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There is a gap in the literature on data-driven analyses for post-disaster evaluation of community risk
and resilience, particularly in utilizing features related to the performance of coupled human-
infrastructure systems. This study developed an index and machine learning-based method for
assessing community risk and resilience after a disaster. Using feature groups related to population
protective actions, infrastructure/building performance, and recovery features, the study examined
risk and resilience performance in communities affected by Hurricane Harvey in Harris County, Texas,
in 2017. It analyzed disparities across four archetypes of risk-resilience status, and income groups,
revealing how spatial areas are shaped by the performance of coupled human-infrastructure systems.
The findings also highlight the complex relationship between socio-economic factors, risk exposure,
and resilience. This study provides researchers and practitioners with new data-driven and machine
intelligence-based methods to evaluate community risk and resilience during disasters, offering
insights to inform future policies and decision-making.

Flood risk is are crucial element in vulnerability assessments1,2, and it can
generally be categorized into two key aspects: managing existing systems
and disaster response3. The first involves mitigating flood disasters through
maintenance improvement4,5, enhanced preparedness6, and organized
evacuation plans7 to ensure a rational and proactive approach to flood risk
management.The second includes activities like rescueoperationsduring or
immediately after a flood event. Resilience represents the capacity of an
individual, community, city, or nation towithstand, absorb, or recover from
an event—such as an extreme flood—or to effectively adapt to adverse
conditions or changes, such as climate change or economic challenges, in a
timely and efficient way8. Risk and resilience are fundamental components
in vulnerability assessments that directly influence coupled human-
infrastructure systems, where the functionality and resilience of one sys-
tem critically influence the other9. Most existing research on community
resilience to disasters and crises primarily focuses on pre-disaster (before-
the-event) assessment of risk and resilience, with limited attention devoted
to post-disaster (after-the-event) assessment based on the actual perfor-
mance of communities’ coupled human-infrastructure systems. Post-
disaster community risk and resilience assessment involves examining and
drawing conclusions about the extent of hazard impact and how effectively

the coupled human-infrastructure systems performed in coping with the
impacts, providing key insights for future resilience planning and strategy
development10,11. Yet, the current literature primarily emphasizes antici-
patory, predictive, or pre-disaster resilience assessments conducted before
hazard events12–14. Such analyses pay little attention to the resilience analysis
at the post-event level, failing to capture, specify, and evaluate the actual
status of community risk and resilience in an actual event context. In
addition, the current approach to post-disaster assessments15 often relies
heavily on survey methods, which are valuable for grounded-level experi-
ence from affected communities. However, surveys are also time-consum-
ing, include a time lag, and put the burden of data collection on impacted
communities16. Anothermajor limitation in the current approaches to post-
disaster risk and resilience assessments is their focus on their limited
number of coupled human-infrastructure systems features. For example,
some studies17,18 focus primarily on hazard impacts, and some focused on
digital twin with graphs19, while other studies primarily focus on infra-
structure disruptions20,21 or risk analysis22–24. Across these domains, tradi-
tional index-based methods, known as composite indicators, are widely
employed in risk and resilience assessments by combining multiple metrics
into a single numerical score25. These scores typically rely on predefined
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feature weights that are derived from expert judgment or simple statistical
models, which may fail to capture the complex, non-linear interactions
among diverse risk and resilience factors26. The emergence of large-scale
data affords an unprecedented opportunity to use a broad range of features
related to the coupled human-infrastructure systems' performance in post-
disaster assessment of risk and resilience across different areas of commu-
nities.Despite increasing recognitionof the benefits, there remains a scarcity
of literature that systematically applies machine learning within the devel-
opment or refinement of risk-resilience indices, which limits the ability to
provide comprehensive insights into the coupled human-infrastructure
systems to analyze the risk and resilience in the context of post-disaster big
data analysis.

To address these limitations, machine learning-based approaches can
be integrated with index-based methods to allow for data-driven feature
weighting, thereby offering amore adaptive and robust framework for risk-
resilience evaluations27. Consequently, this study aims to bridge that gap by
proposing a hybrid framework that leverages machine learning to enhance
the reliability and explanatory power of traditional index-based approaches.
To this end, using data from the 2017 Hurricane Harvey in Harris County,
Texas, this study captures three components of coupled human-
infrastructure systems performance (Fig. 1). Using PCA and Hierarchical
clustering method, this study classified spatial areas (census block groups
(CBGs)) based on their index similarity. The clusters are categorized into
four archetypes: high-risk/high-resilience (HH), low-risk/high-resilience
(LH), high-risk/low-resilience (HL), and low-risk/low-resilience (LL), based
on an in-depth analysis of the coupled human-infrastructure systems fea-
tures in each cluster (Fig. 1). This approach unveils the risk and resilience of
areas of the community basedon the coupledhuman-infrastructure systems
performance related to protective actions, infrastructure/buildings disrup-
tions, and population recovery. Specifically, the results reveal that different
spatial areas exhibit varying levels of risk and resilience, confirming the
existence of four archetypes of risk and resilience status. This study
addresses an important gap related to the dearth of data-driven approaches
for post-disaster community risk and resilience assessment. The

contributions of this study are fourfold. First, unlike previous approaches
that assessed post-disaster resilience based on infrastructure performance.
This study captures heterogeneous features (Infrastructure/Building dis-
ruptions, Population protective actions, and Population activity recovery)
related to the observed performance of the components of coupled human-
infrastructure systems (Fig. 1). Second, the computed features related to the
performance of coupled human-infrastructure systems (i.e., protective
actions, infrastructure/building impacts, and population activity recovery)
are based on novel data sources, enabling a data-driven approach for post-
disaster rather than survey-based methods. Third, the use of a machine
learning approach enables classifying risk and resilience of spatial areas
based on the similarity of their coupled human-infrastructure systems
performance features. Accordingly, the machine learning-based approach
addresses the limitations of index-based methods that rely on subjective
feature weights. Fourth, evaluation of the patterns gives insight into features
that shape risk and resilience patterns, providing knowledge for informing
future plans and actions. These contributions address the current limita-
tions in methods for post-disaster risk and resilience assessment and offer
newmethods and insights to interdisciplinary researchers and practitioners
across disaster science, urban science, and emergencymanagement for post-
disaster assessment of community risk and resilience through data-driven
and machine intelligence-based methods.

