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Post-earthquake hazard and impact estimation are critical for effective disaster response, yet current
approaches face significant limitations. Traditional models employ fixed parameters regardless of
geographical context, misrepresenting how seismic effects vary across diverse landscapes, while
remote sensing technologies struggle to distinguish between co-located hazards. We address these
challenges with a spatially-aware causal Bayesian network that decouples co-located hazards by
modeling their causal relationships with location-specific parameters. Our framework integrates
sensing observations, latent variables, and spatial heterogeneity through a novel combination of
Gaussian Processes with normalizing flows, enabling us to capture how same earthquake produces
different effects across varied geological and topographical features. Evaluations across three
earthquakes demonstrate Spatial-VCBNachieves AreaUnder theCurve (AUC) improvements of up to
35.2% over existing methods. These results highlight the critical importance of modeling spatial
heterogeneity in causal mechanisms for accurate disaster assessment, with direct implications for
improving emergency response resource allocation.

Earthquakes cause harmnot only throughdirect ground shaking but also by
triggering secondary ground failures such as landslides and liquefaction.
These combined effects lead to devastating consequences, including struc-
tural damage and human casualties. A striking illustration is the 2021 Haiti
earthquake, which initiated over 7000 landslides covering more than 80
square kilometers. This catastrophic event resulted indamageor destruction
to over 130,000 buildings, claimed 2248 lives, and left more than 12,200
people injured1. Rapidly identifyingwhere and how severely ground failures
and structural damage have occurred following an earthquake is essential
for effective victim rescue operations within the crucial “Golden 72 Hour”
window, and plays a vital role in developing effective post-disaster recovery
plans2,3.

Over the years, researchers have developed various approaches for
estimating the location and intensity of earthquake-induced ground failures
and building damage. Traditional approaches to seismic hazard assessment
fall into two main categories: physical and statistical models4–7. Physical
models apply fundamental geotechnical principles, such as the Newmark
displacement method for landslides or liquefaction potential indices.While
foundational, these approaches require detailed geotechnical data often
unavailable during rapid response and frequently oversimplify complex
physical dynamics. Statistical models estimate hazards using geospatial
susceptibility indicators paired with ground motion data, calibrated on

historical events. However, current approaches employ fixed parameters
regardless of location. This one-size-fits-all approach misrepresents how
seismic effects vary across different geological compositions, topographical
features, and infrastructure, leading to significant estimation inaccuracies.

Remote sensing technologies, particularly Interferometric Synthetic
Aperture Radar (InSAR), have revolutionized rapid post-earthquake
assessment capabilities. InSAR works by comparing phase differences
between radar signals captured at different times, enabling detection of
surface deformation with high-resolution precision8. Damage Proxy Maps
(DPMs) generated by the NASA’s Advanced Rapid Imaging and Analysis
(AIRA) team, which is a state-of-the-art InSAR product, identify ground
changes by analyzing radar measurement disparities before and after seis-
mic events9. Although remote sensing technologies facilitate expedited
hazard evaluation10, these approaches typically address individual hazards
and face challenges in differentiating between overlapping signals from
multiple hazard types while filtering out environmental noise11. This lim-
itation creates a critical information gap for emergency responders who
need a comprehensive understanding of multiple concurrent hazards.

Recent advances have introduced causal Bayesian networks to address
the limitations of remote sensing technologies by disentangling cascading
earthquake impacts12–19. These probabilistic models leverage variational
inference to track causal chains from initial earthquake events through
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multiple hazards to ultimate building damage. A recent approach20

attempted to account for spatial variations using bilateral filters, which is a
technique that creates weighted averages based on proximity between
locations21,22. While this improved upon uniform-parameter models,
bilateral filtering fundamentally treats spatial dependency as a simple
averaging operation without modeling how the underlying causal
mechanisms themselves vary across different geological settings23,24. For
example, the same level of ground shaking might have a much stronger
causal effect on triggering landslides in areas with steep slopes and loose soil
compared to flat areas with stable bedrock25. Similarly, building damage
resulting from liquefaction will vary dramatically depending on foundation
typesand subsurface conditions.These location-specific causal relationships
cannot be captured by simple spatial averaging26.

To address these limitations, we propose a spatially-aware variational
causal Bayesian network (Spatial-VCBN) that represents a fundamental
shift in approach: rather than modeling spatial correlation as an after-
thought, we directly model the variation in causal mechanisms themselves.
The distinction is crucial because while previous approaches might apply
spatial smoothing to already-estimated parameters, our framework incor-
porates spatial heterogeneity directly into the causal structure itself. Such
integration captures the reality that the same earthquake generates dra-
matically different effects depending on local conditions. The physical
intuition behind Spatial-VCBN is that causal relationships in earthquake
scenarios are fundamentally location-dependent, a principle well-
established in geophysics but rarely incorporated into predictive models.
While simpler approaches like linear spatial interpolation or kernel
smoothing might seem sufficient, the highly non-linear and potentially
multi-modal nature of earthquake causal effects demands more sophisti-
cated methods. Our framework consists of three key components: (1)
observable variables including geospatial features and DPMs derived from
satellite imagery; (2) latent hazard/impact variables representing unob-
served landslides, liquefaction, and building damage; and (3) spatially-
varying causal coefficients that quantify the strength of causal relationships
at each location.

A key innovation in Spatial-VCBN is the modeling of these spatially-
varying causal coefficients using a combination ofGaussian Processes (GPs)
with normalizing flows. GPs serve as spatial priors that ensure causal rela-
tionships vary smoothly across regions based on geophysical similarities27,
while normalizing flows provide flexible, non-linear transformations that
capture complex3,18,28, non-Gaussian distributions of causal effects. Con-
ceptually, normalizing flows transform simple probability distributions into
more complex ones through a sequence of invertible mappings, allowing us
to represent the richly varied ways that earthquake forces translate into
surface effects across different terrains. The use of Gaussian Processes is
particularly well-suited for this problem because they naturally model
spatial correlation while allowing for location-specific variations. Normal-
izing flows complement this approach by transforming simple distributions
into more complex ones through a series of invertible mappings, enabling
Spatial-VCBN to capture the highly non-linear andpotentiallymulti-modal
nature of causal effects in earthquake scenarios. Our ablation studies reveal
that an optimal flow number ofK = 6 is required to adequately model these
complex relationships, confirming that simpler distributional assumptions
would fail to capture the physical reality of earthquake impacts. This is
crucial because the relationships between geological features, seismic waves,
and resulting hazards often follow complex, non-Gaussian patterns that
simpler distributional assumptions would fail to capture.

By combining GPs with normalizing flows, our framework can
represent complex, non-Gaussian distributions of causal effects that better
reflect the physical reality of how earthquake impacts propagate through
diverse environments. This probabilistic approach also enables principled
quantification of uncertainty in hazard estimates, which is crucial for
effective disaster response planning. For inference, we implement a sto-
chastic variational approach with an expectation-maximization algorithm
that alternates between updating posteriors of unobserved variables and
refiningmodel parameters. To handle large geographical regions efficiently,

we apply a local pruning strategy that exploits the natural sparsity in real-
world causal networks, achieving processing speeds of ~0.94 s/km2 with
GPU acceleration, making Spatial-VCBN viable even for large-scale events
like the Haiti earthquake (15,970 km2).

Our empirical evaluations demonstrate that this spatially-variant
approach significantly improves hazard and impact estimation accuracy,
withAUCimprovements of up to35.2%overpriorprobability baselines and
5.5% over state-of-the-art methods across three earthquake events (Haiti,
Puerto Rico, and Turkey-Syria). These substantial improvements are not
merely incremental advances but represent a step-change in our ability to
rapidly assess complex disaster scenarios with the precision needed for
effective emergency response. The model shows remarkable robustness in
signal-constrained environments, successfully extracting coherent hazard
patterns even from noisy DPM signals, as demonstrated in mountainous
and coastal regions. Particularly noteworthy is the strong performance of
Spatial-VCBN at low false positive rates, which is crucial for effective
resource allocation in disaster response operations where false alarms can
waste limited resources. These results highlight the critical importance of
modeling spatial heterogeneity in the actual causalmechanisms themselves,
rather than merely accounting for spatial proximity, for effective disaster
assessment and response planning.

Results
Data description
We evaluate our framework on three earthquake events: the 2020 Puerto
Rico earthquake (M6.4), 2021 Haiti earthquake (M7.2), and 2023 Turkey-
Syria earthquake sequence (M7.8).

The2020PuertoRico earthquakeAmagnitude 6.4 earthquakehit the
southwest part of Puerto Rico on January 7, 2020. The ARIA team created
DPMs using SAR images from the Sentinel-1 satellite to identify potentially
damaged areas29. Researchers from theUSGS, the University of Puerto Rico
Mayagüez, the GEER team, and the StEER team later conducted field
reconnaissance to collect ground truth observations30–32. Post-earthquake
reports documented that at least 300 landslides were triggered near the
epicenter30.

The 2021 Haiti earthquake On August 14, 2021, a magnitude 7.2
earthquake struck the southern peninsula of Haiti. The StEER team and
GEER team later collected ground truth inventories for landslides and
building damage33–35. According to post-disaster reports, the earthquake
resulted in at least 2248 human fatalities, destroyed 53,815 buildings, and
damaged 83,770 structures throughout Grand Anse, Nippes and Sud36,37.

The2023Turkey-Syria earthquake sequenceOnFebruary 6, 2023, an
earthquake ofMw7.8 and its aftershocks caused unparalleled destruction in
Turkey and Syria. This disaster resulted in more than 55,000 deaths, dis-
placed 3 million people in Turkey and 2.9 million in Syria, and caused
damage or destruction to at least 230,000 buildings14,17. The ARIA team
generatedDPMderived fromsynthetic aperture radar (SAR) imagesonFeb.
10, 2023 by the Copernicus Sentinel-1 satellites operated by the European
Space Agency38. Ground truth was later collected and reported by the
Turkish Ministry of Environment14,39.

