunnan Arabica coffee pro-
duction to climate stressors during key growth periods and quantify the
relative contribution of each key climate stress to coffee yield in historical
periods. We use site-specific climate data and statistical coffee yield data of
the major coffee-producing counties in Yunnan Province, covering more
than 90% of Yunnan’s production and more than 80% of China’s. We
perform a full permutation of 13 climatic predictors in three growth stages
and use them to fit GAMs to explain yield variation. Predictors with the
highest frequency of significant performance in the fits then help identify
critical growth stages and corresponding climate stressors that affect coffee
yield the most. Then, we select the best-performing GAM to quantify how
Yunnan’s coffee yield responds to those key climatic stressors. Finally, based
on the response curves and historical climate, we evaluate the relative
contribution of key climatic stressors to historical yield losses.

Results
Critical climate stressors and growth stages that impact on
coffee yield
We divide climate factors into four groups, (basic factors, drought stress,
chill stress, and heat stress) and use the full combination of predictors (one
from each group every time and avoiding highly correlated predictors) to fit
a suite of competing GAMs to identify the key growth periods and key
climate stressors that affect yield. In total, 18,679 GAM models are fit. By
using the AIC and R2

adjusted metrics, the top 2% best performing models are
selected. All four groups have predictors that have relatively higher fre-
quency of appearance in the models (Fig. 1).

Our results show that climate stressors can be more directly linked to
interannual fluctuations in coffee yield in Yunnan than basic climatic fac-
tors. For drought stress, standardized precipitation index (SPI; quantifies
precipitation anomalies relative to long-term averages) shows a slightly

Fig. 1 | The frequency of occurrence of each predictor in the top 2% best performingGAMs. the horizontal axis represents various climate indicators, and the vertical axis
represents three typical growth periods. the darker the color of the corresponding grid, the higher the frequency of occurrence in the selected model.
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higher frequency of inclusion than vapor pressure deficit (VPD; atmospheric
dryness measured by vapor pressure gap) and standardized precipitation
evapotranspiration index (SPEI, integrates precipitation and evapo-
transpiration for water balance assessment.), and the flowering stage (fl) is
identified as the most critical stage. For chill stress, minimum of daily
minimum air temperature (TNn) and cold degree days (CDD; cumulative
cold stress) have a much higher frequency of inclusion than mean daily
minimumair temperature (Tmin), and thematurity stage (mt) is reported to
be critical for the chill stress impact. For heat stress, all three predictors show
some importance, and theflowering stage is suggested to be the critical stage
rather than the fruit-sitting stage (fs) when the annual maximum tem-
perature appeared.However,whencompared todrought andchill stress, the
frequency of inclusion of heat stress predictors, including mean daily
maximum air temperature (Tmax), maximum daily maximum air tem-
perature (TXx), and heat degree days (HDD; cumulative heat stress) may be
relatively minor (the frequency of inclusion is low), although it is still a
critical factor to consider in understanding the overall climatic influences on
coffee yield.

Yield response to critical climate stressors
Following Fig. 1, we carefully select three sets of predictors that representing
drought stress for the flowering stage, chill stress for the fruit-sitting stage,
and heat stress for the flowering stage. We consider TNn and CDD for chill
stress and Tmax and HDD for heat stress. For drought stress, we initially
consider SPI and SPEI. Nevertheless, model fits consistently derived “U”-
shaped response curves with respect to SPI. Consequently, we use VPD
instead of SPI in light of the performance ofVPD highlighted in Kath et al.8,
and the results are promising.

After controlling for highly correlated predictors, that is, Tmaxfl and
CDDmt, and carefully investigating the response curves, we focus on six
models (Table 1). Inour results,VPD is slightly superior toSPEI in capturing
yield responses to drought stress, which is in agreement with the findings
reported by Kath et al.22. In contrast, SPEI consistently derive a nearly flat
response curve, which is insignificant. TNn and CDD consistently
demonstrate a significant impact of chill stress on coffee yields. Regarding
heat stress, Tmax and HDD exhibited comparable capabilities, with Tmax
marginally outperforming HDD. Nevertheless, for most models, neither
Tmax nor HDD significantly explained the variation in yield. This insig-
nificance may have stemmed from the fact that in Yunnan Province, the
duration of the growing season that reaches the high temperature threshold
of 30 °C is relatively short, and the effect of heat stress detected from his-
torical data is quite subtle and contains large uncertainty.