In disaster contexts, population protective actions—such as evacua-
tion, sheltering, and preparedness measures—can reduce immediate risks
and significantly alter the loads placed on infrastructure networks28. These
actions, in turn, shape both the vulnerability and the adaptive capacity of the
community29. For example, research9 developed a multi-agent simulation
model that integrates human behaviors with infrastructure dynamics,
illustrating how decision-making at the household level can ripple through
infrastructure systems and ultimately affect steady-state performance.
Researchers have employed a mix of quantitative methods to capture the
human–infrastructure interplay, which includes agent-based modeling of
evacuee decision-making and traffic flow30, machine learning and big data
analytics using location data to infer evacuation and preparedness

Fig. 1 | Characterization of community resilience
based on coupled human-infrastructure systems
performance. Coupled human-infrastructure sys-
tems performance is analyzed based various fea-
tures: infrastructure/building disruptions,
population protective action, and population activ-
ity recovery. Each feature category has sub-
components for total of 11 features. Based on the
coupled human-infrastructure systems perfor-
mance, spatial areas are grouped into four clusters of
risk and resilience archetypes: high-risk/high-resi-
lience (HH), low-risk/high-resilience (LH), high-
risk/low-resilience (HL), and low-risk/low-resi-
lience (LL)
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patterns31. Therefore, the first component of the coupled human-
infrastructure system performance is population protective actions,
including evacuation rate and preparedness proactivity. Preparedness
proactivity measures the extent to which people take preparatory actions,
such as visiting grocery stores or pharmacies before a hurricane. These
behaviors provide insight into a community’s readiness and awareness
ahead of a disaster. Lower levels of proactive behavior may indicate greater
vulnerability, which indirectly contributes to the overall risk profile in the
Risk Index. Preparedness and evacuation actions moderate the extent of
harmpeople experience andhow they copewith impacts in a hazard event32.
The effectiveness of people’s preparedness actions is directly linked to their
ability to stay shelter-in-place and cope with the impacts of hazards33–35. As
part of preparedness action, people would visit critical facilities to purchase
necessary items for hazardpreparation, including visits to grocery stores, gas
stations, and other points of interest (POIs)36. Preparation for evacuation,
with its primaryobjective being tominimize the risk of loss of life or injury in
the case of a disaster event, is primary protective action, serves as a crucial
life-saving measure37,38. The evacuation rate has consistently been a key
element in risk and disaster management research39, and studying evacua-
tion practices plays a crucial role in flood mitigation and reducing flood
impacts. Evacuation rates serve as an important risk feature because they
reflect the extent to which populations are exposed to hazards. For instance,
low evacuation rates can lead to higher exposure and increased risk, while
high evacuation rates may indicate communities responding to imminent
threats40. However, it is critical to recognize that evacuation does not always
lead to improved safety. As noted by Opdyke41, evacuees may move to
locations with higher storm surge or other disaster-related risks than their
primary residences. Moreover, barriers such as lack of transportation,
economic constraints, or disabilities can limit the ability of vulnerable
populations to evacuate, thereby exacerbating pre-existing social
inequalities42–44. Given these complexities, evacuation rates should not be
viewed as a standalone indicator of resilience; rather, they represent one
dimension of risk within a broader framework that accounts for both
geophysical hazards and social vulnerabilities. Areas with low evacuation
rates may be more vulnerable due to barriers preventing residents from
leaving hazardous areas, whereas high evacuation rates might signal
heightened exposure to threats or the potential for secondary displacement
risks. Consequently, integrating evacuation rates as an element of risk
assessment—rather than a directmeasure of resilience—better captures the
spectrumof potential outcomes andunderscores the importance of context-
specific analyses when evaluating community readiness and adaptive
capacity40,43.

Infrastructure and building disruptions represent the second critical
component of the coupled human-infrastructure systems, as failures or
outages in transportation, utilities, and other essential services directly
impede recovery processes45,46. Restoring infrastructure functionality is
fundamental for enabling population mobility, public services, and eco-
nomic activities—key factors in long-term community resilience. The
National Disaster Recovery Framework by FEMA45 underscores that
rebuilding infrastructure and redeveloping damaged areas can take years or
even decades, highlighting the profound influence that infrastructure
recovery exerts on overall resilience. This study captured features related to
flooded roads, telecommunication disruptions, and property damage to
capture infrastructure/building disruptions. The rationale for focusing on
these features was the extensive disruptions to roads and buildings47 caused
byHurricaneHarveyflooding, aswell as disruptions in telecommunications
services. Notably, Hurricane Harvey had a profound impact on transpor-
tation, such as road inundation and accessibility, with its devastating effects
lingering for weeks after the storm48,49. Flooded roads highlight infra-
structural vulnerabilities50, as road flooding disrupts mobility, hampers
emergency responses, and affects evacuation efforts, exacerbating the
impact of disasters. Spatial analyses indicate that hazards can cause internet
disruptions even in unaffected areas, highlighting the complex relationship
between hazard severity and internet service continuity51. The number of
flood claims serves as an indicator of the scale and frequency of flood

damage, providing a quantitativemeasure of risk exposure and thefinancial
burden on affected communities. The damage building ratio and total
building damage amount reflect the severity of structural damage from the
flood claims caused by disasters, offering insight into the physical and
economic vulnerabilities of a region. Other infrastructure disruptions (such
as power outages) were not considered sinceHarvey did not cause extensive
power outages in Harris County.

The third component of the coupled human-infrastructure system
performance was population activity recovery. Population activity recovery
serves as a vital indicator of resilience by reflecting how quickly and com-
prehensively a community returns to normal or adaptive functioning52.
Large-scale mobility data, for instance, has been used to track the
resumption of activities at points of interest (POIs) and to evaluate both the
speed and extent of post-disaster recovery53,54. Yabe55 specifically illustrates
how analyzing changes in human mobility patterns within interdependent
urban socio-physical systems reveals both the progress and bottlenecks in
the recovery trajectory.Moreover, fluctuations in visits to POIs can provide
granular insights into the socio-economic dimensions of resilience, helping
researchers andpolicymakers identifywhich sectors or demographicsmight
be lagging behind56. The speed at which affected populations resume their
normal life activities has been shown in prior studies to provide an
important indicator for community recovery57. Population activities are
considered to recover when people settle into a pre-disaster lifestyle after
coping with impacts, disrupted infrastructure is restored, and businesses
resume operations. To capture population activity recovery features, this
study compared variations in visits to points of interest (POIs) after the
hazard event with normal period trends, using this comparison to measure
the duration of recovery. Prior research58 has shown the effectiveness of
evaluating fluctuations in visits to POIs for measuring and quantifying
population activity recovery.

The components of the coupled human-infrastructure systems per-
formance discussed above were captured using features computed from
various datasets. Community-scale big datasets allow us to observe the
dynamics of coupled human-infrastructure systems in the risk and resi-
lience index of communities after hazard events. Harnessing community-
scale big data is instrumental in the process of enhancing predictive flood
risk monitoring, quick impact assessment, and situational awareness59,60.
Multiple aspects of coupled human-infrastructure systemsperformance can
be captured from community-scale big data and used to evaluate commu-
nity risk and resilience status after the fact. By synthesizing these three
domains within a coupled human-infrastructure systems framework, this
study captured the reciprocal influence of human behaviors and infra-
structure functionality. This perspective not only aligns with established
community resiliencemodels29 but also enables amore holistic evaluationof
risk and adaptive capacity.

