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Breaking records under clear skies: the
impact of sunshine duration and
atmospheric dynamics on the 2024
Eastern European extreme summer

temperatures
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The summer of 2024 marked an unprecedented climatic milestone, with global temperatures
surpassing the 1.5 °C threshold above pre-industrial levels. Eastern Europe emerged as the epicenter
of unprecedented heat, with maximum temperatures exceeding climatological norms by over 5 °C. In
this study we show that this record-breaking event (TX—17% explained. variance) was driven by the
compound influence of atmospheric blocking (Z500—~12% explained variance), exceptional
sunshine duration (SD—13% explained variance), depleted soil moisture (SM—13% explained
variance), and elevated nighttime temperatures (TN—18% explained variance). Using a novel
integration of statistical methods, we establish both co-variability and causality between these drivers
and temperature extremes. Moreover, reduced aerosol concentrations and a decline in total cloud
cover further amplified local surface warming. These results emphasize the increasing vulnerability of
Eastern Europe to extreme heat events, underscoring the urgent need for climate adaptation

strategies and policy interventions to mitigate future risks.

In recent decades, the frequency, intensity, and duration of climate extremes
have increased across many regions, largely in response to anthropogenic
climate change', culminating in 2024, which set a new global temperature
record. More notably, it became the first calendar year to exceed 1.5°C
above pre-industrial levels, crossing the critical threshold identified in the
Paris Agreement’. This milestone underscores the accelerating pace of
global warming, as all ten warmest years on record occurred within the past
decade. Multiple regions worldwide, including Antarctica®’, experienced
record-breaking temperatures in 2024. Across Europe, the 2024 summer
mean temperature was the highest on record, with a temperature anomaly of
+1.54°C relative to the 1991-2020 climatological mean, exceeding the
previous high of +1.34°C from 2022”. In southern Romania, heatwave
conditions persisted for 63 out of 92 days (68% of the summer), making
2024 one of the most prolonged and intense heatwave seasons on record’.

Geopotential height at 500 hPa (Z500) reflects large-scale atmospheric
circulation patterns, which are instrumental in steering weather systems and
fostering conditions conducive to heat extremes. Persistent high-pressure

systems, marked by elevated geopotential heights (i.e., atmospheric block-
ing), are closely tied with prolonged heatwaves®™, extreme events typically
defined as periods of at least three consecutive days with maximum tem-
peratures exceeding the local 90th percentile™"’. Key large-scale circulation
patterns, such as the North Atlantic Oscillation (NAO'") and the European
blocking phenomena'*™* strongly influence temperature regimes across
Europe. A positive NAO phase is typically associated with warmer condi-
tions in northern Europe due to enhanced westerly flow and heat advection,
while negative phases favor cold air incursions in southern Europe'.
Blocking events often lead to clear skies and stagnant air masses, promoting
extreme surface heating. These circulation-driven mechanisms are further
modulated by interactions with surface conditions, including soil moisture
deficits and land-atmosphere feedbacks, all of which contribute to ampli-
fying temperature extremes in vulnerable regions'’. For example, deficits in
root-zone soil moisture have been reportedly shown to precondition the
land surface for heat extremes by suppressing evaporative cooling and
enhancing sensible heat fluxes'®. This land-atmosphere feedback is

"Paleoclimate Dynamics, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany. ?Forest Biometrics Laboratory —Faculty of Forestry,

“Stefan cel Mare” University of Suceava, Suceava, Romania. *Faculty of Physics, University of Bucharest, Bucharest, Romania.

e-mail: Monica.lonita@awi.de

npj Natural Hazards| (2025)2:82


http://crossmark.crossref.org/dialog/?doi=10.1038/s44304-025-00137-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44304-025-00137-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44304-025-00137-9&domain=pdf
mailto:Monica.Ionita@awi.de
www.nature.com/npjnathazards

https://doi.org/10.1038/s44304-025-00137-9

Article

particularly strong over the eastern part of Europe, where summer soils
often enter a “soil-moisture-limited” regime”.