Evaluation metrics and benchmarks
We evaluate our framework using multiple complementary metrics to
provide a comprehensive assessment of performance. The primary eva-
luation is basedon the receiver operating characteristics (ROC) curve and its
area under curve (AUC) metric40. ROC curves plot True Positive Rate
against False Positive Rate (FPR) across varying decision thresholds, pro-
viding a threshold-independent assessment that is particularly valuable in
disaster contexts where optimal classification thresholds may vary by event
type, geographic region, or hazard category. This approach aligns well with
the probabilistic nature of our framework, as both our spatially-aware causal
model and the benchmark methods produce confidence scores rather than
hard classifications.

To complement theAUCmetric, we also employ the F1 score, which is
the harmonic mean of precision and recall. The F1 score is calculated as
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F1 ¼ 2 × precision× recall
precisionþrecall, where precision represents the ratio of correctly

identified hazards to all predicted hazards, and recall captures the propor-
tion of actual hazards that were correctly identified. Unlike AUC, which
evaluates performance across all possible thresholds, F1 score requires
selecting a specific classification threshold. For consistent comparison, we
use the threshold that maximizes the F1 score for each model and hazard
type. This metric is particularly informative for disaster response applica-
tions, where balancing false alarms (precision) with missed hazards (recall)
is critical for effective resource allocation.

Althoughour framework is fundamentally anunsupervisedmodel that
approximates true posteriors through variational inference, these evaluation
metrics enable objective comparison with supervised approaches. Addi-
tionally, we utilize the variational bound as an internal metric to optimize
model parameters and determine the optimal flow length for the normal-
izing flow component.

Spatially-varying causal influence mapping between multi-
hazards and structural damage
Figure 1 illustrates the complex spatial relationships between different types
of hazard, their causal influence, and surfacedeformationpatterns following
the 2020 Puerto Rico earthquake with an extent of−66.945°W, 17.956°N to

−66.876°W, 17.998°N. The DPM (Fig. 1b) captures surface deformation
and ground changes, serving as an observable proxy that Spatial-VCBN
interprets through causal relationships.

The spatial distribution of the causal parameters γLS and γLF, which
are shown in Fig. 1c, d, reveals how different hazard mechanisms con-
tribute to the damage of buildings throughout the landscape. Areas with
elevated γLS values indicate locations where landslides have a stronger
causal influence onbuilding damage, predominantly in thehillier portions
of the study area. These high-coefficient regions align well with areas
showing a high posterior probability of landslide occurrence (Fig. 1e),
suggesting that Spatial-VCBN successfully captures the spatial specificity
of landslide impacts.

The effects of liquefaction showdistinctly different spatial patterns,with
highvalues ofγLF concentrated in the central lowlands andcoastal areas.This
clear spatial separation between high γLS and high γLF regions validates
Spatial-VCBN assumption that landslides and liquefaction generally do not
co-occur at the same location due to their different geological requirements.
The posterior probability of building damage (Fig. 1f) represents the result of
our causal network, showing how the model integrates information from
both types of hazard. Importantly, themodel does not simply translateDPM
signals directly intodamage estimates but interprets these signals through the
learned causal structure and spatially varying parameters.

Fig. 1 | Spatial distribution of hazards, causal parameters, and damage following
the 2020 Puerto Rico earthquake. a Google satellite imagery of the study area with
extent of −66.945°W, 17.956°N to −66.876°W, 17.998°N. b DPM derived from
satellite imagery. c Spatial distribution of γLS values, showing the causal parameter

strength from landslides (LS) to building damage (BD). d Spatial distribution of γLF
values, showing the causal parameter strength from liquefaction (LF) to building
damage (BD). e Posterior probability of landslide occurrence. f Posterior probability
of building damage occurrence. g Posterior probability of liquefaction occurrence.
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These results demonstrate the ability of Spatial-VCBN to decouple
different causal mechanisms contributing to observed surface changes,
providing amore nuanced understanding of disaster impacts thanwould be
possible from DPM interpretation alone. This capability forms the foun-
dation for our subsequent analysis of how these causal parameters influence
remote sensing observations.

Building onourunderstanding of causal relationships betweenhazards
and structural damage, we now examine how these mechanisms present in
DPMsignals under varying conditions.We analyze both high-fidelity signal
regions and challenging signal-constrained environments to demonstrate
the robustness of Spatial-VCBN.

Robust spatially-varying causal inference between hazards and
remote sensing observations
Figure 2 reveals the complex spatial relationships between different hazard
mechanisms and their contributions to the observedDPMsignals in an area
with significant surface deformation in the study area with an extent of
−66.946°W, 17.958°N to −66.890°W, 18.009°N. The DPM presented in
Fig. 2a shows a concentrated area with high deformation values. The spatial
distribution of the causal parameters provides insight into the primary
mechanisms that drive these changes.

In this region, we observe spatial heterogeneity in how different
hazards influence the DPM signals. The liquefaction causal parameter λLF
(Fig. 2b) shows stronger values in the lower portion of the deformation area,
suggesting that liquefaction processes are a dominant contributor to the
DPM signals in that specific zone. This pattern is consistent with the typical
geographic distribution of liquefaction in low-lying areas with specific soil
conditions. Conversely, the landslide causal parameter λLS shown in Fig. 2c
exhibits higher values in scattered patches, particularly in the right portion
of the image where several high-intensity areas appear. This indicates
locations where landslide mechanisms have a stronger influence on the
observed DPM signals, likely corresponding to areas with steeper slopes or
unstable terrain.

Figure 2d displays the building damage parameter λBD. It shows a
distinct spatial pattern with moderate to high values in several discrete
clusters. These areas represent locations where building deformation and
structural impactsmost strongly contribute to theDPMsignals, which often
correspond to zones with higher density of built structures. This spatial
segregation of causal parameters demonstrates the ability of Spatial-VCBN
todecouplemultiple contributing factors toDPMsignals, providing insights
into the dominant hazard mechanisms at different locations within the
affected area.

This capability to decouple in high-signal regions establishes a baseline
for comparison with more challenging signal-constrained environments,
which we examine next to demonstrate the robustness of Spatial-VCBN
under varying conditions.

While Spatial-VCBN performs well in areas with strong DPM signals,
real-world disaster assessment often involves regions with weak, noisy, or

ambiguous observational data. We now demonstrate the ability of Spatial-
VCBN to extract meaningful causal parameters even in these challenging
signal-constrained environments. Figure 3 highlights the robust capability
of Spatial-VCBN to identify meaningful landslide patterns even in chal-
lenging conditions where DPM signals are weak, inconsistent, or con-
taminated by noise. The areas shown exhibit noisyDPMreadings, shown in
Fig. 3c, g that likely result from environmental factors such as snow cover or
the complex reflectance properties of mountainous terrain, which can
introduce artifacts in satellite-based change detection. Despite these chal-
lenging conditions, our spatially-aware causalBayesiannetwork successfully
extracts coherent landslide susceptibility patterns. The distributions of
landslide causal parameter λLS shown in Fig. 3a, e display distinct spatial
organizationwithhigher values concentratedalong features that correspond
to terrain characteristics associated with landslide risk. This demonstrates
that Spatial-VCBN can effectively filter signal from noise by leveraging
spatial correlation structures through its Gaussian Process component.

Notably, the uncertainty maps for landslide occurrence (Fig. 3c, h)
reveal important patterns that complement our posterior probability esti-
mates. Areas with high landslide probability in Fig. 3b, g generally exhibit
low uncertainty (darker regions in the uncertainty maps), indicating high
confidence in these estimations. Conversely, transitional zones between
high and low probability areas show elevated uncertainty levels. This
uncertainty quantificationprovides critical decision support information, as
emergency responders canprioritize areaswithbothhighhazardprobability
and low uncertainty for immediate intervention, while areas with high
uncertainty might warrant additional monitoring or investigation.

The posterior probability maps for landslide occurrence presented in
Fig. 3b, f reveal a refined understanding of landslide risk that transcends the
limitations of the noisy DPM data. These posterior estimates incorporate
both the learned causal strengths and the underlying geophysical context,
resulting in coherent spatial patterns that align with landslide-prone land-
scape features visible in the satellite imagery (Fig. 3d, h). This ability to
maintain signal fidelity in challenging conditions is particularly important
for comprehensive hazard assessment in mountainous regions, where
environmental factors typically confound traditional analysis methods.

Similar resilience is observed in building damage estimation, as shown
in Fig. 4. Several factors can introduce noise in building damage estimation
from satellite-based DPM, including variable building materials and con-
struction types that respond differently to deformation, vegetation coverage
partially obscuring buildings, complex urban geometries creating shadows
and radar reflection artifacts, temporal variations in atmospheric conditions
affecting satellite measurements, and pre-existing structural modifications
unrelated to disaster impacts. Despite these challenges, our spatially-aware
causal Bayesian network successfully extracts coherent building damage
patterns. The distributions of building damage causal parameter λBD shown
in Fig. 4a, e exhibit clear spatial structure with higher values concentrated
along what appear to be developed corridors visible in the satellite imagery.
These patterns follow the distribution of built environments rather than

Fig. 2 | Spatial distribution of causal parameters and DPM signals in a high-
deformation area. aDamage ProxyMap (DPM) showing surface deformation with
brighter areas indicating higher change detection values in the study area with extent
of −66.946°W, 17.958°N to −66.890°W, 18.009°N. b Spatial distribution of λLF,

quantifying the causal relationship strength from liquefaction to DPM signals.
c Spatial distribution of λLS, quantifying the causal relationship strength from
landslides to DPM signals. d Spatial distribution of λBD, quantifying the causal
relationship strength from building damage to DPM signals.
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appearing randomly distributed, suggesting that Spatial-VCBN is able to
capture true building-related signals despite the noise.