Results
Risk and resilience archetypes
Principal Component Analysis (PCA) loading refers to the correlation
coefficients that represent the contribution of each original variable to the
principal components derived fromPCA61,62. FromFig. 2, the PCA loadings
tell which specific features had the greatest influence on each index. For the
Risk Index, “Number of Flood Claims” and “Total Building Damage
Amount” are prominent, with loadings of 0.572 and 0.555, respectively.
These features highlight the substantial role of physical damage and his-
torical flood impact in shaping the overall risk profile of a region. Other
features in the Risk Index, such as “Damage Building Ratio” (loading =
0.526) and “Evacuation Rate” (loading = 0.278), also show significant
influence, although to a lesser extent. The moderate loading of “Evacuation
Rate” suggests that behavioral responses to potential hazards contribute to
risk but do not dominate the index. Additionally, features like “Flooded
Roads” (loading = 0.082) and “Preparedness Proactivity” (loading = 0.048)
have relatively lower weights, indicating their limited direct impact on the
aggregated risk measure. “Telecommunication Disruptions” has a negative
loading of −0.044, reflecting a slight inverse relationship, where increased
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telecommunication stability might correlate with higher perceived risk
regions. In constructing the Resilience Index, we focused on features that
indicate recovery efficiency across different sectors. The loading plot for
resilience demonstrates that the reciprocal of “Essential Activity Recovery”
duration has the highest influence, with a loading of 0.550, underscoring its
critical role in the resilience framework. This feature signifies how quickly
essential activities return to baseline functionality, highlighting regions with
robust recovery mechanisms. Similarly, the reciprocal of “Non-essential
Activity Recovery” carries a substantial loading of 0.486, pointing to the
importance of restoring non-essential services in evaluating resilience. The
negative loadings observed for the reciprocal of “Essential Credit Card
Transaction Recovery” (-0.469) and the reciprocal of “Non-essential Credit
Card Transaction Recovery” (−0.491) reflect the impact of economic
activity recovery patterns; regions where economic transactions resume
slowly exhibit lower resilience scores.

Then the index values are used intohierarchical cluster, with setting the
cluster numbers ranging from 2 to 9. The silhouette result revealed that a
four clusters solutionmaximized the silhouette score at around 0.46, which,
although moderate, is acceptable in the context of complex social and
environmental data where overlapping clusters are common. To visualize
different archetypes, we calculate themean value of risk and resilience index
of all areas.The scatter plot inFig. 3 categorizes regions into fourdistinct risk
and resilience archetypes, each representing different combinations of risk
and resilience characteristics within the framework. The plot is organized
with a horizontal dashed line marking the mean resilience value and a
vertical dashed line representing themean risk value, whichhelps to visually
separate each cluster based on its mean risk and resilience index. The

presence of confidence ellipses also highlights the internal heterogeneity of
clusters. This segmentation reveals four archetypes that classify LL as low-
risk and low-resilience, HL as high-risk and low-resilience, LH as low-risk
and high-resilience, and HH as high-risk and high-resilience. We used a
Chi-square test to examine the relationship between clusters and their
distribution across four quadrants of risk and resilience, basedon the overall
mean values of the Risk and Resilience indices. The Chi-square test statistic
is 1646.16, with a corresponding p value of 0.0, indicating a statistically
significant association between clusters and quadrants.

In Fig. 3, LL represented in purple and positioned in the lower-left
quadrant.With amean Risk Index of−0.56 and a Resilience Index of -0.72,
this archetype suggests areas that may not face severe risks but are also not
good at recovery. Although they currently experience low risk, these areas
remain vulnerable due to their limited recovery capacity. HH, shown in
orange and located in the upper-right quadrant, represents regions that face
high risk but have high resilience.With a high-risk Index of 7.74 and a high
Resilience Index of 0.31, HH represents a high-risk, high-resilience group.
This archetype identifies areas that, despite significant exposure to risk, have
relatively strong recovery capabilities. The large confidence ellipse around
HH’s centroid suggests a broad variation within this group, indicating that
while some areas might have moderate resilience, the overall archetype
represents a segment that is predominantly vulnerable in the face of high
risks. LH, depicted in blue and situated in the upper-left quadrant, stands
out as a low-risk, high-resilience group.With ameanRisk Indexof -0.36 and
a high Resilience Index of 1.18, this archetype represents regions that are
well-prepared for recovery even though their risk exposure is relatively low.
The tighter ellipse around LH’s centroid indicates less variation within the

Fig. 2 | Feature importance to index. a Risk features importance in risk index; b Resilience features importance in resilience index.
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archetype. Finally, HL, represented in green and positioned in the lower-
right quadrant, combines high risk with low resilience. With a mean Risk
Index of 2.93 and a Resilience Index of -0.31, this archetype represents areas
that are highly exposed to risk but exhibit limited recovery capacity.

Figure 4, the map of Harris County63, TX, illustrates the spatial dis-
tribution of the four identified archetypes, each represented by a unique
color. LL (purple) occupies a significant portion of Harris County, parti-
cularly in the outer regions and sparsely populated areas. This archetype
corresponds to regions that are less urbanized and have limited infra-
structure support for rapid recovery. The dominance of LL in less densely
developed areas suggests insufficient disaster preparedness and recovery
resources. One possible reason for this pattern is the poor drainage systems
and low flood depth thresholds in these areas, which can lead to stagnation
when extreme events occur64. Additionally, peripheral or suburban regions
aremore likely to fall into the LL category due to fewer emergency resources,
lower levels of public infrastructure, and weaker community networks65.
Despite a lower immediate flood risk, these communities remain vulnerable
because of limited preparedness and response capacity, particularly in
extreme events66. HH (orange) has a more restricted spatial distribution
compared to other archetypes. However, these regions demonstrate stron-
ger infrastructure, adaptive strategies, and proactive flood management,
which contribute to their resilience despite facing significant flood risks67.
LH (blue) is scattered across Harris County but is more prevalent in
moderately urbanized zones. These areas maintain high resilience despite
lower natural hazard exposure due to greater preparedness, stakeholder
engagement, and strong governance65,67. The combinationof proactiveflood
management and community-driven disaster preparedness plays a crucial
role in their ability to recover effectively fromhazards.HL (green) is found in
various dispersed areas throughout the county. These areas experience
frequent and severe flooding but lack adequate resilience measures, such as
emergency response systems, flood defenses, or well-maintained drainage
infrastructure64. HL regions are particularly vulnerable due to their above-
average flood risk and below-average access to emergency shelters, making
them susceptible to prolonged recovery periods. Furthermore, these areas
are often home to historically marginalized or low-income communities,
where infrastructure investments have not kept pace with increasing hazard
exposure66.