This study investigates the drivers of the exceptional summer heat in
2024 over Eastern Europe. We focus on the interplay between large-scale
atmospheric circulation (represented by Z500), radiative forcing (repre-
sented by sunshine duration, SD), land-atmosphere coupling (reflected by
the volumetric soil moisture, SM) and thermodynamic feedbacks (reflected
in daily minimum temperature, TN) in modulating maximum temperature
(TX) anomalies. We apply a novel approach that combines multivariate
statistical analyses with causal inference methods, and regression models to
better understand the physical interactions responsible for shaping tem-
perature extremes in this region. These insights are crucial for improving
climate resilience and adaptive strategies to mitigate the escalating risks of
extreme heat.

Results

European and global context of summer 2024

The summer of 2024 was characterized by significant regional temperature
anomalies. In Eastern Europe, most of the countries (e.g., Czech Republic,
Hungary, Lithuania, Poland, Romania, Moldova, Ukraine, and Slovakia)
experienced record-breaking summer temperatures (Fig. 1). Meanwhile,
Antarctica also experienced near-record temperatures, up to 46 °C above
average (Fig. S1). These extreme temperatures were observed across all
metrics, including mean, minimum, and maximum daily temperatures
(Figs. 1 and S1). The highest magnitude has been observed for the daily
maximum temperature (Fig. 1f), which was more than +5°C warmer
compared to climatology, especially for the countries situated in the vicinity
of the Black Sea (i.e, Romania, Moldova, and Ukraine). In addition to
record-breaking temperatures, large-scale circulation and the surface
radiation also reached record-breaking levels in summer 2024 (Fig. S2).
Eastern Europe, in particular, experienced an exceptional increase in sun-
shine duration, (Fig. S2a), with up to +240 sunshine hours more compared
to climatology, especially over Romania and Ukraine (Fig. S2b). Further-
more, the geopotential height at 500 mb (Z500) also exhibited record-
breaking values over large parts of the mid-latitudes (Fig. S2c), with Z500
anomalies up to 80 m over the eastern part of Europe (Fig. S2d). ERA5-Land
SM anomalies reveal that Eastern Europe entered summer 2024 with a
record-breaking soil-moisture deficit, especially over Romania and Ukraine
(Fig. S2e). SM values during summer 2024 were below —1.5 ¢ relative to the
1981-2010 climatology (Fig. S2f).

Sunshine duration (SD), a proxy for surface solar radiation (SSR),
directly affects TX by influencing the amount of incoming solar energy
available for surface heating. Its variability depends on cloud cover, aerosol
concentrations, and local meteorological conditions'. In summer 2024,
Eastern Europe experienced record sunshine hours, with up to +240
additional hours above climatological norms (Fig. S2). Since the 1980s,
Europe has experienced a marked increase in SSR, attributed to reductions
in aerosol pollution and cloud cover during the so-called “brightening
period™®". This solar brightening has been linked to a significant intensi-
fication of TX and an increase in the frequency of heat extremes, particularly
during summer months”**'. Regional differences in SD trends, driven by
variations in cloud dynamics and aerosol emissions, highlight the impor-
tance of considering these factors when assessing TX variability. The
interaction between the large-scale atmospheric circulation and SD
amplifies the complexity of TX-related extremes in Europe™ creating a
feedback loop that enhances surface heating and exacerbates heat
extremes”. The daily minimum temperature (TN) plays a significant role in
determining the baseline for daily temperature fluctuations”. High TN
values often exacerbate heatwave conditions by limiting nocturnal cooling,
which amplifies the subsequent day’s maximum temperature’. Overall, the
2024 extreme temperatures had profound environmental and socio-
economic consequences, with the Mauna Loa Observatory recording a jump
of 3.6 ppm in global CO, level, reaching 427 ppm. Moreover, human-caused
climate change added an average of 41 extra days of dangerous heat
worldwide, exacerbating health risks and economic losses’.