The uncertainty maps for building damage (Fig. 4c, h) show particu-
larly low uncertainty values (typically below 0.2) in both developed and
undeveloped areas, with slightly higher uncertainty in transition zones. This
spatial consistency in uncertainty estimates further validates our model’s
robustness. The uncertainty is generally lower for building damage esti-
mation compared to landslide estimation (maximum of 0.2 versus 0.25),
suggesting that building damage signatures may be more distinctly identi-
fiable in the DPM signals. This has important implications for disaster
response prioritization, as resources can be more confidently allocated to
areas with predicted building damage.

The posterior probability maps for building damage presented in
Fig. 4b, f show improved spatial patterns that aremore structured thanwhat
might be inferred from the noisy DPM alone. The larger posterior prob-
abilities appearprimarily in areaswith visible building clusters in the satellite

imagery (Fig. 4d, h), demonstrating that Spatial-VCBN effectively incor-
porates contextual information about the built environment.

The robustness of Spatial-VCBNextends to different earthquake events
and hazard types, as demonstrated in Fig. 5 for liquefaction estimation in the
2021Haiti earthquake. EvenwhenDPMsignals are compromisedbyvarious
confounding factors such as water level fluctuations, coastal erosion pro-
cesses, wave action affecting shoreline appearance, soilmoisture variations in
near-shore environments, and varying sediment compositions that respond
differently to seismic shaking, Spatial-VCBN successfully identifies coherent
liquefaction patterns across different coastal areas. The distributions of
liquefaction causal parameter λLF, which is presented in Fig. 5a, e, show
distinctive spatial patterns with higher values concentrated in areas near
coastlines where geological conditions favor liquefaction. The consistency of
these patterns across different coastal regions within the same earthquake
event suggests that Spatial-VCBN is able to capture fundamental physical
relationships rather than location-specific anomalies.

Fig. 4 | Building damage estimation in areas with noisy DPM signals following
the 2020 Puerto Rico earthquake. This figure demonstrates the ability of Spatial-
VCBN to detect building damage patterns despite weakDPM signals. Top row (a–e)
and bottom row (f–j) show two different regions. a, f Spatial distribution of λBD,

quantifying the causal relationship strength from building damage to DPM;
b, g Posterior probability of building damage occurrence; c, h Uncertainty of
building damage posterior; d, i DPM showing noisy surface deformation signals;
e, j Google satellite imagery showing developed areas with building structures.

Fig. 3 | Spatial pattern learning in areas with noisy DPM signals following the
2020PuertoRico earthquake.This figure demonstrates the ability of Spatial-VCBN
to detect landslide patterns even in areas with weak or noisy DPM signals. Top row
(a–e) and bottom row (f–j) show two different regions following the 2020 Puerto
Rico earthquake: a, f Spatial distribution of λLS, quantifying the causal relationship

strength from landslides to DPM; b, g Posterior probability of landslide occurrence;
c, hUncertainty of landslide posterior distributions; d, iDamage ProxyMap (DPM)
showing noisy surface deformation signals (0–1); e, j Google satellite imagery
showing the corresponding terrain.
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The uncertainty maps for liquefaction (Fig. 5c, h) exhibit the lowest
overall uncertainty valuesamong the threehazard types (maximumof 0.15),
particularly near shorelines where liquefaction is most likely to occur. This
lower uncertainty for liquefaction estimation likely reflects the stronger
geophysical constraints on where liquefaction can occur, primarily in
saturated, unconsolidated sediments near water bodies. The clear spatial
correlation between low uncertainty and coastal proximity offers valuable
information for risk-aware decision making, as emergency responders can
confidently prioritize resources for coastal communities where liquefaction
risk is both high and certain.

The posterior probability maps for liquefaction, shown in Fig. 5b, f,
exhibit refined spatial patterns that alignwith coastal geomorphology visible
in the satellite imagery (Fig. 5d, h). Higher probabilities appear in low-lying
coastal areas with likely unconsolidated sediments that are typically more
susceptible to liquefaction during seismic events. This correspondence
between model estimations and physical geography further validates the
ability of Spatial-VCBNto capturemeaningful hazardpatterns despite noisy
observations.

Our comprehensive uncertainty quantification extends beyond spatial
visualizations to the performance metrics themselves, as shown in Table 1.
By incorporating standard deviation values alongside mean AUC metrics,
we provide a robust assessment of model reliability. Spatial-VCBN con-
sistently achieves the highest AUC values with relatively small standard
deviations (between ±0.0076 and ±0.0124), demonstrating both superior
performance and reliability. The standard deviations tend to be smaller for
building damage estimation compared to landslide estimation, which aligns
with our spatial uncertainty observations. This performance consistency

across different hazard types and earthquake events, coupled with explicit
uncertainty quantification, enhances the practical utility of our framework
for real-world disaster response applications where decision-makers must
consider both hazard likelihood and estimation confidence.

These qualitative assessments across different hazard types, signal
conditions, and earthquake events demonstrate the robust nature of our
spatially-aware causal framework. In the following section, we provide
quantitative evaluation metrics that further validate these observations.

Figure 5 demonstrates the effectiveness of Spatial-VCBN in detecting
liquefaction patterns across different coastal regions affected by the 2021
Haiti earthquake, even when DPM signals are compromised by various
confounding factors such as water level fluctuations, coastal erosion pro-
cesses, wave action affecting shoreline appearance, soil moisture variations
in near-shore environments, and varying sediment compositions that
respond differently to seismic shaking. Despite these challenges, our
spatially-aware causal Bayesian network successfully identifies coherent
liquefaction patterns across different coastal areas. The distributions of
liquefaction causal parameter λLF, which is presented in Fig. 5a, e, show
distinctive spatial patterns with higher values concentrated in areas near
coastlineswhere geological conditions favor liquefaction. The consistency of
these patterns across different coastal regions within the same earthquake
event suggests that Spatial-VCBN is able to capture fundamental physical
relationships rather than location-specific anomalies. The posterior prob-
ability maps for liquefaction, shown in Fig. 5b, f, exhibit refined spatial
patterns that align with coastal geomorphology visible in the satellite ima-
gery (Fig. 5d, h). Higher probabilities appear in low-lying coastal areas with
likely unconsolidated sediments that are typically more susceptible to

Table 1 | AUC values comparison across earthquake events

Model Landslides Liquefaction Building Damage

HT PR TK HT PR TK HT PR TK

Spatial-VCBN 0.9703 ± 0.0124 0.9527 ± 0.0097 NGA NGA 0.9489 ± 0.0108 NGA 0.9774 ± 0.0085 0.9532 ± 0.0091 0.9674 ± 0.0076

Prior Model41,42,59 0.9228 0.9158 NGA NGA 0.8662 NGA 0.7755 0.7050 0.9051

VBCI12 0.9413 0.9233 NGA NGA 0.9097 NGA 0.9327 0.9145 0.9361

Bilateral filter20 0.9508 0.9413 NGA NGA 0.9201 NGA 0.9406 0.9319 0.9486

ANN43 0.8428 0.8058 NGA NGA 0.7897 NGA – – –

GBM43 0.8819 0.8501 NGA NGA 0.7454 NGA – – –

Ensemble44 – – – – – – 0.8619 0.8703 0.8555

Bold values represent the best performance for each column. Values for Spatial-VCBN are shown as mean ± standard deviation.
LS landslide, LF liquefaction, BD building damage, HT Haiti, PR Puerto Rico, TK Turkey, NGA no ground truth available.

Fig. 5 | Liquefaction estimation in coastal areas of the 2021Haiti earthquake.Top
row (a–e) and bottom row (f–j) show two different coastal areas. a, f Spatial dis-
tribution of λLF, quantifying the causal relationship strength from liquefaction to

DPM; b, g Posterior probability of liquefaction occurrence; c, h Uncertainty of
liquefaction posterior; d, i DPM showing noisy surface deformation signals;
e, j Google satellite imagery showing coastal areas susceptible to liquefaction.
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liquefaction during seismic events. This correspondence between model
estimations and physical geography further validates the ability of Spatial-
VCBN to capture meaningful hazard patterns despite noisy observations.
The ability of Spatial-VCBN to produce consistent, physically plausible
liquefaction assessments in challenging coastal environments, where tra-
ditional DPM analysis would be heavily compromised by noise, demon-
strates its value for comprehensive multi-hazard assessment in diverse
settings.

Cross-event validation and baseline comparison
Our evaluation framework includes a comprehensive array of comparative
methods across multiple hazard types. For our landslide (LS) and lique-
faction (LF) estimation performance, we evaluate against several established
approaches: the ground failuremodels developedby theUSGS41,42, theVBCI
methodology proposed by12, as well as both the Artificial Neural Network
(ANN) andGradient BoostingMachine (GBM) techniques outlined by43. In
assessing building damage (BD) estimation capabilities, we contrast Spatial-
VCBN with conventional building fragility curves, the VBCI framework12,
ensemble methodology44, and the bilateral filtering approach recently
introduced by20. Figure 6 and Tables 1 and 2 demonstrate the superior
performance of our spatially-aware causal Bayesiannetwork acrossmultiple
hazard types and earthquake events. The consistently higher metric values
achieved by Spatial-VCBN validate the effectiveness of Spatial-VCBN in
accurately identifying disaster impacts.