Features’ contribution to index in different archetypes
To visualize the features’ contribution to their own indexes for each
archetype, Clustered Feature Aggregation was applied, and examined the
median values of various resilience and risk-related features across four
distinct archetypes (Fig. 5). The resilience features are transformedusing the
reciprocal function (smaller values after transformation indicate better
resilience). Median values of risk and resilience features are calculated
within each archetype, and this step enables comparison across archetypes,
revealing patterns in how different archetypes vary in their resilience and
risk profiles. After aggregating the features within each archetype,Min-Max
scaling is applied separately to the median values to bring all features into a
comparable range (typically 0 to 1). This normalization facilitates a more
interpretable comparison across archetypes, regardless of the original fea-
ture scales.

In LL, we observe minimal exposure to most risk factors, as evi-
denced by the relatively small, stacked values in the positive risk features.
Telecommunication Disruptions is the primary risk feature for this
archetype, but it is negative value in risk index, suggesting that tele-
communication disruptions do not lead to high risk. In terms of resi-
lience, LL shows low values for essential and non-essential activity
recover, but high values in non-essential card transactions. The study
shows that card transactions is negatively related to resilience, so LL has
lowest resilience compared to other archetypes. HH displays substantial
values across several risk indicators, including high scores for “Total
Building Damage Amount” and “Damage Building Ratio”. These high
values contribute significantly to the archetype’s Risk Index, indicating
that these areas are particularly vulnerable to physical and infrastructural
risks. Despite this vulnerability, HH exhibits strong resilience, as seen in
the high median values for essential and non-essential activity recovery.
The resilience plot shows that activity recovery speed plays a crucial role
in mitigating the impact of disruptions. Thus, although HH faces con-
siderable risk, its recovery capabilities allow it to effectively bounce back,
particularly in critical services. LH shows low values across risk features,
which like LL. Resilience in LH is particularly strong, as shown by highest
values in essential and non-essential activity recovery, highlighting a
robust capacity for restoring critical services after disruptions. LH also
shows minimal reliance on credit card recovery activities, yet maintains a

Fig. 3 | Risk and resilience archetype for each
archetype. There are four resilience and risk
archetypes: LL is categorized under the low-risk/
low-resilience (LL) quadrant; HH is positioned in
the high-risk/high-resilience (HH) quadrant; LH
falls into the low-risk/high-resilience (LH) quad-
rant; HL is situated in the high-risk/low-resilience
(HL) quadrant.
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high Resilience Index due to strong activity recovery. HL reveals sig-
nificant exposure to risk factors, with high values for “Number of Flood
Claims,” “Building Damage Ratio,” and “Total Building Damage
Amount.” These prominent risk factors contribute to its high-risk Index,
indicating that this archetype is highly susceptible to disruptions. In
terms of resilience, HL shows lower scores for essential and non-essential
activity recovery and negative scores for card transaction activities,
reflecting limited recovery capabilities. Comparing HH and HL, we
observe that HH has a higher “Total Damage Amount” than HL, leading
to a higher risk index. This suggests that the damage amount serves as a
significant indicator of an area’s risk level. LH has highest “Essential
Activity Recovery” speed and “Non-essential Activity Recovery” speed;
also, it does not have significant credit card activity, and this allows LH to
have the highest resilience.

Overall, there is the significant role that the building system
plays in determining the risk index. Features such as the building
damage amount and building damage ratio are particularly influen-
tial, as higher values for these features correspond to an increased
level of risk. This underscores the importance of infrastructure vul-
nerability in shaping the overall risk profile of a region. At the same
time, the resilience index is strongly associated with the recovery of
essential and non-essential activities. Higher performance in these
activities—indicating a quicker return to normalcy after a disruptive
event—captures greater resilience. This highlights the critical role of
economic and social activity recovery in mitigating the long-term
impacts of disasters and improving community adaptability. By
linking the building system to risk and activity recovery to resilience,
our study emphasizes the interconnected nature of physical infra-
structure and social dynamics in disaster management.

Disparities in risk and resilience archetypes across
income groups
Both descriptive statistics and statistical tests were used to explore how
income varies across the archetypes. From Fig. 6, we observe that LL
(colored in purple) has a median income of approximately $54,618 and
contains the largest number of areas, with a count of 845. This archetype,
with a relatively lower median income, represents areas with significant
dispersion and several low-income outliers, indicating economic diversity.
HH (in orange) has the highest median income of about $113,380, albeit
with amuch smaller sample size of 34 areas. LH (blue) andHL (green) have
similarmedian incomes, around$61,924 and$62,962, respectively,with 552
and 142 areas in each archetype.

To capture the compound effect of these variables, we constructed an
interaction term, “Risk-Income Interaction (RII),” calculated as the product
of Risk Index andMedian Income (Risk Index ×Median Income). TheOLS
regression analysis (Fig. 7) examines how the interaction between risk index
and median income influences resilience index across four distinct com-
munity archetypes.

For the negative interaction pattern (LL and LH archetypes), which is
also low-income areas, both Low Risk, Low Resilience (LL: -3.72e-06,
p < 0.001) and Low Risk, High Resilience (LH: -3.15e-06, p < 0.001)
archetypes exhibit significant negative interaction effects. This pattern
indicates that within these contexts, higher income does not effectively
buffer against increased risk exposure. Thenegative interaction suggests that
as both risk and income increase simultaneously, resilience actually
decreases. The findings here imply that in low-income areas, resourcesmay
not be effectively allocated to resilience-enhancing activities, or that socio-
economic factors limit the resilience benefits of higher income. The simi-
larity in coefficients across LL and LH suggests this limitation transcends

Fig. 4 | Spatial distribution of archetype in Harris County, TX. Harris County is
divided into four archetypes based on the Hierarchical Clustering analysis: LL (863
CBGs), representing the low-risk, low-resilience archetype, is shaded purple; HH (34
CBGs), representing the high-risk, high-resilience archetype, is orange; LH (557

CBGs), representing the low-risk, high-resilience archetype, is blue; and HL (144
CBGs), representing the high-risk, low-resilience archetype, is green. Areas with
missing data are shaded gray.
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baseline resilience levels and may be tied to broader socioeconomic or
institutional constraints.