After careful consideration,we select themodel depicted inFig. 2 as our
primary model, with additional outcomes included in the Supplementary
Materials (Supplementary Figs. 2-6). Our results revealed a pronounced
negative effect of drought on coffee yield during the flowering stage. The
monotonic decrease in the response curve indicates that a higher VPD will
lead to greater negative impacts on coffee yield. On average, coffee yield
dropped by about 4.0% for each 0.1 kPa increase inVPD. For chill stress, as
TNn during thematurity stage decreased, there was a clear monotonic drop
in yield, and the slope is equivalent to about 18.9% coffee yield loss per 1 °C

decrease in TNn. Additionally, the yield drop associated with TNn is the
largest among the three stress predictors. Heat stress, represented by Tmax,
has a monotonically negative impact on the coffee yield. However, the
impact is not significant, possibly because of an insufficient sample size of
high temperature inYunnan, and there is a slight uptick at the tail endof this
response curve.

Contribution of historical climate stressors to coffee yield loss
Tobetter understand the relative contribution of each climate stressor to the
historical yield loss, we mapped the spatial distribution of each stressor. For
each stressor, the two predictors listed in Table 1 aremapped by taking their
multi-annual average values during the historical period (1992–2022). For
SPEI, we use its average below -1, following29, owing to its standardized
values. Climatic stressors exhibited pronounced spatial differences (Fig. 3).
Drought stress, represented by VPDfl (Fig. 3a), is much stronger in the
central part of the growing regions than in other regions, mostly in Lincang
and western Pu’er. For some counties, the multi-annual average VPDfl can
reach 1.1 kPa, and in extreme years, its value can reach 1.72 kPa. However,
the drought pattern reflected by SPEIfl differed from that reflected byVPDfl.
Drought stress denoted by SPEIfl is mainly concentrated in the southwest
and northeast of the study area, with an average SPEI of -1.46 in drought
years (SPEI <−1), and it can reach −2.62 in extremely dry conditions.

The spatial distribution pattern of chill stress is highly consistent when
TNnmt and CDDmt are used (Fig. 3c, d). The strength of the chill stress
exhibited a descending gradient from the northwest to the southeast, with
Baoshan along the Salween River valley suffering the most. The annual
averageTNnof thematurity period can reach−2.5 °C, and in extreme years,
the value can be−4.5 °C. As for CDDmt, The multi-annual average value in
the studyarea is approximately 136 °C·day, and themaximumvalue reached
449 °C·day.

The spatial pattern of heat stress is also consistent betweenTmaxfl (Fig.
3e) and HDDfl (Fig. 3f). In contrast to chill stress, heat stress is the most
threatening in the southeastern corner of the study area, especially in
Xishuangbanna. The threat in counties at the junction of Lincang and Pu’er
is also high. Among them, the multi-annual average Tmax of the flowering
stage is 28 °C, and it can reach 35.1 °C in extreme years. The multi-annual
average HDDfl in the study area is approximately 13 °C· d, and the max-
imum value reached 138 °C· d.