For the 2020 Puerto Rico earthquake, Spatial-VCBN achieves
remarkable improvements in building damage (Fig. 6a), with an AUC of
0.9532 compared to 0.9145 for the VBCI and only 0.7050 for the prior. This
represents a substantial 35.2% improvement over the prior probability
baseline. As shown in Table 1, Spatial-VCBN consistently outperforms six
competitive baselines, including both traditional statistical approaches and
deep learning methods. The F1 score results shown in Table 2 further

validate these findings, with Spatial-VCBN achieving 0.9167 for building
damage in Puerto Rico, compared to the next best performer (Bilateral
filter20) at 0.8945. This performance gain is particularly noteworthy for
building damage, where distinguishing between different damage
mechanisms can be challenging. For landslides (Fig. 6b), Spatial-VCBNalso
outperforms competitors with an AUC of 0.9527, though the margin is
smaller as allmethodsperformrelativelywell on this hazard type. Looking at
Table 1,we observe that the closest competitor for landslide estimation is the
Bilateralfilter approach (0.9413),which still falls short of the performanceof
ourmethod by 1.2%. The consistency betweenAUC and F1metrics (0.9173
for Spatial-VCBN versus 0.9031 for Bilateral filter) indicates that our per-
formance improvements are robust across different evaluation criteria.
Liquefaction estimation (Fig. 6c) shows intermediate improvements, with
Spatial-VCBN achieving an AUC of 0.9489, representing a 9.5% improve-
ment over the prior (0.8662). Table 2 shows a similar pattern for F1 scores,
with Spatial-VCBN achieving 0.9107 compared to 0.8815 for Bilateral filter
and 0.8714 for VBCI, highlighting the balanced performance of Spatial-
VCBN in both estimation accuracy and false alarm reduction.

The cross-event evaluation further substantiates the robustness of
Spatial-VCBN. For the 2023 Turkey-Syria earthquake (Fig. 6d), Spatial-
VCBN achieves an impressive AUC of 0.9874 for building damage, sig-
nificantly outperforming the prior (0.9051) with improvement of 9.1%.
Tables 1 and 2 reveal that this superiority is maintained acrossmetrics, with
our F1 score of 0.9412 substantially outperforming all alternatives including
the Bilateral filter (0.9089). Notably, Spatial-VCBN demonstrates particu-
larly strong improvements over learning-based methods such as the
Ensemble approach, which achieves only F1 score of 0.8213 for the Turkey-
Syria earthquake, highlighting the advantage of our causal framework over
pure statistical learning approaches. Similar improvements are observed for
the 2021 Haiti earthquake, with Spatial-VCBN achieving AUCs of 0.9703
for landslide (Fig. 6e) and 0.9774 for building damage (Fig. 6f), representing

Fig. 6 | ROC (Receiver Operating Characteristic) curves and AUC (Area Under
the Curve) values comparing the performance of Spatial-VCBN against baselines
for different hazard types across three recent earthquakes. a–c Building damage,
Landslide, and Liquefaction ROC curves of the 2020 Puerto Rico earthquake.

d Building damage for 2023 Turkey-Syria earthquake, e, f Building damage and
Landslide ROC curves of the 2021 Haiti earthquake. Each plot compares three
approaches: prior probability41,42 (blue dotted line), posterior from VBCI baseline12

(red dashed line), and posterior from Spatial-VCBN (solid yellow line).
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improvements of 26.0% over the prior (0.7755) for building damage, and
5.15% over the prior (0.9228) for landslide. Table 1 shows that even com-
pared to the stronger Bilateral filter approach, Spatial-VCBN maintains
advantages of 2.0% and 3.9% for landslide and building damage estimation,
respectively.

A comprehensive examination of Tables 1 and 2 reveals several
additional insights not immediately apparent from the ROC curves alone.
First, the performance gap between Spatial-VCBN and alternatives is con-
sistently larger for building damage than for landslide estimation across all
earthquake events, suggesting that our spatial-causal modeling approach
particularly excels at capturing the complex mechanisms underlying
building vulnerability. Second, machine learning methods like ANN and
GBM show substantially worse performance than causal modeling
approaches across all metrics, with AUC differences of up to 0.1475
(comparing Spatial-VCBN toANN for landslide estimation in Puerto Rico)
and F1 score differences of up to 0.2041 (comparing Spatial-VCBN toGBM
for liquefaction estimation inPuertoRico). This highlights the limitations of
purely data-driven approaches when physical causal mechanisms are not
explicitly modeled.

These results highlight three key strengths of Spatial-VCBN. First,
Spatial-VCBN demonstrates consistent performance advantages across
different hazard types, with particularly notable improvements for building
damage estimation where distinguishing between different damage
mechanisms is especially challenging. Second, Spatial-VCBN shows strong
transferability across different earthquake events in diverse geographical
settings, maintaining its performance edge in the Puerto Rico, Haiti, and
Turkey-Syria earthquakes despite their varying geological contexts and built
environment characteristics. Third, Spatial-VCBN achieves robust perfor-
mance improvements particularly at low FPRs, which is crucial for practical
deployment in disaster response scenarios where false alarms can waste
limited resources and undermine confidence in automated hazard assess-
ments. The consistent outperformance acrossmultiple events, hazard types,
and evaluationmetrics demonstrates thatmodeling spatially-varying causal
relationships through combined Gaussian Processes and normalizing flows
provides a powerful framework for disaster impact assessment that gen-
eralizes well across different scenarios. This performance advantage is from
the ability of Spatial-VCBN to capture both the spatial correlation structure
inherent in disaster impacts and the complex, non-Gaussiandistributions of
causal effects that characterize real-world hazard-damage relationships. By
learning location-specific causal parameters rather than assuming uniform
relationships across the study area, Spatial-VCBN can adapt to the unique
geological, structural, and environmental factors that influence how dif-
ferent hazards manifest in different locations.

Ablation study and model robustness
Computational efficiency analysis. Table 3 provides insights into the
computational requirements of our framework across three earthquake
events with varying affected areas.We implement a pruning strategy that
maintains efficiency by focusing computational resources on active nodes

while eliminating inactive ones from the processing pipeline. For the
Haiti earthquake with the largest affected area (15,970 km2), Spatial-
VCBN required 15,029 s (~4.2 h), while the smaller Puerto Rico earth-
quake area (1305 km2) was processed in just 1198 s (~20 min). This near-
linear scaling (with a processing rate of ~0.94 s/km2) indicates that our
frameworkmaintains computational efficiency as the geographical scope
increases.

The consistency in processing time per unit area across different
earthquake events suggests that the computational demands of Spatial-
VCBN are primarily determined by the spatial extent rather than being
affected by the complexity or specific characteristics of different regions.
This predictable scaling behavior is particularly valuable for emergency
response scenarios where estimation of required computational resources is
crucial for timely deployment. Our implementation leverages GPU accel-
eration, equipped with an NVIDIA Tesla T4 GPU (15GB VRAM) and 51
GB of RAM, enabling rapid parallel processing of spatial data. The results
indicate that even for large-scale events like the Turkey-Syria earthquake
(4676 km2), analysis can be completed within reasonable timeframes
(~1.3 h), making our approach practical for operational use in disaster
response.

Hyperparameter sensitivity. Table 4 presents a systematic evaluation of
the sensitivity of Spatial-VCBN to the flow number K in the normalizing
flow component, which directly affects the expressiveness of the spatially-
varying causal parameter distributions. The results reveal several
important patterns across different earthquake events and hazard types.
For all hazard types and earthquake events, performance improves
substantially as K increases from 2 to 6, with the significant improve-
ments observed in the early stages. For example, in the Haiti earthquake
building damage estimation, AUC increases from 0.8915 with
K = 2–0.9774 withK = 6, an improvement of 9.6%. This pattern indicates
that the spatial distribution of causal parameters in disaster scenarios
exhibits complexity that cannot be adequately captured by simpler flow
architectures.

Notably, we observe that K = 6 represents an optimal balance point
across all hazards and events, achieving thehighestAUCvalues for landslide
estimation inHaiti (0.9703), building damage inHaiti (0.9774), landslide in
Puerto Rico (0.9527), liquefaction in Puerto Rico (0.9489), building damage
in Puerto Rico (0.9532), and building damage in Turkey-Syria (0.9874).
Beyond K = 6, we observe a slight performance degradation, with AUC

Table 2 | F1 score comparison across earthquake events

Model Landslides Liquefaction Building Damage

HT PR TK HT PR TK HT PR TK

Spatial-VCBN 0.9297 0.9173 NGA NGA 0.9107 NGA 0.9325 0.9167 0.9412

Prior Model 0.8845 0.8797 NGA NGA 0.8301 NGA 0.7423 0.6756 0.8678

VBCI 0.9015 0.8864 NGA NGA 0.8714 NGA 0.8947 0.8778 0.8973

Bilateral filter 0.9102 0.9031 NGA NGA 0.8815 NGA 0.9023 0.8945 0.9089

ANN 0.8102 0.7732 NGA NGA 0.7582 NGA – – –

GBM 0.8465 0.8160 NGA NGA 0.7149 NGA – – –

Ensemble – – – – – – 0.8274 0.8356 0.8213

Bold values represent the best performance for each column.
LS landslide, LF liquefaction, BD building damage, HT Haiti, PR Puerto Rico, TK Turkey, NGA no ground truth available.

Table 3 | This table shows the time cost of running our
framework using the same batch size in three earthquake
events using real-world data

Method Haiti EQ. Puerto Rico EQ. Turkey-Syria EQ.

Map size 15,970 km2 1305 km2 4676 km2

Time(s) 15,029 1198 4543
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decreasing marginally for K = 7 and K = 9. This pattern suggests a form of
overfitting when the flow becomes too expressive relative to the available
constraints.

The impact of K varies across different hazard types, with building
damage showing the highest sensitivity to flow complexity. For the Puerto
Rico earthquake, increasing K from 2 to 6 improves building damage AUC
by0.0818, compared to improvements of 0.0514 for landslide and0.0593 for
liquefaction. This difference likely reflects the more complex causal
mechanisms involved in building damage, which depends on both the
primary hazards and structural characteristics. Cross-event comparison
reveals consistent patterns in hyperparameter sensitivity, with all three
earthquake events showing similar optimal flow complexity despite their
geographical and geological differences. This consistency suggests that
Spatial-VCBN architecture captures fundamental aspects of the spatially-
varying causal relationships in disaster scenarios rather than simply fitting
to dataset-specific patterns.