For the positive interaction pattern (HH and HL archetypes),
which is also high-income archetype, both High Risk, High Resilience
(HH: 1.58e-06, p < 0.05) and High Risk, Low Resilience (HL: 9.62e-
07, p < 0.05) archetypes demonstrate positive interaction effects. This

pattern indicates that income effectively moderates the risk-resilience
relationship, with higher income providing protective benefits in
high-risk contexts. While HH shows a stronger effect than HL, likely
due to its higher median income, both archetypes demonstrate the
capacity to leverage financial resources for resilience enhancement
under risk exposure. This suggests that income contributes

Fig. 5 | Risk and resilience contributions. aWeightedmedian value of risk features
by archetype; bWeighted median value of resilience features by archetype. Positive
and negative contributions are visualized separately, with color-coding that
enhances interpretability: positive resilience features are shaded in green, negative

resilience features in orange, positive risk features are assigned random colors, and
negative risk contributors, such as “Telecommunication Disruptions,” appear
in blue.
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meaningfully to resilience in this archetype, likely due to enhanced
capacity for investments in infrastructure, insurance, and community
resources that can buffer against risk. These high-income areas are
thus better equipped to withstand and recover from disruptions,
underscoring the role of financial resources in risk management and
community resilience.

The findings from each archetype emphasize that the impact of the
interaction between risk and median income on resilience is context-
dependent. Archetypes with higher baseline income levels, such as HH and
HL, demonstrate a positive association between income and resilience in
high-risk areas, likely due to more substantial investments in resilience
resources. Conversely, lower-income archetypes like LL and LH exhibit a
negative interaction effect, indicating that higher income alone does not
suffice to offset the challenges posed by high risk. Overall, this analysis
reveals that income has a complex and context-specific influence on resi-
lience in high-risk environments. Higher-income areas have a more pro-
tective response to risk, while lower-income areas may struggle to achieve
resilience despite high income levels. This underscores the need for tailored
strategies that consider both income and risk levels to enhance resilience
effectively across diverse communities.

Discussion
This study proposed an index and machine learning-based approach for
post-disaster assessment of community risk and resilience based on coupled
human-infrastructure systems performance. Despite significant advance-
ments in the interdisciplinary field of community resilience, most existing
studies focus primarily on pre-disaster assessments, and relatively less
attention has been paid to post-disaster assessments. Additionally, many
post-disaster assessments are based primarily on disaster reconnaissance

Fig. 7 | Relationship between RII and resilience index. a Relation of RII and resilience index in LL; b Relation of RII and resilience index in HH; c Relation of RII and
resilience index in LH; d Relation of RII and resilience index in HL.

Fig. 6 | Box plot of median income by archetype.
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approaches focusing on measuring impacts and damage. Furthermore,
post-disaster assessments rely primarily on surveys for capturing impacts
and damage, resulting in delays in data collection and assessment. Finally,
the current approaches to post-disaster assessment of community resilience
focusmainly on single systems (e.g., transportation, housing, or businesses)
and do not consider various aspects of coupled human-infrastructure per-
formance. These limitations are addressed in this study based on evaluating
various features related to coupled-human infrastructure performance
computed from various data sources and by adopting a machine learning-
based approach to classify spatial areas of a community (census block
groups) based on the intertwined features to unveil various risk and resi-
lience performance archetypes.

This study contributes to disaster science and resilience planning
through several key innovations. We developed a novel approach to post-
disaster assessment of community resilience using an index and machine
intelligence-based approach that provides interdisciplinary researcherswith
a new tool for evaluation. Our methodology integrates diverse features
related to coupled human-infrastructure systems performance, including
infrastructure service disruption and restoration, protective actions, prop-
erty damage, and life activity recovery of populations. This comprehensive
framework offers advantages over existing approaches that focus primarily
on human or infrastructure systems separately. By utilizing observational
data from various sources, our data-driven approach enables comparison of
coupled human-infrastructure systems performance across different events
and regions, while guiding response and recovery efforts to fairly effect
resource allocation and prioritization. The identification of four distinct
community risk-resilience archetypes according to their coupled human-
infrastructure systems performance provides essential insights for future
risk reduction and resilience improvement strategies. For example, strong
resilience, particularly in essential and non-essential activity recovery,
suggests robust systems in place to resume key activities after disruptions.
Additionally, features like total building damage amount consistently cor-
relate with increased risk exposure across different datasets, highlighting
specific vulnerability patterns. These findings can inform targeted inter-
ventions such as building retrofitting, enhanced construction standards, and
damage mitigation strategies to reduce risk in vulnerable areas. In addition,
the analysis of Harris County during Hurricane Harvey revealed important
disparities in risk-resilience profiles across different median income com-
munities.While higher baseline income levels can enhance resilience inhigh-
risk areas through greater investment in resilience resources, this positive
association is not universal. Lower-income areas, even those with relatively
high-income levels within their context, may still struggle to achieve resi-
lience when facing significant risk factors. This demonstrates that income
alone does not uniformly confer resilience, particularly in communities
exposed to elevated risk levels. Therefore, effective resilience enhancement
requires tailored strategies that consider not only income levels but also the
unique risk profiles of each community. These findings can inform targeted
interventions such as building retrofitting, enhanced construction standards,
and damage mitigation strategies to reduce risk in vulnerable areas.

While this study provides valuable insights into community resilience,
it is important to acknowledge several limitations. First, data availability
constraints may affect the quality and comprehensiveness of the analysis.
Certain critical datasets on human-infrastructure interactions (e.g., building
codes, real-time infrastructure usage, demographic distributions) may be
inaccessible or unavailable, restricting the scope of the assessment. Besides,
NFIP data has important limitations, as many residents are unaware they
live in floodplains, and cannot afford flood insurance. Hence, it does not
capture uninsured losses. Future studies can include other datasets that can
complementNFIPdata tomeasureflood impact and losses in communities.
Second, our analysis relied on certain assumptions (such as income as a key
indicator) and generalizations (including current features) when inter-
preting risk and resilience patterns. These simplifications may not fully
capture the complex socio-economic, cultural, and governance factors that
influence how different communities experience disasters31. This limitation
underscores the importance of incorporating local data and fostering cross-

sector collaboration to develop more effective and contextually appropriate
resilience strategies.Despite these constraints, the overarching framework—
encompassingpopulationprotective actions, infrastructure disruptions, and
activity recovery—can be adapted to various disaster contexts. For instance,
in earthquake-prone areas, data on building codes, seismic retrofits, and
population evacuation behavior could replace storm surge or flood-relevant
variables. In wildfire scenarios, evacuation routes, air-quality metrics, and
infrastructure vulnerabilities (e.g., power grid stability)might be emphasized
to reflect region-specific risks68. As more hazard- or region-specific data
becomes available, researchers can integrate additional indicators tailored to
local contexts, thereby refining the robustness of the coupled human-
infrastructure system analysis. Building on these insights, future studies
should pursue at least two avenues of investigation. First, they can incor-
porate new data sources—such as high-resolution remote sensing, crowd-
sourced surveys, or real-time IoT sensors—to enhance the granularity of
resilience metrics. Second, cross-regional and cross-event analyses applying
this framework to different disaster types will enable more consistent
comparisons of resilience patterns and the identification of universally
effective (or context-specific) interventions. Third, other socio-demographic
features can be investigated to have more comprehensive understanding of
community vulnerability and resilience to disasters, as factors such as edu-
cational attainment, age distribution, housing characteristics, and occupa-
tional diversity may provide additional insights into the complex socio-
economicdynamics that influencedisaster impacts and recovery trajectories.
Through this broader application, key factors that strengthen resilience can
be validated and translated into evidence-based policy recommendations,
thereby broadening the framework’s utility for diverse hazard contexts.