We map the multi-year average relative contribution to historical loss
of different climate stressors by county 1990 to 2022 (for the details of
computing relative contributions, please refer to the method section).
Historical coffee yield loss associated with stressors is more pronounced in
northwestern counties (Fig. 4). The summation of the single-stressor-
associated yield loss is greater than 50%, with 15 out of the 29 counties,
mostly in Dehong, Baoshan, and Lincang. Note that the summation of the
loss rate is different from the actual relative yield loss rate because the
positive yield effect of other favorable climate factors is not considered.
Regarding the relative contribution (RC) of climate stressors, chill stress
exerted the largest RC, followed by drought stress, and the RC from heat
stress is the least (Fig. 4). Eighteen out of the 29 counties have a relatively
larger RC from chill stress (>40%), including those in Baoshan, central

Table 1 | Summary of the selected promising models

Sample size year Drought stress Chill stress Heat stress Deviance explained AIC

SPEIfl VPDfl TNnmt CDDmt Tmaxfl HDDfl

377 3.459*** 2.528 1.912*** 3.180** 23.5% 1049.61

377 3.451*** 1.220 1.000*** 3.296*** 26.6% 1029.71

377 3.410*** 1.275 1.000*** 3.046** 24.3% 1040.94

377 3.511*** 1.000** 3.727*** 1.770 25.8% 1035.87

377 3.489*** 1.000** 1.000*** 1.924*** 26.7% 1026.043

377 3.462*** 3.193*** 1.000*** 1.812** 26.5% 1031.266

The figures in the table represent the degrees of freedom for each indicator fitted to the GAMs. Statistical significance is denoted by *(p < 0.1), **(p < 0.05), and ***(p < 0.01).
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Dehong, central Lincang, and southeastern Pu’er. A relatively high RC
(>40%) fromdrought stress only appeared in six counties, two each in Pu’er
and Lincang, and one each in Dehong and Xishuangbanna. RCs for heat
stress are high in only a few counties, including Ruili County in south-
western Dehong, Menglian County in southwestern Pu’er, and Mengla
County in the southernmost Xishuangbanna (which is also the most
severely affected by heat stress).

Wealsoplotted the trends in the losses of coffee yield loss rate causedby
different climate stressors in each county from 1990 to 2022 (Fig. 5). The
trend was obtained by regressing yield loss rate associated to each stress on
year. We found that, overall, yield loss rate caused by drought and heat
mainly showed an upward trend, while the yield loss rate caused by chill
mainly showed a downward trend.Among all 29 counties, the yield loss rate
induced by flowering-stage drought showed an increasing trend in 87.10%
of the counties, with 58.06% of them statistically significant (p < 0.05). For
yield loss caused by flowering-stage heat stress, 51.61% of the counties
exhibited increasing trend, but only 22.58% were statistically sig-
nificant (p < 0.05).

Discussion
In this study, we identify the critical growth stages and climate stressors that
can best explain the yield loss of Arabica coffee in Yunnan, China, by

mobilizing GAMs analysis of historical county-level yield and climate data.
Most importantly, our results add new knowledge regarding the significant
impact of chill stress, which has been under-addressed in previous statistical
analyses. We find that chill stress is the primary contributor to coffee yield
loss in Yunnan during the period of 1992–2022, followed by drought stress,
with heat stress having the least impact. This can be attributed to Yunnan’s
marginal climate suitability for coffee cultivation, which is situated at the
northern border of the tropics. The annualminimum temperature for some
counties can reach as low as−2.59 °C, which is significantly different from
the tropical plateaus of major coffee-producing regions. However, this
latitudinal position and climate also mitigated a considerable portion of the
risk associated with heat stress, as our data only suggested high relative
contributions of heat stress in 10.34% of counties.

Our results indicate that chill stress in the maturity stage and drought
stress in the flowering stage are the key climate stressors and critical growth
stages. Our fitting of the GAMs indicated that the impact of chill stress can
be comparably denoted by both TNn and CDD, showing a monotonic
relationship with the natural logarithm of coffee yield. Both TNn and CDD
are widely recognized metrics for quantifying crop exposure to chill
stress30,31. There is subtle difference between the two indicators. TNn can
capture extreme minimum temperature values, monitoring abrupt cold
damage events such as frost. CDD focuses on the cumulative effects of low

Fig. 2 | Response curves of Arabica coffee yield to major predictors in Yunnan.
The solid black line represents the average effect, while the shading indicates 95%
confidence intervals. Points are partial residuals. a year, representing the increase in

yield brought about by technological progress. b Multi-year average of VPDfl.
cMulti-year average of TNnmt (°C). d Multi-year average of Tmaxfl (°C).
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temperatures, quantifying the comprehensive impacts of continuous cold
exposure. InYunnan,massive damage to coffee yieldwasmostly due to frost
weather that had produced “frozen fruits”. In this occasion, TNn should a
better reflection of chill damage to coffee as a measure of sudden extreme
low temperature.