Normalizing flow architecture evaluation. To justify our choice of
planar flows in the Spatial-VCBN framework, we conducted a com-
parative analysis of several normalizing flow architectures, evaluating
their performance, computational efficiency, andmemory requirements.
Table5 presents the results of this comparison across five different flow
architectures: Planar Flows (our implemented approach), RealNVP,
Masked Autoregressive Flows (MAF), Radial Flows, and Inverse Auto-
regressive Flows (IAF).

While more complex architectures such as MAF demonstrate slightly
higher performance with AUC improvements of 0.0016 (0.17%) for Haiti
landslide detection and 0.0024 (0.25%) for Puerto Rico building damage
detection, these marginal gains come at substantial computational costs.
MAF requires 4.7× the memory of planar flows and 3.2× longer running
time. Similarly, RealNVP and IAF show modest performance improve-
ments (less than 0.2% AUC increase) while requiring significantly more
computational resources. For our spatially-aware causal modeling

framework, which often needs to process large geographical regions, com-
putational efficiency is a critical consideration. The landslide detection area
for the Haiti earthquake alone covers ~15,970 km2, making efficient pro-
cessing essential for practical deployment in time-sensitive disaster response
scenarios. Planar flows provide an optimal balance between model
expressiveness and computational efficiency, enabling our framework to
handle large-scale disaster events while maintaining high accuracy
(AUC ≥ 0.95 across all test cases). Radial flows, despite their comparable
computational efficiency to planar flows, demonstrated slightly lower per-
formance in our experiments. This suggests that the specific transformation
properties of planar flow, which are well-suited for capturing the spatial
causal relationships in earthquake-induced hazard scenarios. Based on this
analysis, we selected planar flows for our final implementation, prioritizing
practical application while maintaining performance for multi-hazard
estimation.

Discussion
The development of a spatially-aware causal Bayesian network with nor-
malizing flows represents a significant advancement in multi-hazard dis-
aster impact assessment. Our results demonstrate that this approach not
only improves estimation accuracy across multiple hazards and impacts
induced by different earthquake events, with AUC improvements of up to
35.2% over prior probability baselines and 5.5% over state-of-the-art VBCI
methods. Additionally, it provides interpretable insights into the complex
causal mechanisms underlying disaster impacts. In this discussion, we
contextualize our findings within the broader disaster science literature and
examine their implications for both theoretical understanding and practical
applications.

Traditional approaches to hazard assessment often rely on either
purely data-driven methods that lack causal interpretability or physical
models that struggle to incorporate the complex spatial heterogeneity of
real-world disaster contexts. Our framework bridges this gap by explicitly
modeling spatially-varying causal relationships through a combination of
Gaussian Processes and normalizing flows. This innovation allows us to
capture both the spatial correlation structure inherent in disaster impacts
and the non-Gaussian, potentiallymultimodal distributions of causal effects
that characterize real-world hazard-damage relationships.

The spatial patterns observed in our causal parameters (γLS, γLF, λLS,
λLF, and λBD) highlight the fundamental importance of accounting for
spatial heterogeneity in disaster modeling. For instance, in the Puerto Rico
earthquake (Fig. 1), the clear differentiation between landslide-dominated
hillsides and liquefaction-dominated lowlands demonstrates how terrain
characteristics fundamentally alter causal mechanisms. This spatial varia-
bility, alongwith the distinct patterns of buildingdamage influence, suggests
that assuming spatial homogeneity in causal relationships, as many existing
models do, may lead to substantial inaccuracies in hazard assessment. The
optimal flow number of K = 6 identified in our ablation study (Table 4)
suggests that real-world causal relationships in disaster contexts exhibit
complexity that cannot be adequately captured by simpler distributional

Table 5 | Comparison of normalizing flow architectures

Flow
Architecture

Expressiveness Memory AUC
(Haiti
LS)

AUC
(PR
BD)

Running
Time

Planar Flows
(Current)

Moderate 1.0× 0.9703 0.9532 1.0×

RealNVP High 2.8× 0.9712 0.9547 1.8×

MAF Very High 4.7× 0.9719 0.9556 3.2×

Radial Flows Moderate 1.2× 0.9681 0.9511 1.1×

IAF High 3.2× 0.9714 0.9550 2.5×

Memory and Running Time values are reported relative to Planar Flows (1×). All architectures were
evaluatedusing the samedataset andhardware configuration. AUCvalues represent area under the
ROC curve for landslide detection in Haiti (LS) and building damage detection in Puerto Rico (BD).

Table 4 | Ablation study on flow number K in normalizing flows

Haiti EQ. Puerto Rico EQ. Turkey-Syria EQ.

K AUCLS AUCLF AUCBD AUCLS AUCLF AUCBD AUCLS AUCLF AUCBD

K = 2 0.9239 NGA 0.8915 0.9013 0.8896 0.8714 NGA NGA 0.9089

K = 3 0.9425 NGA 0.9178 0.9187 0.9057 0.8982 NGA NGA 0.9302

K = 4 0.9568 NGA 0.9452 0.9311 0.9257 0.9214 NGA NGA 0.9587

K = 5 0.9638 NGA 0.9641 0.9478 0.9375 0.9422 NGA NGA 0.9755

K = 6 0.9703 NGA 0.9774 0.9527 0.9489 0.9532 NGA NGA 0.9874

K = 7 0.9701 NGA 0.9772 0.9525 0.9486 0.9530 NGA NGA 0.9871

K = 9 0.9695 NGA 0.9767 0.9522 0.9481 0.9527 NGA NGA 0.9869

NGA means no ground truth available. Bold values represent the best performance.
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assumptions, underscoring the importance of our methodological
innovation.

Remote sensing plays a crucial role in disaster response, but the
interpretation of complex signals likeDPMremains challenging. The ability
of Spatial-VCBN to decouple multiple contributing factors to DPM signals
addresses a significant gap in existing approaches.Asdemonstrated inFig. 2,
our framework can identify distinct causal pathways from different hazard
types to observed DPM signals within the same geographic region, pro-
viding critical insights that would be lost in approaches that treat DPM as a
uniform indicator of damage. The results demonstrating robust causal
parameter extraction even in signal-constrained environments (Figs.
3 and 4) highlight the potential of causal modeling to enhance the utility of
remote sensing data in challenging conditions. For example, in mountai-
nous regions where snow cover and complex topography introduce noise
into DPM measurements, Spatial-VCBN successfully extracts coherent
landslide susceptibility patterns that align with terrain characteristics visible
in satellite imagery. The consistent performance across different hazard
types and earthquake events suggests that our approach captures funda-
mental physical relationships rather than only fitting to dataset-specific
patterns. This is particularly notable given the diverse geological and built
environment contexts represented in our study areas (Puerto Rico, Haiti,
and Turkey-Syria), as evidenced by the comparable AUC values achieved
across these events (Table 1). The transferability of Spatial-VCBN suggests
that the spatially-varying causal relationships we identify reflect genuine
physical processes that generalize across different disaster scenarios.

The practical implications of our work extend beyond theoretical
advancements to offer tangible benefits for disaster risk reduction and
emergency response. Particularly noteworthy is the strong performance of
Spatial-VCBN at low FPR, as shown in the ROC curves (Fig. 6). In practical
disaster response, false alarms can waste limited resources and undermine
stakeholder confidence in automated assessment systems. The ability of our
approach to maintain high detection rates while minimizing false positives
addresses this crucial operational concern. The reasonable computational
requirements demonstrated in our efficiency analysis (Table 3), with pro-
cessing times of ~0.94 s/km2 with GPU acceleration, suggest that our
approach is viable for operational deployment, even for large-scale events.
Thenear-linear scalingwith geographical areaprovidespredictable resource
requirements for emergency management agencies planning post-disaster
assessments. For example, our results indicate that even a large-scale event
like the Haiti earthquake (15,970 km2) can be analyzed in ~4.2 h using
modest computational resources. Beyond immediate response applications,
our spatially-explicit causal framework offers valuable insights for long-
term disaster risk reduction planning. The identification of areas where
specific hazard mechanisms dominate could inform targeted mitigation
strategies. For example, authorities might prioritize slope stabilization in
regions with high γLS values or focus on liquefaction-resistant foundation
designs in areas with elevated γLF parameters.

While we focused on seismic events in this study, the fundamental
design of Spatial-VCBNmakes it readily adaptable to non-seismic hazards
and multi-hazard scenarios. The causal Bayesian network architecture is
inherently flexible and can be reconfigured to model alternative causal
chains, such as those involved in rainfall-induced landslides, flooding, or
hurricane impacts. For instance, in modeling rainfall-triggered landslides,
precipitation intensity could replace seismic shaking as the primary trig-
gering node, while retaining similar geophysical feature nodes. The key
requirement for applying our framework to other hazard types is the
availability of (1) relevant remotely sensed coherence change products
similar to DPMs, (2) geospatial features that influence the hazard
mechanisms, and (3) a conceptual understanding of the causal relationships
between triggers, environmental conditions, and resulting impacts. Our
spatially-varying approach using Gaussian Processes with normalizing
flows would be particularly valuable for modeling non-seismic hazards like
hurricanes or floods, where impacts often show strong spatial heterogeneity
based on topography, infrastructure quality, and socioeconomic factors.
Extending Spatial-VCBN to these scenarios would primarily require

adapting the causal graph structure and incorporating hazard-specific
geospatial features, while the core inference methodology would remain
applicable.