Methods
Study context
Beginning as a tropical storm in early August 2017, Hurricane Harvey
rapidly escalated to a Category 4 hurricane. By August 23, it had intensified,
necessitating mandatory evacuations in several Texas counties as forecasts
predict the storm to escalate into amajor hurricane69.Making landfall about
50 kilometers (about 30 miles) northeast of Corpus Christi, Texas, on
August 26. Harvey then moved towards Houston, causing severe and
widespread flooding in southeastern Texas, with particularly devastating
impacts occurringonAugust 27.These conditionspersisteduntilAugust 30,
2017, and Harvey was officially declared over on August 31, leading to
widespread recovery and reconstruction efforts across numerous Texas and
Louisiana counties70.

FromAugust 25 through 30, 2017, HurricaneHarvey drenchedHarris
County with more than 130 centimeters (50 inches) of rain, causing
unprecedented flooding across vast areas of the city71. Even though the
hurricane’s center bypassed Houston to the south, it brought significant
rains and floods to the area, particularly in the northeast, due to a stationary
front around the storm72. Harris County, encompassing the densely
populated Houston area, experienced more than 100 centimeters (40
inches) of rain, resulting in considerable flooding and damage73. Harvey’s
ferociouswinds, peaking at 150miles per hour, caused localizeddamage and
necessitated emergency actions to avert damfailures, further aggravating the
flooding and infrastructure destruction72,74. The significance of impacts, as
well as the breadth of geographic area that was impacted, makes this study
context a suitable setting for post-disaster assessment of community risk
and resilience in this study.

General approach
Figure 8 presents a detailed illustration of our analysis steps. This study
examines 11 specific features related to coupled human-infrastructure
systems performance during flood events, which we categorized into two
primary indices: Risk Index and Resilience Index. Risk Index captures the
vulnerability and exposure aspects through seven features: flooded roads,
telecommunication disruptions, total building damage amount, building
damage ratio, number of flood claims, preparedness proactivity, and eva-
cuation rate. Resilience Index measures recovery capacity through four
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features: essential activity recovery duration, non-essential activity recovery
duration, essential credit card transaction recovery duration, and non-
essential credit card transaction recovery duration. The first step employed
Principal Component Analysis (PCA) to generate two comprehensive
indices—risk index and resilience index—based on eleven distinct features
that characterize community response to flooding events. Then the study
applied aHierarchical Clusteringmethod to organize communities into four
distinct risk-resilience archetypes based on their index values. The findings
reveal fourdistinct risk-resilience archetypesdistributedacrossCensusBlock
Groups (CBGs).Theanalysis examineshow individual features contribute to
both the Risk Index and Resilience Index within each archetype, and how
specific features contribute to risk and resilience in different areas. Addi-
tionally, this study investigated the relationship between household income
levels and archetype classification to understand socioeconomic influences
on community risk and resilience patterns during flood events.

Datasets descriptions
This study focused on three components of the coupled human-
infrastructure systems performance that shape community risk and resi-
lience (Fig. 1): population protective actions, infrastructure/building dis-
ruptions, andpopulationactivity recovery.These features areheterogeneous
as they are derived from multiple data sources—including location-based
services, claims, telecommunication networks, and financial transactions—
each representing a distinct dimension of post-disaster recovery. By inte-
grating these diverse factors, our study provides a multi-criteria perspective
on how risk and resilience manifest across different aspects of community
functioning. The data sources utilized in this study are summarized in
Table 1. Our analysis focused on computing the coupled human-
infrastructure systems features at the CBG level. As shown in Table 1, the
components of the coupled human-infrastructure systems performance we
examined include three main feature groups: population protective action,
infrastructure/building disruptions, and population activity recovery. Popu-
lation protective action, encompassing preparedness proactivity and eva-
cuation rate, is calculated based on location-based data. Infrastructure/
building disruptions include flooded roads, property damage, and tele-
communications disruptions. Population activity recovery durations were
computed based on location-based data (POI data) and credit card transac-
tions. In total, the analysis examined11 features related to the coupledhuman-
infrastructure systems performance: flooded roads, number of flood claims,
total building damage amount, building damage ratio, telecommunication

disruptions, preparedness proactivity, evacuation rate, essential activity
recovery, non-essential activity recovery, essential credit card transaction
recovery, and non-essential credit card transaction recovery. There is one
socio-demographic characteristic feature used to analyze the research results.
A detailed description of each feature and the datasets, and methods used in
computing the features are presented below.

Median income. Our socio-demographic data utilizes median income,
which represents the household median income in 2017 as reported by
the US Census Bureau table data. Median income serves as a critical
indicator of a region’s vulnerability and resilience to hazards, directly
influencing a community’s capacity to withstand and recover from
adverse events75,76. This economic metric reflects both the level of
development and economic inequality within communities, significantly
affecting how populations prepare for, respond to, and recover from
disaster impacts77.

Preparedness proactivity. Method of preparedness proactivity is
adopted from Li and Mostafavi31 to capture the earliest maximum POI
change percentage (Eq. 1) at CBG level using location-based data from
Spectus78. Spectus acquires its data through partnerships with smart-
phone applications, collecting information from devices where users
have consented to the collection of their location data. Multiple inde-
pendent studies have found that Spectus mobile location data is broadly
representative of populationmobility patterns. The spatial distribution of
Cuebiq’s opted-in users strongly correlates with actual census-based
population distributions, with correlations around 0.7 at the zip code
level79, and 0.91 at the census tract level80 and exceeding 0.93 at the county
level81. Its demographic representativeness is further supported by a ~0.8
correlation with local census populations and matching age and house-
hold size distributions82. Mobile phone data offer detailed insights into
human movement patterns on a large scale at an unprecedented spatio-
temporal granularity and scale83. By collaborating with app developers,
Spectus harnesses a variety of signals, including Bluetooth, GPS, Wi-Fi,
and IoT, to compile a high-resolution geo-behavioral dataset.