We tried to compare our quantitative response curve with existing
studies, but there is a lack of evidence from other regions around the world.
Only a few experimental studies have mentioned that temperatures below
18 °C may inhibit the growth and photosynthesis of coffee20,21,32. But our
finding iswell supportedbyYunnan’s local knowledge.According to the local

Fig. 3 | Spatial distribution of climate stressors identify from themodel. aMulti-year average ofVPDfl. bMulti-year average of SPEIfl <−1. cMulti-year average ofTNnmt

(°C). d Multi-year average of CDDmt (°C·day). e Multi-year average of Tmaxfl (°C). f Multi-year average of HDDfl (°C·day).
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Fig. 4 | Combined coffee yield loss rates and the
relative contribution of climate stressors at the
county-level. Orange Sector: relative size of yield
reduction due to drought stress among losses from
three stresses. Blue sector: relative size of yield
reduction due to chill stress. Red sector: relative size
of yield reduction due to heat stress. Sector size
represents absolute size of total loss from three
stresses.

Fig. 5 | Trends in yield loss rate associated with
each climate stressor.The orange bar: The variation
range of the yield loss rate caused by drought stress.
The blue bar: The variation range of the yield loss
rate due to chill stress. The red bar: The variation
range of the yield loss rate due to heat stress.

https://doi.org/10.1038/s44304-025-00092-5 Article

npj Natural Hazards |            (2025) 2:32 6

www.nature.com/npjnathazards


standards in Yunnan Province33, when the daily minimum temperature is
below 1.0 °C or when the daily average temperature is below 8.0 °C, Arabica
coffeewill be subject to chill stress. In the study of chill damage to other crops.

The impact of drought stress can be best represented by VPD during
the flowering stage. The natural logarithm of yield dropped from 0.25 to
−0.63 monotonically in response to VPD’s increase from 0.31 to 1.71 kPa.
This relationship generally agreed with the one derived based on FAO’s
national Arabica coffee yield8. They found VPD a key indicator of global
coffee productivity, and there had been an abrupt change point of damage
(VPD> 0.82 kPa), beyondwhich coffee yielddeclined evenmore rapidly.As
for the selection of predictor, our results suggest that the VPD performs
better than SPEI. VPD is a measure of air dryness that incorporates tem-
perature and humidity and reflects the driving force behind plant tran-
spiration. During the flowering period, even without soil drought, an
increase inVPD can lead to severe hydraulic dysfunction in trees34, resulting
inwater stress that affects pollenvitality and transport, leading topollination
failure, and ultimately reducing coffee bean formation and yield. Previous
studies have also used precipitation35 and SPEI36 to denote drought stress in
coffee. SPEI is frequently used as an alternative indicator of soil moisture-
based drought indices in its role as ameteorological drought index37. Such a
localized relative measure might not exactly denote the physiological stress
imposed on coffee plants, which can instead be managed by VPD, which
may be the reason why VPD performs better than SPEI here.

Our results find weak evidence of heat stress impact, for which earlier
studies believed it to be the largest threat to coffee yield38, particularly under a
warming climate39. Relatively high temperatures during the flowering stage,
especially if prolonged in the early seasons, can frequently lead to abnormal
flower development and even completely inhibit floweringwhen sudden and
severe6. Air temperatures greater than 30 °C can result in deficient floral
development and a large number of flower abortions40, and temperatures
greater than 35 °C inhibit germination41. The subtle relationship between
coffee yield and Tmax in our case is mainly due to Yunnan’s unique tropical
and subtropical plateaumonsoon climate, as its temperature rarely exceeded
the heat stress thresholds suggested in the literature. In our data records, only
27% of the samples have a Tmax greater than the threshold of 30 °C. Con-
sequently, our results regarding heat stress are not robust. As future climate
change can bring more frequent and intensive heat stress to Yunnan42, the
projection of future heat stress on coffee yield will therefore require further
extension of the analysis regarding heat stress impacts.