The spatially-varying causal parameters identified by our framework
could serve as valuable calibration or validation data for detailed physical
simulations, potentially improving their spatial accuracy. Conversely,
insights from physical models could inform prior distributions in our
Bayesian framework, creating a virtuous cycle of model improvement. This
integration of data-driven causal inference with physical understanding
represents a promising direction for advancing multi-hazard assessment
methodologies. The ability of Spatial-VCBN to identifymeaningful patterns
even in areas with weak or noisy DPM signals suggests that it could extend
the utility of physics-based models to regions where observational data is
limited or compromised by environmental factors. This is particularly
relevant for global-scale hazard assessment, where data quality varies sub-
stantially across different regions.

While our approach complements rather than replaces physics-based
hazard models, the identified spatially-varying causal parameters could
serve as valuable calibration data for physical simulations. Conversely,
insights from physical models could inform prior distributions in our
Bayesian framework. Despite promising results, limitations remain. Future
work should validate our approach across a broader range of disaster types
and incorporate temporal dynamics of hazard evolution.

In conclusion, our spatially-aware causal Bayesian network advances
disaster impact assessment through its ability to capture spatially hetero-
geneous causal relationships, maintain robust performance under varying
signal conditions, and provide interpretable insights into complex disaster
mechanisms. The framework addresses critical limitations in existing
approaches that either lack causal interpretability43,44 or struggle with spatial
heterogeneity3,12. Our integration of Gaussian Processes with normalizing
flows builds upon advances in spatially-varying coefficient models45 while
extending their applicability to non-Gaussian posterior distributions. The
performance improvements demonstrated acrossmultiple hazard types and
earthquake events, particularly the substantial gains in building damage
assessment, validate the practical utility of our approach for disaster
response operations.

Methods
Prior geospatial models
Earthquake shaking intensity serves as the fundamental catalyst for struc-
tural damage and geohazards like landslides and liquefaction. We incor-
porate this critical factor through USGS ShakeMap data, which provides
comprehensive shaking metrics. The composite ShakeMap effectively
captures maximum ground motion intensities, enabling more accurate
assessments of structural and geologic impacts, which is an invaluable
resource for post-earthquake forensic analysis.

Beyond basic shaking information, USGS expanded their rapid post-
earthquake information products in 2018 to include ground-failure
estimations46. These specialized models predict the likelihood and dis-
tribution of earthquake-triggered landslides and liquefaction30. The mod-
eling framework integratesmultiple environmental factors including terrain
slope, geological susceptibility, and soil characteristics to generate prob-
abilitymaps41,42. An illustrative example appears inFig. 7, showing theUSGS
ground failure projections following the 2023 Turkey-Syria earthquake.
Within our Bayesian network architecture (Fig. 9), these established USGS
ground failure products are incorporated as prior probability distributions
for landslide and liquefaction occurrence, represented by nodes αLS and αLF
respectively.

InSAR data and damage proxy maps
For our analysis, we utilized DPMs, which are specialized remote sensing
products derived from InSAR data. DPMs identify ground surface changes
by analyzing coherence differences between radar signals captured before
and after seismic events9. These maps were generated by NASA’s ARIA
team following three major earthquakes: the 2020 Puerto Rico earthquake
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(M6.4), the 2021 Haiti earthquake (M7.2), and the 2023 Turkey-Syria
earthquake sequence (M7.8).

This InSAR product works by measuring changes in radar coherence,
which represents the consistency of radar reflections from Earth’s surface
between two time periods. Earthquake-induced changes to the surface
disrupt this coherence, allowing detection of surface deformation. The
resulting DPMs, shown in Fig. 8, represent these coherence changes where
brighter pixels indicate greater surface disruption potentially caused by
landslides, liquefaction, or building damage.While DPMs provide valuable
high-resolution (30-m pixel) observations, they present interpretation
challenges as they cannot inherently distinguish between different hazard
types and contain environmental noise. In this work, the Spatial-VCBN
framework addresses these limitations.

Our study regions include (a) from −74.771°W to −72.581°W, from
18.118°N to 18.719°N for the 2021 Haiti earthquake (Fig. 8a); (b) from
−67.022°W to−66.570°W, from 17.908°N to 18.153°N for the 2020 Puerto
Rico earthquake (Fig. 8b); (c) from 36.681°E to 37.467°E, from 37.075°N to
37.676°N for the 2023 Turkey-Syria earthquake sequence (Fig. 8a).

Geophysical features
We incorporate seven geophysical features in Spatial-VCBN: (1) Vs30, (2)
Slope fromDEM, (3) Land Cover, (4)DEM (Elevation), (5)CTI (Compound
Topographic Index), and (6)Water BodyDistance, and (7) Lithology. Below,
we provide a brief rationale for including each feature.
• Vs30 (Shear-WaveVelocity over30m):Vs30 iswidely recognizedas a

key parameter for characterizing local site conditions and capturing

Fig. 7 | Ground Failure Probability Maps Generated by the USGS.After the 2023 Turkey-Syria earthquake sequence, the USGS produced example ground failure models
for liquefaction (shown in panel b) and landslide (shown in panel a)60. The probability of ground failure models is what the legend colors represent.

Fig. 8 | Damage proxymaps (DPM) generated by the ARIA team followingmajor
earthquakes. a 2021 Haiti earthquake (M7.2) with red boxes highlighting areas of
significant surface deformation; b 2020 Puerto Rico earthquake (M6.4) with red
boxes indicating concentrated damage zones; c 2023 Turkey-Syria earthquake

sequence (M7.8). Brighter areas in all maps indicate greater surface deformation
detected by InSAR. The geographical extents of these DPMs define our study
regions.
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near-surface amplification effects in seismic hazard assessments.
Higher Vs30 values generally correspond to stiffer soils or rocks,
reducing the likelihood of significant ground amplification47,48.

• Slope from DEM: Slope, derived from a Digital Elevation Model
(DEM), is crucial in identifying areas susceptible to landslides and
other mass-movement hazards triggered by seismic activity. Regions
with steep slopes tend to experience higher landslide hazard
potential49,50.

• Land Cover: Land cover information helps discern the presence of
vegetation, urban infrastructure, or water bodies. Different land cover
classes (e.g., dense vegetation vs. built-up areas) can significantly
influence ground response and post-earthquake soil stability51.

• DEM (Elevation): The base elevation data fromDEM are essential for
capturing broader topographic variations. Elevation can affect not only
slope angle but also local climate, drainage patterns, and material
properties, all of which have implications for earthquake-induced
geophysical hazards52.

• CTI (Compound Topographic Index):CTI, sometimes referred to as
the Topographic Wetness Index, quantifies the potential for water
accumulation in the terrain.HighCTI values often indicate persistently
wetter soils, influencing both liquefaction susceptibility and potential
post-seismic runoff or slope failure53.

• WaterBodyDistance:Proximity to theWater Body plays a significant
role in liquefaction evaluations because saturated coastal regions and
near-shore sediments are more prone to ground failure under strong
seismic shaking41,54.

• Lithology: Lithology plays a crucial role in assessing earthquake-
related hazards as it directly influences seismic wave propagation,
amplification, and ground shaking intensity. Different rock types
exhibit varying mechanical properties such as stiffness, strength, and
porosity, which affect the degree of energy dissipation and resonance
during an earthquake. Additionally, lithological features control the
susceptibility of slopes to landslides and liquefaction in earthquake-
prone areas. Understanding lithology is therefore essential for accurate
hazard zoning and designing resilient infrastructure in seismically
active regions42,55.

These geophysical features collectively represent critical factors gov-
erning seismic hazard distributions, spanning soil stiffness, topography,
hydrology, and land use. By explicitly modeling their spatial variations and
interactions, we aim to more accurately capture the localized nature of
seismic impacts across heterogeneous terrains.

Causal modeling for disaster impacts
Disasters propagate through complex chains of causation, where initial
events trigger cascading hazards that ultimately result in observable impacts.
To accurately model these processes, we develop a spatially-aware causal
Bayesian network that captures both the structural relationships between
variables and the spatial heterogeneity of these relationships. Figure 9 pre-
sents our causal Bayesian network architecture, which consists of three key
component types: (1) observable variables (represented as orange rectangles)
including geospatial features (GF) and DPMs; (2) latent hazard/impact
variables (shown as blue circles) representing unobserved landslides (LS),
liquefaction (LF), andbuildingdamage (BD); and (3) spatially-varying causal
coefficients that quantify the strength of causal relationships at each location.

For each location l in our study area, we define the leaf node yl as the
damage proxymap observation. Its relationshipwith parent nodes follows a
log-linear model:
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where xlk represents the hidden hazard/damage variables, λlPðylÞ denotes the
spatially-varying causal coefficients that quantify the causal relationship
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Modeling spatially heterogeneous causal effects using normal-
izing flows with Gaussian process
A key innovation in Spatial-VCBN is the modeling of spatially-varying
causal coefficients λl and γl usingNormalizing FlowswithGaussian Process.
This combination allows us to capture both the spatial correlation structure
inherent in these coefficients while accommodating potentially complex,
non-Gaussian posterior distributions. The following sections detail our
methodology for posterior inference in this model and demonstrate its
effectiveness for multi-hazard impact estimation.

To capture the complex spatial variation in causal coefficients vl 2
fλla; γlbg where a∈ {LS, LF, BD} and b∈ {αLS, αLF, LS, LF}, we propose a
novel approach that combines Gaussian Processes (GPs) with normalizing
flows. This approach effectively captures both the spatial correlation
structure and the complex, potentially non-Gaussian distributions of causal
effects.

We introduce latent spatial variables zlv which serve as the building
blocks for our spatially varying causal coefficients. These latent variables
represent underlying spatial patterns that, after transformation, will yield
the causal parameters used in Spatial-VCBN. By working with these latent
variables rather than directly modeling the coefficients, we gain mathema-
tical tractability while maintaining expressiveness.