Eastern Europe —the warming hotspot in summer 2024

Figure 2 shows a clear trend towards positive anomalies in TX, TN, Z500,
and SD, and negative anomalies in SM and AOT, especially since the
early 2000s. Most of the analyzed parameters (i.e., TX, TN, Z500, and
SD) exhibited record-breaking values during the summer of 2024, par-
ticularly over the eastern part of Europe (Figs. 1 and S2). The temporal
evolution of TX, TN, Z500, SM, and SD time series, averaged over the
regions with record-breaking values (depicted by the gray box in Fig. 1a
for TX, TN, SM, SD, and in Fig. S2¢ for Z500), underscores the excep-
tional nature of summer 2024 in terms of anomalies. The TX anomaly
reached an unprecedented +3.61 °C, surpassing the 2023 anomaly by
+1.9°C (Fig. 2a) while TN reached record-breaking values with an
anomaly of 43.0 °C (Fig. 2b). Atmospheric conditions were equally
extreme, as Z500 anomalies soared by +40 m (Fig. 2¢). During 1950-
mid-1980s the SM time-series shows slightly positive anomalies, con-
sistent with cooler TX/TN and weakly negative Z500 geopotential-
height anomalies (Fig. 2d). From the late-1980s onward, however, SM
turns persistently negative, reaching —0.05 m® m” or lower in multiple
summers after 2000, including in summer 2024 (Fig. 2d). Furthermore,
the solar radiation also reached unprecedented levels, with more than
116 additional sunshine hours above climatological norms (Fig. 2e).
Despite these record-breaking anomalies, summer 2024 was also
marked by negative anomalies in aerosol optical thickness (AOT),
although no records were broken for AOT during this period (Fig. 2f).
Notably, since 2006, only positive anomalies have been recorded for TX,
TN, Z500 (relative to the 1981-2010 climatological mean), and SD
(relative to the 1983-2010 climatological mean). In the case of AOT,
starting from 1994 onwards, only negative anomalies have been recor-
ded (Fig. 2f). The ranking and anomalies of the AOT, shown in Fig.
S3a and S3b, respectively, indicate that AOT was characterized by
extremely low values in summer 2024, especially over the eastern part of
Europe, where the highest amplitude of the negative AOT anomalies was
observed, but no record-breaking observations have been detected (Fig.
$3). Simultaneously over this region, low cloud cover (LCC) was reduced
with ~20% in 2024 (Fig. S3d). Low clouds exert a strong cooling effect by
reflecting solar radiation, and their decline enhanced solar absorption
and reinforced warming**”. This increased incoming solar irradiance
directly raises surface temperatures during the daytime, leading to
higher daily maximum temperatures. The total cloud cover (TCC)
anomaly map for 2024 (Fig. S3f) closely follows the LCC anomaly pat-
tern (Fig. S3¢, d), confirming a substantial decline over Eastern Europe.
The combination of reduced cloud cover, and low AOT led to an
exceptionally clear-sky environment in summer 2024. With fewer low
clouds persisting, the resulting increase in surface solar heating further
intensified the anomalous high temperatures®”. This combined
decrease in low clouds and AOT implies a daytime positive feedback
mechanism” that most likely amplified the record-breaking warming
observed in summer 20247,

Coupled modes of variability
To investigate the coupled variability between summer maximum tem-
perature on one hand and key influencing factors, we employed canonical
correlation analysis (CCA)™, a multivariate statistical method which iden-
tifies pairs of coupled patterns of variability, maximizing the correlation
between their associated temporal evolution (see “Methods” section).
Figure 3 shows the first CCA pair (i.e., CCA1) of TX on the one
hand and summer Z500, summer SD, summer TN, and summer SM on
the other hand. It highlights positive TX anomalies (Fig. 3a, ~17% of
variance explained) over the eastern part of Europe, coupled with an
extended high-pressure system centered over the eastern part of Europe
and a low-pressure system over the central North Atlantic basin (Fig.
3b, ~12% of variance explained), as well as positive SD (Fig. 3¢, ~13% of
variance explained), and TN anomalies (Fig. 3d,~18% of variance
explained), and negative SM anomalies (Fig. 3e, ~13% of variance
explained) over the eastern part of Europe. The year-to-year variations
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Fig. 1 | State of the climate in summer 2024. a Ranking of 2024 (i.e., the mean from
June to August) daily minimum temperature; b the daily minimum temperature

anomaly in summer 2024; (c) as in (a) but for the mean summer temperature; (d) as
in (b) but for the mean summer temperature; (e) as in (a) but for the maximum daily

— o
temperature and (f) as in (b) but for the maximum daily temperature. In (a, ¢, e) “1”
means the warmest summer over the analyzed period (i.e., 1950-2024), and “2”

means the second warmest summer. Rankings below five appear white. In (b, d, f),
the anomalies are computed relatively to the climatological period 1981-2010.