Our study shows clear regional variations in the RC, with the north-
western area being predominantly affected by chill stress, the central area by
drought stress, and the southeastern area by heat stress. This distribution
corresponds to the regional climate and terrain variations in southwestern
Yunnan. In the northwest part (Baoshan and Dehong), the high-elevation
GaoligongMountains (average altitude >1500m) create cool summerswith
sporadic winter frosts, maintaining relatively low mean annual tempera-
tures. Additionally, the areas of Baoshan andDehong have been used for the
cultivation of high-altitude (1200–2000m) speciality coffee, which can have
correspondingly increased the risk of chill damage43. The central region
(Puer and Lincang), characterized by lower-elevation hills and montane
monsoon climate, demonstrates pronounced vertical climatic zonation and
distinct wet-dry seasonality. Persistent cloudless conditions during winter,
driven by dry warm westerly airflows, exacerbate atmospheric aridity and
soil moisture deficits, resulting in severe winter-spring droughts. Elevated
surface temperatures coupled with reduced humidity amplify VPD44,
making drought more likely to occur. In contrast, the southeastern low-
altitude zone (<1000m) (Xishuangbanna) exhibits tropical monsoon cli-
mate with homogeneous thermal conditions (mean annual temperature:
18–22 °C) and absence of distinct seasons. However, the dry season pre-
cipitation in this region is more abundant than in parts of the central areas
such as Pu’er and Lincang45, thus the risk of drought is not as high.

This study has several limitations. The lack of farm-level yield data led
to the choice of modeling at the county level, which ignored the divergent
production conditions in local places (hilly regions with micro-climate)—
the relationship between regional aggregated variables may not apply to

farm-level variation. Our limited county-level data size also constrained the
analysis of the impact of otherminor stressors such as excessive rainfall and
compound climate extremes. Although our results enrich the knowledge of
coffee yield to chill stress, in addition to drought stress, the derived yield
response toheat stress is subject to largeuncertainty.Therefore, the response
relationship regardingheat stressmust beusedwith cautionwhenapplied to
loss risk assessments and climate change impact projections.

Our analysis can explicitly provide important information to support
Yunnan’s initiatives in improving disaster prevention infrastructure for the
protection of coffee yields. According to our results, chill stress remains the
dominant cause of coffee yield loss in Yunnan. To cope with this, early
warnings and forecasts of frost and low-temperature stress would help local
farmers prepare in advance, even if it’s just 12 h ahead. Farmers can reduce
losses through measures such as proper covering and smoking. Drought
stress has been the second largest source of yield loss for coffee in Yunnan,
and its impact hasbeen increasing.An immediate and effectivemeasure is to
provide irrigation facilities. Currently, nearly 95% of the coffee plots are
completely relianton rainfall, and they are actually locatedon thehilly slopes
at altitudes ranging from 800 to 2000m above sea level. In the face of the
continuously rising risk of heat stress, it is recommended to increase the
coverage rate of shade trees, whose effectiveness in successfully regulating
themicroclimatewithin the coffee agroforestry systemhas been proven46. In
fact, the Yunnan provincial government has been advocating the use of
shade trees since 201247, and demonstrative projects have been launched.
Currently, the adoption rate of shade trees in Yunnan is approximately
30–40%, a proportion that still needs to be improved.

Methods
Data
Our study focuses on themajorArabica coffee production counties inChina
(Supplementary Fig. 1), southwestern Yunnan Province, which spans
approximately 21° to 26° N and 97° to 102° E. In 2020, this region had a
harvest area of approximately 100,000 ha, contributing more than 99% of
the total coffeeplantationarea inChina, accounting for 1%of the global total
coffee plantation area. The predominant Arabica coffee variety cultivated in
this region is Catimor7963, a hybrid of the “Caturra” and “Timor” varieties,
occupying approximately 90% of the total planting area48. The unique
combination of altitude, rainfall, and temperature creates a suitable envir-
onment for coffee cultivation but also increases the production risk for
coffee growers in the region26,27.