We model these latent variables zlv across different locations using a
Gaussian Process prior, which naturally captures correlations between
locations with similar geophysical characteristics:

zv � GPðmvðGFÞ; kvðGF;GF0ÞÞ ð3Þ

where zv ¼ ½z1v ; z2v ; . . . ; zLv � is the vector of latent variables across all loca-
tions,mv(GF) is themean function that depends on the geophysical features
GF at all locations, and kvðGF;GF0Þ is the kernel function that defines the
covariance structure between different geophysical features. We use a
Maternkernel,which is awidelyused covariance function in spatial statistics
whose smoothness parameter ν directly controls the mean-square
differentiability of the process56–58, with ν = 3/2:

kvðGFi;GFjÞ ¼ σ2v
21�ν

ΓðνÞ
ffiffiffiffiffi
2ν

p jjGFi � GFjjj
‘v

� �ν

Kν

ffiffiffiffiffi
2ν

p jjGFi � GFjjj
‘v

� �
ð4Þ

where σ2v controls the variance, ℓv is the length scale parameter, Kν is the
modified Bessel function, and GFi, GFj represent the geophysical feature
vectors at locations i and j. This formulation ensures that locations with
similar geophysical features will have similar coefficients, which better
captures the underlying physical relationships in Spatial-VCBN.

To allow for complexnon-Gaussian distributions of causal coefficients,
we transform the GP latent variables through a series of invertible nor-
malizing flow transformations:

vl ¼ f Kv
� � � � � f 2 � f 1ðzlvÞ ð5Þ
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where f 1; . . . ; f Kv
are invertible transformations and Kv is the number of

flow layers. This combination allows us to model both spatial correlation
(through the GP) and distributional complexity (through the normal-
izing flow).

For inference, we approximate the true posterior of the GP latent
variables with a multivariate Gaussian variational distribution:

qðzvÞ ¼ N ðμv;ΣvÞ ð6Þ

where μv represents the posterior mean vector and Σv the posterior covar-
iance matrix across all locations. For computational efficiency, we para-
meterize Σv as a low-rank plus diagonal structure:

Σv ¼ LvðLvÞT þ diagðδvÞ ð7Þ

where Lv is a lower-triangular matrix of rank r≪ n (with n being the
number of spatial locations), and δv is a vector of positive diagonal elements.

To enable efficient gradient computation during optimization, we
employ the reparameterization trick:

zv ¼ μv þ Lvϵ1 þ diagð
ffiffiffiffiffi
δv

p
Þϵ2; ϵ1 � N ð0; IrÞ; ϵ2 � N ð0; InÞ ð8Þ

This allows us to sample from q(zv) while maintaining differentiability with
respect to the variational parameters μv, Lv, and δv.

When transforming the GP latent variables through the normalizing
flow,we apply the change of variables formula to compute the density of the
transformed variables:

log qðvljGFÞ ¼ log qðzlvÞ �
XKv

k¼1

log∣ det
∂f k

∂ zlv;k�1

 !
∣ ð9Þ

where zlv;k�1 represents the output of the (k− 1)-th transformation,
with zlv;0 ¼ zlv .

Computing expectations under the transformed distribution is done
via Monte Carlo sampling:

EqðvlÞ½hðvlÞ� ¼ EqðzlvÞ½hðf Kv
� � � � � f 2 � f 1ðzlvÞÞ�

� 1
M

PM
m¼1

hðf Kv
� � � � � f 2 � f 1ðzl;ðmÞ

v ÞÞ
ð10Þ

where zl;ðmÞ
v are samples drawn from qðzlvÞ using the reparameterization in

Equation (8), andM is the number of Monte Carlo samples.

Fig. 9 |Overviewof our causal Bayesian inference framework for seismicmulti-hazard and impacts estimation. l in thefigure refers to the lth location in a target area. Blue
circles refer to latent hazard/impact variables. Green cirles refer to the spatial-varying causal coefficients. Orange rectangles refer to the observations or known information.
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In our implementation, we utilize planar flows of the form:

f kðzl; uk; ck; bkÞ ¼ zl þ ukhðcTk zl þ bkÞ ð11Þ

where h is a tanh activation function with derivative h0ð�Þ, and uk, ck, bk are
learnable parameters of the k-th flow. The log-determinant of the Jacobian
for this transformation is:

log∣ det
df k

d zlk�1

 !
∣ ¼ log j1þ uTk ψðzlk�1Þj ð12Þ

where ψðzÞ ¼ ck � h0ðcTk z þ bkÞ.
We parameterize the mean function mv(GF) as a function of the

geophysical features:

mvðGFlÞ ¼ NNvðGFlÞ ð13Þ

whereNNv is a neural network thatmaps geophysical features at location i to
the mean of the corresponding GP latent variable zlv .

This GP-Normalizing Flow approach provides several advantages for
modeling spatially heterogeneous causal effects: (1) it naturally captures
spatial correlation through the GP prior, (2) it allows for complex, non-
Gaussian distributions through the normalizing flow transformation, and
(3) it provides a principled way to incorporate uncertainty in the causal
parameter estimates.

Stochastic variational inference with spatial-variant causal
parameters
The ultimate goal is to jointly infer the true posteriors of multiple unob-
served target variables xi∈X, which represents the target hazards and
impacts with unknown parameters of causal dependencies, and the
unknown spatial-varying causal parameters λla;where a 2 fLS; LF;BDg,
and γlb;where b 2 fαLS; αLF ; LS; LFg, across different locations that quan-
tify the causal dependencies among parent nodes and child nodes. There-
fore, we use variational inference to approximate the true posteriors of Xl

using q(Xl) by optimizing the variational lower bound. Since the variable Xl

is binary, we can further factorize q(Xl) over hidden (unobserved) nodes by:

qðXlÞ ¼
Y

i2fLS;LF;BDg
qðxliÞ ¼

Y
i2fLS;LF;BDg

ðqliÞ
xli ð1� qliÞ

1�xli ð14Þ

where qli is defined to approximate the posterior probability that node i is
active in location l.

We derive the lower bound of the marginal log-likelihood of the
observed Y by Jensen’s inequality as follows:

log PðY;GFÞ ¼ EqðXl ;ϵl ;zlÞ½log pðyl;GF;Xl; zlÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½1�

�EqðXl ;ϵl ;zlÞ½log qðXl; ϵl; zlÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½2�

ð15Þ

Here zl represents the latent Gaussian Process variables, which are trans-
formed through a normalizing flow to produce the spatially-varying
parameters λl and γl shown in Equation (5).

The item [1] is further expanded as:

EqðXl ;ϵl ;zlÞ½log pðyl;GF;Xl; zlÞ� ¼ E½log pðyljxlPðyÞ; fKλ
� � � � � f2 � f1ðzlλÞ; ϵly;GFÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

½3�

þ
X

i2fLS;LF;BDg
E½log pðxlijfKγ

� � � � � f2 � f1ðzlγPðxliÞÞ;Pðx
lÞ; ϵli;GFÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

½4�

þE½log pðzlλjGFÞ�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
½5�

þE½log pðzlγjGFÞ�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
½6�

þ
X

i2fLS;LF;BDg
E½log pðϵliÞ� þE½log pðϵlyÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C1

ð16Þ

Where pðzlλjGFÞ and pðzlγjGFÞ are Gaussian Process priors shown in
Equation (3). As for item [2], we have:

EqðXl ;ϵl ;zlÞ½log qðXl; ϵl; zlÞ� ¼
X
i

EðxliÞ log qli þ
X
i

Eð1� xliÞ log ð1� qliÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
½7�

þE½log qðzlλÞ�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
½8�

þE½log qðzlγÞ�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
½9�

þ
X
i

E½log qðϵliÞ� þE½log qðϵlyÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
C2

ð17Þ

whereC1 andC2 cancel out. qðzlλÞ and qðzlγÞ areGaussian Process posteriors
presented in Equation (6).

For terms [5], [6], [8], and [9] involving theGaussianProcess, we apply
the KL divergence formula for multivariate Gaussians:

½5� � ½8� ¼ �KL½qðzlλÞjjpðzlλjGFÞ�
¼ � 1

2
trðK�1

λ ΣλÞ þ ðμλ �mλÞTK�1
λ ðμλ �mλÞ þ log jKλj � log jΣλj � nλ

� � ð18Þ

½6� � ½9� ¼ �KL½qðzlγÞjjpðzlγjGFÞ�

¼ � 1
2

trðK�1
γ ΣγÞ þ ðμγ �mγÞTK�1

γ ðμγ �mγÞ þ log jKγj � log jΣγj � nγ
h i ð19Þ

whereK represents the prior covariancematrices derived from theMatern
kernel over geophysical features, Σ denotes the variational posterior cov-
ariance matrices, μ and m are the posterior and prior mean vectors
respectively, and n is the dimensionality of the corresponding latent
variable vectors. These equations quantify the divergence between our
variational approximation and the true GP prior distributions for both λ
and γ coefficients.