of the normalized temporal components of the first CCA pairs are
shown in Fig. 3f. The two time series are significantly correlated
(r=0.99, 99% significance level), indicating a strong coupled link
between their corresponding patterns. Both CCA1 time series present
strong interannual variability during 1983-2024, along with an overall
trend over the analyzed period. Notably, both time series show that the
summers of 2007, 2012, and 2024 were extreme (i.e., dry and hot). Next
to the 2024 event, both 2007 and 2012 summers were also characterized

by long-lasting heatwaves and droughts and increased frequency of
atmospheric blocking events, over Eastern Europe’ ™.

Causality testing

CCA results suggest that the observed variability in summer TX over eastern
Europe is mainly driven by a combination of both dynamical and ther-
modynamical factors, (e.g., TN, Z500, SM, and SD). However, the CCA
method is based on correlation and therefore does not provide definitive
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Fig. 2 | Climatic anomalies at the regional level.
Summer anomalies averaged over eastern Europe
(i.e., black square in Fig. 1a, c) for a the summer daily
maximum temperature (TX); b the daily minimum
temperature (TN), ¢ the summer geopotential
height anomalies at 500 mb level (Z500) averaged
over the region [15°E - 45°E, 30°N 55°N], d the
summer volumetric soil moisture (SM) averaged

TX Anomaly [°C]

over the region [20°E - 35°E, 40°N - 55°N], e the

summer sunshine duration (SD) averaged over the o
region [20°E - 35°E, 40°N - 55°N] and f) as in e) but [
for the aerosol optical thickness (AOT 550). The %’
anomalies are computed relative to the climatolo- g
gical period 1981-2010 for TN, TX, Z500, SM, and c
AOT and relative to the climatological period ‘zt
198-2010 for SD. =
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information about causal links for its coupled patterns. To address this
limitation, we use the Convergent Cross Mapping method (CCM)™ to test
causality between these drivers (i.e., TN, Z500, SD, and SM) and the summer
TX (see “Methods” for further details).

Figure 4 showcases the main causal directions we tested (Z500, SD, SM,
and TN cause TX), as well as the corresponding causality maps cross-
mapping is performed in the reversed direction of causality to assess the
spatial distribution of causal influence. The cross-mappings from the TX
index to Z500, SM, TN, and SD time series, increases abruptly in accuracy,
quickly attaining a high level of statistically significant cross-map skill. This
high level of convergence (around p = 0.8) manifests across all panels (Fig.
4a, ¢, e, g) and is indicative of a strong causal relation from Z500, SD, SM,
and TN to the TX variable. Correspondingly, all four causality maps have
high levels of CCM across the Eastern European block (Fig. 4b, d, f, h). The

influence is less pronounced in Northern Europe and the far-west continent,
together with the mid-latitude North Atlantic.

Figure S4 contains the reversed directions of causality. The bi-
directionality of the causal signal is usually investigated using time delays in
the CCM calculations, a method dubbed here Time Delay CCM (TDCCM,
see Methods). For example, X may influence Y with a lag of [ =, years (in
which case a peak at [ = —I; appears in the Y xmap X TDCCM) and Y may
influence X with alag of [ = [, years (corresponding to a peak at [ = —, in the
X xmap Y TDCCM representation). This is the case for the Z500-TX, SM-
TX, and TN-TX pairs (Figs. 4 and S4). Convergence is registered in both
directions in these three pairs, meaning a causal-feedback installs between
the two variables. Together, the CCM results of Figs. 4 and S4 reveal four
forcing factors of the maximum temperature index (TX), namely Z500, SD,
SM, and TN.
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Fig. 3 | Dominant coupled mode of variability of summer TX, on the one hand
and Z500/SD/TN/SM on the other. The TX spatial structure of the first CCA pair
(a) explaining 17.09% of variance and its coupled Z500 (b), 11.82% of variance

explained), SD pattern (c), 13.14% of variance explained, TN (d), 18.10% of variance
explained) and SM (e), 13.11% of variance explained). The correlation between their
corresponding time series (f) is 0.99.