County-level coffeeproductiondata forYunnanProvince from1992 to
2022 are collected from Provincial and Prefectural agricultural yearbooks
and statistical yearbooks (available at the official website of the Yunnan
Provincial Bureau of Statistics, https://stats.yn.gov.cn/). The data collected
encompassed the annual coffee production, coffee cultivation area, and
coffee harvesting area for each county. We focus on 29 primary coffee-
producing counties, which together accounted for over 90% of Yunnan
Province’s total coffee production. To ensure the accuracy and reliability of
our analysis, we removed outliers that exceeded three standard deviations
fromthemean.This resulted in afinal dataset that contained377valid coffee
yield records.

Climate data from 29meteorological stations, one for each county, are
obtained from the Yunnan Provincial Climate Center, covering the period
of 1991-2022. The dataset includes the station-observed daily mean, max-
imum, and minimum air temperatures, sunshine hours, precipitation, and
relative humidity.

Climate predictors for modeling coffee yield response
The selection of potential predictors employed a comprehensive approach
that integrated field surveys, expert consultations, and a thorough review of
existing literature. The process suggested that drought and chills are the top
climate-related risks to coffee production, followed by relatively minor
threats fromhigh temperatures, hail, and strongwinds.Accordingly, a list of
potential predictors is prepared to quantify coffee yield response to climate
stressors (Table 2).Wehave eight temperature predictors, four precipitation
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predictors, and one solar radiation predictor. For temperature, we con-
sidered positive heat accumulation, chill stress, and heat stress. For heat
accumulation, we use growing-degree-days (GDD) and mean daily average
temperature (Tm). For chill stress, we used mean daily minimum tem-
perature (Tmin), minimum of daily mean temperature (TNn), and cold
degree days (CDD). For heat stress, we considered mean daily maximum
temperature, (Tmax), maximum daily maximum temperature (TXx), and
heat degree days (HDD). For precipitation, P and three drought predictors,
including vapor pressure deficit (VPD), standardized precipitation index
(SPI), and standardized precipitation evapotranspiration index (SPEI) are
considered. For solar radiation, we use the total sunshine hours (SH).

For each predictor, we considered the values for the three growth
stages. The division of growth stages is based on the physiological char-
acteristics of the different phenological stages of coffee growth and the
advice of local agricultural and meteorological experts: flowering stage (fl)
from March to May, fruit-sitting stage (fs) from June to October, and
maturity stage (mt) fromNovember to February of the following year. Some
predictors are believed to cause little damage to coffee during certain growth
stages, such as heat stress in winter. These factors are included at the
beginning but are eventually filtered out in subsequent model-fitting
iterations.

Model
GAMs are employed as the primary model to derive the yield response
curves. GAMs allow for the use of smooth functions instead of linear terms,
enabling the modeling of complex relationships between variables49. This
approach is particularly advantageous when dealing with the nonlinearities
often observed in ecological and environmental data50. Themodel equation
used in this study is:

lnðyitÞ ¼ β0 þ sðtÞ þ
XK

k¼1

sðxk;itÞ þ εit ð1Þ

Ourmodel formulation considered thenatural logarithmof coffee yield (yit)
for county (i) and year (t) as a linear combination of splines for the chosen
predictors xk. The spline functions sðxk;itÞ are employed to accommodate
potential nonlinear effects, while sðtÞ represented a time trend term to
account for technological advancements that may have contributed
to increased coffee production. Themodel’s residual error, εit , is included to
capture any unexplained variance. β0 is a constant in this model.