Based on our conditional distribution assumptions for
yljPðylÞ; ϵly; λlPðylÞ as defined in Equation (1), we can calculate item [3] in
Equation (16) as:

E½log pðyljPðylÞ; ϵly; λlPðylÞÞ� ¼ � log yl � log jwϵy
j �

ðlog ylÞ þ w2
0y þ

P
k2Pðyl ÞE½ðλlkÞ

2�qlk � 2 log yl � w0y

2w2
ϵy

�
P

j≠kEðλlkÞ �EðλljÞ � qlk � qlj þ ðw0y � log ylÞ Pk2PðylÞEðλlkÞ � qlk
� 	

w2
ϵy

ð20Þ
As for item[4] in Equation (16), we consider two scenarios—when xi is

a leaf node and a non-leaf node. First we can describe the conditional
distribution of LS, LF, and BD as follows:

pðxlijxlPðxiÞ; ϵ
l
i; γ

l
PðxliÞ

Þ ¼

1

1þ exp �Pk2PðxiÞγ
l
kx

l
k � wϵi

ϵli � w0i

� 	
2
4

3
5xli

� 1

1þ exp
P

k2PðxiÞγ
l
kx

l
k þ wϵi

ϵli þ w0i

� 	
2
4

3
51�xli

ð21Þ

The expectation of Equation (21) can be formulated as:

E½log pðxlijxlPðxiÞ; ϵ
l
i; γ

l
PðxliÞ

Þ� ¼ qliE � log 1þ exp � P
k2PðxiÞ

γlkx
l
k � wϵi

ϵli � w0i

 ! !" #

þð1� qliÞE � log 1þ exp
P

k2PðxiÞ
γlkx

l
k þ wϵi

ϵli þ w0i

 ! !" #

ð22Þ

However, the distribution of � log 1þ exp
P

k2PðxiÞγ
l
kx

l
kþ

�h
wϵi

ϵli þ
w0iÞ� is intractable, as it involves a log-sum-exp function that mixes both
discrete and continuous variables. Consequently, we need to derive a tight

https://doi.org/10.1038/s44304-025-00098-z Article

npj Natural Hazards |            (2025) 2:69 14

www.nature.com/npjnathazards


lowerbound for its expectation.Without loss of generality,webeginwith the
case where node i has a single active parent. Given that the function� log x
is convex, Jensen’s inequality, combinedwith Taylor’s theorem, allows us to
establish the following relationship:

E½� logð1þ expðxÞÞ�≥ � logð1þE½expðxÞ�Þ ð23Þ

Therefore, we obtain the lower bound of Equation (22) as:

As for item [7] in Equation (17), we have:

X
i

EðxliÞ log qli þ
X
i

Eð1� xliÞ logð1� qliÞ

¼
X
i

qli log q
l
i þ
X
i

ð1� qliÞ logð1� qliÞ
ð25Þ

Given a map containing a set of locations, l∈ L, we further derive a
tight lower bound for the log-likelihood as follows:

Training and stochastic optimization with sparse Gaussian
processes
Weaim tominimize our loss function inorder tofindoptimal combinations
of posteriors and parameters of causal dependencies (including the weights
of parent nodes, and parameters of the normalizing flows). To achieve this,
we develop an expectation-maximization (E–M) algorithm that alternates

between updating the posteriors of unobserved variables (e.g., LS, LF, BD)
with causal effects, and flow parameters.

To manage computational complexity when working with large geo-
graphical regions, we employ a sparse Gaussian Process formulation using
inducing points. Rather than modeling the GP latent field directly at every
location, we introduce a set ofM inducing points uv at strategic locations in
feature space. This approach reduces the computational complexity from
O(N3) to O(NM2), where N is the number of locations and M ≪ N is the
number of inducing points.

We model spatial correlation in the causal parameter field using a
Gaussian Process with a Matern kernel operating in feature space rather
than geographical space. This approach allows the model to capture cor-
relations between locations with similar geophysical characteristics (eleva-
tion, slope, lithology, etc.) evenwhen they are not physically adjacent. This is
motivated by the observation that similar feature combinations tend to
exhibit similar causal relationships in earthquake-triggeredhazard scenarios
regardless of their geographic proximity.

Within each iteration, we sample a mini-batch of locations and per-
form the following two steps:
• Expectation step: Update the posterior probability estimates of the

unobserved latent variables (LS, LF, BD) at each location by con-
ditioning on the current GP parameters, neural network weights, and
the most recent samples of causal coefficients derived from the GP

E½log pðxlijxlPðxiÞ; ϵ
l
i; γ

l
PðxliÞ

Þ�≥ qli � log 1þE exp � P
k2PðxiÞ

γlkx
l
k � wϵi

ϵli � w0i

 !" # !" #

þð1� qliÞ � log 1þE exp
P

k2PðxiÞ
γlkx

l
k þ wϵi

ϵli þ w0i

 !" # !" #

¼ �qli log 1þ Q
k2PðxiÞ

ð1� qlkÞ þ qlkE½expð�γlkÞ�
� � !

� exp w2
ϵi
2 � w0i

� 	" #( )

�ð1� qliÞ log 1þ Q
k2PðxiÞ

ð1� qlkÞ þ qlkE½expðγlkÞ�
� � !

� exp w2
ϵi
2 þ w0i

� 	" #( )
ð24Þ

L ¼ log PðY ;GFÞ

¼ � log yl � log jwϵy
j � ðlog yl Þþw2

0yþ
P

k2Pðyl ÞE½ðλlkÞ
2�qlk�2 log yl �w0y

2w2
ϵy

�
P

j≠kEðλlkÞ �EðλljÞ � qlk � qlj þ ðw0y � log ylÞ Pk2PðylÞEðλlkÞ � qlk
� 	

w2
ϵy

� P
i2fLS;LF;BDg

qli log 1þ Q
k2PðxiÞ

ð1� qlkÞ þ qlkE½expð�γlkÞ�
� � !

� exp w2
ϵi
2 � w0i

� 	" #( )"

�ð1� qliÞ log 1þ Q
k2PðxiÞ

ð1� qlkÞ þ qlkE½expðγlkÞ�
� � !

� exp w2
ϵi
2 þ w0i

� 	" #( )#

� P
a2fLS;LF;BDg

1
2

trðK�1
λa
Σλa

Þ þ ðμλa �mλa
ÞTK�1

λa
ðμλa �mλa

Þ þ log jKλa
j � log jΣλa

j � nλa

h i
� P

b2fαLS;αLF ;LS;LFg

1
2

trðK�1
γb
Σγb

Þ þ ðμγb �mγb
ÞTK�1

γb
ðμγb �mγb

Þ þ log jKγb
j � log jΣγb

j � nγb

h i

�P
i
qli log q

l
i �
P
i
ð1� qliÞ logð1� qliÞ




ð26Þ
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latent variables through normalizing flows. The posterior probabilities
are updated according to the causal dependencies encoded in the
Bayesian network structure.

• Maximization step: Update the parameters of the sparse Gaussian
Process, specifically the variational parameters for inducing points uv,
along with the neural network parameters that map geophysical fea-
tures to the mean function of the GP. Specifically, for iteration t+ 1,
these parameters are updated as

μðtþ1Þ
u ¼ μðtÞu þ ρA∇LðμuÞ; Σðtþ1Þ

u ¼ ΣðtÞ
u þ ρA∇LðΣuÞ; ð27Þ

θðtþ1Þ
NN ¼ θðtÞNN þ ρA∇LðθNN Þ; ð28Þ

where μu and Σu are the parameters of the variational distributions
over inducing points, θNN represents the neural network parameters,
A is a positive definite preconditioner, ρ is the learning rate, and
∇Lð�Þ denotes gradients of the loss function with respect to the
corresponding parameters. The causal coefficients at observed loca-
tions are then derived through conditioning on the inducing points
and applying normalizing flow transformations to the resulting GP
latent variables. This gradient update scheme is guaranteed to con-
verge to a local maximum of L if ρ satisfies appropriate decay
conditions.

Our variational evidence lower bound (ELBO) with inducing points
can be formulated as:

L ¼ Eq½log pðyjX; zvÞ� þEq½log pðXjzvÞ� � KL½qðuvÞjjpðuvÞ�
�Eq½log qðXÞ�

ð29Þ

where q(X, zv, uv, ϵ) = q(X) × p(zv∣uv) × q(uv) × p(ϵ) is our variational dis-
tribution. By using the exact conditional p(zv∣uv) in our variational
approximation, we ensure that the model maintains valid probabilistic
semantics over the entire spatial field while only needing to represent dis-
tributions at the inducing points explicitly.

Once the model converges, we obtain the final posterior estimates of
LS, LF, and BD for each location, and also the causal effects between hidden
hazards and observations, reflecting the spatially heterogeneous causal
relationships inferred from the observed data.

We also apply a local pruning algorithm to accelerate the computation
over a large region. This strategy is motivated by the observation that real-
world causal graphs are typically sparse: only a small subset of nodes stay
active. For example, locations without building footprints will not have
damaged buildings, i.e., building damage nodes are inactive. Therefore, we
can prune these inactive nodes while keeping the active ones crucial for
parameter updates3,12.

Data availability
Dataused in this studywere collected fromseveral publicly accessible sources.
The primary observational data consists of Damage Proxy Maps (DPMs)
generated by NASA’s Advanced Rapid Imaging and Analysis (ARIA) team
using InSAR imagery fromSentinel-1 satellites, available at https://aria-share.
jpl.nasa.gov/. These DPMs capture correlation changes between pre- and
post-event images, providing valuable information for rapid hazard and
impact estimation. For ground truth validation, we collected data from
multiple sources across the three earthquake events studied. For the 2021
Haiti earthquake (M7.2), building damage and landslide inventories were
provided by StEER (available at: https://www.steer.network/haiti-response)
and GEER teams. Field reconnaissance data for the 2020 Puerto Rico
earthquake (M6.4) was collected by USGS, University of Puerto Rico
Mayagüez, GEER, and StEER teams, available at https://www.sciencebase.
gov/catalog/item/5eb5b9dc82ce25b5135ae83a. For the 2023 Turkey-Syria
earthquake sequence (M7.8), we utilized building damage inventory data
from the Turkish Ministry of Environment. Additional data sources used in

this study include USGS ShakeMap and ground failure models (https://
earthquake.usgs.gov/) as prior models, along with building footprints from
OpenStreetMap (https://www.openstreetmap.org/). Any data not available
through these public repositories may be obtained from the corresponding
author upon reasonable request.

Code availability
The underlying code and training/validation datasets for this study are
available in the repository and can be accessed via https://github.com/
PaperSubmissionFinal/SpatialBN.
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