In this study,we defined the preparedness period asAugust 20 through
August 25, 2017. This five-day timeframewas selected to capture the critical
preparation activities that occurred immediately before HurricaneHarvey’s
landfall, reflecting the typically short duration of the acute preparedness
phase in disaster management. To assess preparedness proactivity, we

Fig. 8 | The overview of analysis steps. Total of
eleven features are classified into two indexes and
then classified into four clusters using the PAC
indexed Hierarchical algorithm. These clusters are
then labeled as risk and resilience archetypes based
on their index values. Accordingly, disparities in
risk-resilience archetypes of CBGs with varying
median income levels are examined.
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identified the peak visitation percentage change date for each CBG relative
to the baseline and then determined the interval between this peak and the
hurricane’s landfall. Greater preparedness and proactivity mean people in
the community prepare earlier for the natural hazard. Zero proactivity
indicates people reach maximum POI change percentage on the day of the
hurricane landfall. To determine the changes in POI visits due to hurricane
preparations, we established baselines using POI visitation patterns related
to thefirst twoweeks inAugust.This period’s visitationnumbers capture the
residents’ normal POI visits with no disturbances. The preparedness rate is
calculated based on visitations to pharmacies and gas stations, determined
using datasets of POIs visits. Equation 1 describes the percent change of the
POI visits in calculating the preparedness index of each CBG:

PCi;d;t ¼
Vi;d;t � Bi;d;t

Bi;d;t
ð1Þ

where, PCi;d;t is the percentage change of visits to one category of POI (t)
from homeCBG (i) in date (d),Vi;d;t is the number of visits to one category
of POI (t) from home CBG (i) on date (d). Bi;d;t is the calculated baseline
value corresponding to the date. The maximum POI visitation change
percentage of certain POI is computed, and the date is recorded. The pre-
paredness proactivity is calculated based on the difference in days between
the recorded date and August 25, 2017. For example, if an area reached its
maximum POI visitation change percentage on August 24, 2017, its pre-
paredness proactivity is one day. After compiling all preparedness proac-
tivity measures related to gas stations and pharmacies, we determine their
mean value as the overall preparedness proactivity for a CBG.

Evacuation rate. The evacuation rate was calculated for each CBG by
comparing the rates before and after Hurricane Harvey (August 20
through September 10, 2017) against a pre-event baseline period (July 9
through August 5, 2017), and the maximum evacuation rate was iden-
tified. This extended timeframe for evacuation data was chosen based on

findings from the Texas A&M Hazard Reduction & Recovery Center
survey, which documented ongoing evacuation activities through late
August84. The extended timeframe captures both immediate and delayed
evacuation responses. Then the study chose the maximum percentage
change for each CBG as our feature value, following the methodology of
previous study38, and using location-based data from Spectus. Only users
with a minimum of 240 min of daily location information were included
to ensure data accuracy and minimize bias. Individuals who left their
homeCBGs andCBGs and stayed in another CBG for at least 24 h during
Hurricane Harvey were considered to have evacuated. Here Eq. 2
describes the percent change of the evacuation rate (ER):

ER Change rate ¼ ERt � ERB

ERB
ð2Þ

ERt represents the evacuation rate onday t, andERB is the baseline.The
maximumevacuation rate changepercentage is the feature for evacuation in
this study.

Flooded roads. Flooded road networks limit access to emergency
services59,85,86. Harris County Road segment traffic data from August 20
through September 11, 2017, obtained from INRIX, provided average
traffic speeds for each road segment at 5-minute intervals, along with
historical average speeds for comparison. Following the approaches87,88,
road segments displaying a null value for average traffic speed were
categorized as flooded duringHurricaneHarvey.We represented flooded
roads as Line String geometries based on their recorded start and end
coordinates. To assess the impact at the community level, we conducted
spatial intersections between flooded road segments andGEOID-defined
boundaries, allowing us to quantify the total length of flooded roads
within each CBG area. These lengths represent the total null distance in
each CBG polygon, indicating the extent of flooded roads within
those areas.

Table 1 | Coupled human-infrastructure features and datasets

Feature group Feature Data description Data sources

Socio-demographic
characteristic

Median income Household median income in 2017 U.S. Census Bureau table data99

Protective action features Preparedness proactivity Maximum POI visits during preparedness period relative
to normal baseline in pharmacy

Safegraph, Inc; Spectus; Microsoft
building footprint78,90,94

Maximum POI visits during preparedness period relative
to normal baseline in gas station

Safegraph, Inc; Spectus; Microsoft
building footprint78,90,94

Evacuation rate Maximum evacuation rate relative to normal baseline at
CBG level

Spectus78

Infrastructure and building
disruptions

Flooded roads Total distance that has null traffic speed INRIX100

Number of flood claims The total count of flood claims within each census block
group area

Federal Emergency Management
Agency National Flood Insurance
Program89

Total building damage amount The actual cash value of the damage that the main
property sustained is shown in terms of whole dollars.

Federal Emergency Management
Agency National Flood Insurance
Program89

Building Damage Ratio The building damage ratio was determined by dividing
the total number of claims by the total number of
buildings in a given area.

Federal Emergency Management
Agency National Flood Insurance
Program, and Microsoft Building
Footprints89,90

Telecommunication data Maximum download kbps changing rate during hazard
relative to normal baseline

Ookla91

Recovery features Essential activity recovery Essential human mobility recovery data (essential POI) Spectus78

Non-essential Activity Recovery Non-essential human mobility recovery data (non-
essential POI)

Spectus78

Essential credit card transaction
recovery

Essential credit card activity Safegraph94

Non-essential credit card
transaction recovery

Non-essential credit card transactions recovery Safegraph94

https://doi.org/10.1038/s44304-025-00104-4 Article

npj Natural Hazards |            (2025) 2:56 11

www.nature.com/npjnathazards


Number of flood claims. The insurance claim data utilized in this study
was sourced from the FEMANational Flood Insurance Program89 (NFIP)
(FEMA, 2023). FEMA manages the NFIP by overseeing the proper
processing of insurance applications, determining accurate insurance
premiums, and handling the renewal, modification, and cancellation of
insurance policies. This data set provides details on NFIP claims trans-
actions, and the number of claims in a given area was determined by
calculating the total count of insurance claims filed by policyholders in
each CBG.

Total building damage amount. The total building damage amount,
sourced directly from the National Flood Insurance Program89, repre-
sents the actual cash value of damage incurred by the main property,
expressed in whole dollars. We aggregated this data to the total building
damage amount for each CBG area by summing all the reported damage
amounts.

Building damage ratio. The building damage ratio was determined by
dividing the total number of claims89 by the total number of buildings in a
given area. The number of claims has been mentioned before, and the
data on the total number of buildings was from Microsoft Building
Footprints. The Bing Maps and Microsoft Maps and Geospatial teams
have extracted a comprehensive dataset consisting of 129,591,852
building footprints across the United States90.