Predictor and model selection
We employed a strategy that involved fitting a suite of competing models
with various combinations of predictor variables to navigate the challenge of
predictor selection51. Prior tomodel fitting, Pearson correlation analyses are
conducted to evaluate the relationships between all predictors. Predictors
with high correlations (|p | ≥ 0.6) are not simultaneously included in the
model fitting to mitigate multicollinearity52. Subsequently, we randomly
select four climate factors with correlation coefficients |p | < 0.6, besides the
year term, to construct a GAM.We then explored all possible combinations
ofmodels and compared themusing goodness-of-fit metrics.We employed
the generalized cross-validation method53 to extract as much useful infor-
mation as possible from the limited data while minimizing overfitting.
Model performance is assessed using the Akaike Information Criterion
(AIC)54 and adjusted R-squared (R2

adjusted ; Wood, 55). The top 2% of the
models with the highest R2

adjusted are retained, from which the frequency of
each predictor is summarized. Based on the frequency counts, we identify
the critical predictors and growth stages that have the greatest influence on
coffee yield.

The derivation of the final model is contingent upon a comprehensive
evaluation of model-fitting statistics and the statistical significance of the
predictors. We select the top two predictors for each type of stress (chill,
drought, and heat) with the highest frequency in the previous step and then
fit the model with all possible combinations of them again while avoiding
highly correlatedpredictors. Themodel that best-balancedmodel simplicity
and predictive power is selected using the highestR2

adjusted , together with the
response curves of each predictor56.

Assessing climate stressor impacts
We are interested in themagnitude of the yield loss claimed by each climate
stressor. After deriving the best-fitting GAM, the variation in yield claim by
a certain climate stressor k can be derived from the difference between yields
with and without the impact of the corresponding stressor:

Δyk;it ¼ ðyk;it � yitÞ=yk;it
¼ 1� expflnðyitÞ � lnðyk;itÞg
¼ 1� expfsðxk;itÞg

ð2Þ

yk;it is the coffee yield by assuming that the climate stressor xk has no impact
on yield, sðxkÞ ¼ 0, and yit is the model-predicted coffee yield with the
impact of the stressor.

Table 2 | Climate predictors used for modeling coffee yield response

Climate factors Predictors Explanation Unit Supporting Literature

Temperature-related Tm Mean daily air temperature °C Aparecido et al.57

Tmax Mean daily maximum air temperature °C Valeriano et al.58

Tmin Mean daily minimum air temperature °C

TXx Maximum of daily maximum air temperature °C Karl et al.59

TNn Minimum of daily minimum air temperature °C

GDD Growing degree days °C·day Daily mean air temperature between 12°C57 and 30°C60,
calculation following Silva et al.61 (for lettuce)

CDD Cold degree days °C·day Hourly air temperature below 12°C57,
calculated following Osman et al.30 (for wheat)

HDD Heat degree days °C·day Hourly air temperature above 30°C60,
calculated following Sun et al.62 (for rice)

Precipitation-related P Total precipitation mm Kath et al.22

VPD Vapor pressure deficit kPa Kath et al.8

SPI Standardized precipitation index Leng and Hall63 (for wheat, maize, rice and soybeans)

SPEI Standardized precipitation evapotranspiration index Cao et al.64 (for different vegetation types), Gomm et al.36

Solar radiation SH Total sunshine hours h Zhang et al.65 (for sorghum, peanut and canola)
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Given the above yield variation, the yield loss claimed by the climate
stressor xk in year t will be Lk;it ¼ max½0;Δyk;it �. We computed the multi-
annual average loss for each stressor over the study period (1992–2022), and
the relative contribution of climate stressor k is:

RCk;i ¼ �Lk;i=
X3

k¼1

Lk;i ð3Þ

Where �Lk;i is the multi-annual average of Lk;it .

Data availability
The yield data used in this study are sourced from the official website of the
Yunnan Provincial Bureau of Statistics (https://stats.yn.gov.cn/). Other data
that support the findings of this study are included in the article and sup-
plementary files.

Code availability
Data is processed and all figures are created using Python 3.9 and R version
4.3.2. For inquiries about the code please contact the corresponding author
for more detail.
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