Telecommunication disruptions. Ookla data encompasses to cellular
internet speeds, including specificmetrics like upload anddownload rates
frommobile devices, latency, and location-based information about both
the device and the server91. This research focused on using the download
kbps changing rate as the telecommunication data from August 10 to
September 8, 2017. The download kbps changing rate was assumed to be
themaximum changing rate during this period. This study leveraged data
provided by Ookla, which offers comprehensive insights into internet
capabilities, including cellular internet speeds. This dataset includes vital
metrics such as upload and download rates frommobile devices, latency,
and geolocation information about the devices and servers involved51.

In order to record the maximum telecommunication disruptions, this
study concentrates on the maximum changing rate of download speeds in
kilobits per second (kbps) from August 10 through September 8, 2017. To
establish abaseline for normal telecommunicationoperations,we calculated
the average download speed during the first two weeks of August. This
period is chosen to reflect a typical pattern of telecommunication use
without the influence of an impending natural disaster. The measure of the
maximum telecommunication disruption is then determined by Eq. (3).

Maximum Download Speed Change Rate ¼ SpeedB �minðSpeedtÞ
SpeedB

ð3Þ
whereminðSpeedtÞ represents theminimumdownload speed on day t from
August 24th and September 3rd, 2017, and SpeedB is the baseline.

Essential and non-essential activity recovery and credit card
transaction recovery. To create smart, resilient, and sustainable urban
environments, urban planners need an understanding of how extreme
weather events affect human activities92,93. The dataset comprising points
of interest visitation patterns was obtained from Spectus78; the dataset
related to credit card transactions was sourced from SafeGraph94. In line
with methodologies used in prior research57,58,95, this study uses essential
activity recovery, non-essential activity recovery, essential credit card
transaction recovery, and non-essential credit card transaction recovery.
Essential activities represent services that are critical for daily life and
survival, such as healthcare, grocery shopping, gas stations, and utilities.
In contrast, non-essential activities, including retail, restaurants, enter-
tainment, and self-care, contribute to enhancing quality of life but are not

immediately critical for survival. We utilized data from the period before
landfall (pre-August 25, 2017), the hurricane impact phase (August
25–31, 2017), and the immediate recovery period (September 1–30, 2017)
to assess post-disaster recovery. To establish the baseline, POI visits
during the three weeks leading up to Hurricane Harvey (August
1–August 21, 2017) were analyzed. Recovery weeks were calculated using
a seven-day moving average of daily visits to various POIs, with this
baseline serving as a reference for comparing pre- and post-disaster
visitation patterns. In Eq. 4, the daily value refers to the actual observed
visits to POIs on a given day, while the base value acts as the reference
point for the normal activity period before the disaster. The change
percentage is then calculated to reflect variations in the daily visit
numbers for each category, relative to the baseline, using a seven-day
rolling average to smooth the data over seven-day intervals:

7� dayRollingavg ¼
X7

d¼1

Daily
value� Base valueBase Value100%

ð4Þ
Resilience curves for POIs were derived by plotting seven-day rolling

averages. In this study, the term duration of recovery and is defined as the
timeatwhich the seven-day rollingaverageof visits toPOIs attains90%of the
baseline values established prior to the disruption. This calculation enabled
us to determine the average time needed for each area to achieve recovery.

Statistical methods
This study combines index-based and clustering methods by applying
hierarchical clustering to the index values obtained from the first PCA.
Principal Component Analysis (PCA) approach allows to reduce a set of
features into two composite indices—a Risk Index and a Resilience Index—
based on a set of features related to risk and resilience ability. TheRisk Index
encompasses features including Evacuation Rate, Flooded Roads, Pre-
paredness Proactivity, Number of Flood Claims, Damage Building Ratio,
Total Building Damage Amount, and Telecommunication Disruptions.
These features represent multiple dimensions of risk exposure and vul-
nerability within a region. The Resilience Index, in contrast, focuses on
features that reflect the speed of recovery, calculated as the reciprocal of
recovery days for various activities. This index includes Essential Activity
Recovery, Non-essential Activity Recovery, Essential Credit Card Trans-
action Recovery, and Non-essential Credit Card Transaction Recovery.

PrincipalComponentAnalysis (PCA)wasapplied to the scaled risk and
resilience features to extract a single index. Each index value was computed
as a linear combination of the original features, where the weights corre-
spond to the eigenvector associated with the largest eigenvalue of the feature
covariancematrix.Mathematically, thefirst principal component is givenby:

PC1 ¼ Xω1 ð5Þ

where PC1 represents the first principal component, and X is the matrix of
standardized features, and ω1 is the eigenvector associated with the first
largest eigenvalue. For each of the two indices, we selected only the first
principal component, as it explains the largest proportion of variance in the
data. The Risk Index and Resilience Index are then defined as:

Risk Index ¼ Xriskωrisk ð6Þ

Resilience Index ¼ Xresilienceωresilience ð7Þ

whereXrisk andXresilience represent the standardized feature matrices for the
selected risk and resilience features, respectively, and ωrisk and ωresilience are
the first eigenvectors obtained from PCA on each feature set.

Hierarchical clustering96,97 is to identify patterns of risk and resi-
lience index across regions, which is a technique that builds a multilevel
hierarchy of clusters by either merging or splitting clusters iteratively.
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Specifically, this study used the Agglomerative Clustering method, which
is a “bottom-up” approach. Each data point starts in its own cluster, and
pairs of clusters are merged as one moves up the hierarchy. Using the
Ward linkage method, the agglomerative clustering merges clusters that
minimize the within-cluster variance. This is expressed by calculating the
variance criterion for each potential merge and choosing the pair of
clusters that minimizes the increase in total within-cluster variance. The
distance between clusters A and B in Ward’s method can be formalized
as:

DðA;BÞ ¼ Aj j Bj j
Aj j þ Bj j jj�xA � �xBjj2 ð8Þ

where |A| and |B| are the sizes of clusters A and B, respectively, and �xA and
�xB are the centroids of clusters A and B. This criterion tends to produce
compact clusterswith low variance, which alignswith the goal of identifying
regions with distinct risk and resilience profiles.

In addition, this study also conducted Ordinary Least Squares (OLS)
regression analysis98, and the regression equation can be generally repre-
sented as follows:

yi ¼ β0 þ β1Xi1 þ β2Xi2 þ :::þ βpXip þ εi ð9Þ

where yi is the dependent variable for observation i, Xi1;Xi2; :::;Xip are the
independent variables (predictors) for observation i, and ε is the error term.
The coefficientβ1; β2; . . . ; βp are the regression coefficients corresponding
to each predictor.

Data availability
The data that support the findings of this study are available from Ookla,
Safegraph, INRIX, Microsoft Building Footprint, and Spectus, Inc., but
restrictions apply to the availability of data from Spectus and INRIX, which
were usedunder license for the current study.Other dataweuse in this study
are all publicly available.

Code availability
The code that supports the findings of this study is available from the
corresponding author upon request.
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