The contributors to TX variability are further highlighted by the results
of a simple regression model, where TX is treated as the predictand, and
7500, SM and SD, and TN serve as predictors (Fig. S5). This analysis is based
on the time series presented in Fig.2. In this context, Z500 represents the
effect of large-scale atmospheric circulation, SD reflects the impact of solar
radiation, SM reflects the land-atmosphere coupling, while TN can be
interpreted to some extent as a proxy for the influence of air mass. The
regression model fit (red line) is shown in Fig. S5 alongside observed TX

anomalies (black line). Over the common analysis period (1983-2024), the
regression model attributes 37.4% of the TX variability to TN, followed by
26.2% to 7500, 20.5% to SD, and 15.9% to SM.

Discussion

The summer of 2024 stands out as the warmest on record, with Eastern
Europe emerging as a hotspot of extreme heat anomalies (Figs. S1, S2 and S6,
respectively). From a climatological perspective, persistent high-pressure
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(dark gray areas in (a, ¢, e, h) at the 95th significance levels. Marked grid points in the
CCM maps represent statistically significant cross maps at that grid point under the
Ebisuzaki model. For all CCMs (graph and map), an embedding dimension of E =5
is used and lags between —4 and 0, consistent with an in-phase causal signal nearly
concurrent at monthly resolution.

systems, such as atmospheric blocking, are the primary natural drivers of
extreme summer temperatures, as they are associated with clear skies and
increased solar radiation*'*"’~*. Long-lasting blocking patterns, often linked
to stationary Rossby waves, are widely recognized as major contributors to
European summer heatwaves*'*. Beyond atmospheric blocking, deficits in
root-zone soil moisture have repeatedly been shown to precondition the
land surface for heat extremes by suppressing evaporative cooling and
enhancing sensible-heat fluxes’’. However, the role of SD and TN in

modulating TX variability has received comparatively less attention™***'. In

this study, we focus only on the variables that show record-breaking values
over the eastern part of Europe in 2024: TX, TN, Z500, SM, and SD. While
previous studies have investigated atmospheric circulation anomalies or
land-atmosphere interactions during heatwaves over Europe'*™, our study
presents a novel integration of multivariate statistical analysis (CCA and
regression model) with causal inference methods (CCM and TDCCM).
This combination enables a robust, observational data-driven identification
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of co-varying patterns and causal pathways across atmospheric dynamics,
surface conditions, and radiative processes. In contrast to earlier work*>***,
which often focused on a single driver or relied solely on correlation-based
diagnostics, our approach uncovers the directionality and temporal evolu-
tion of the interactions between these coupled variables, quantifying a
compound influence behind the extreme heat of 2024.

The Z500 spatial structure linked with the 2024 extreme temperatures
indicates that the high-pressure system over the eastern part of Europe
(letter “H” in Fig. 3b) leads to the advection of warm and dry air over the
analyzed region reducing cloud cover and increasing incoming solar
radiation, which in turn favor the occurrence of extremely high tempera-
tures and dry soils, affecting both the TX and TN. Higher TN values may
result in warmer morning conditions, shortening the time required for solar
radiation to warm the surface and consequently driving an increase in TX.
This phenomenon becomes especially significant during heatwaves, where
prolonged clear skies and arid conditions enhance daytime heating’. Studies
based on climate model simulations confirm that surface warming enhances
convective activity, lifting clouds to higher altitudes, thereby emitting less
infrared radiation to space, reducing outgoing longwave cooling and
amplifying surface warming"*. A decrease in aerosol concentrations leads
to areduction in cloud condensation nuclei, which can result in fewer, larger
cloud droplets, ultimately reducing cloud albedo and cloud cover*™.
Consequently, negative AOT anomalies may have contributed to changes in
cloud cover in summer 2014°"*. Our study also underscores the interplay
between large-scale atmospheric dynamics (represented by Z500) and
small-scale thermodynamic contributions (represented by SD) in shaping
extreme heat events and record-breaking temperatures. The observed
drying and the sharp warming in both TX and TN warming after the 2000s
coincide with a regime shift to positive Z500 anomalies that indicate more
frequent blocking highs, and a step-like rise in SD linked to reduced AOT.
These results are also in good alignment with prior studies linking reduced
cloudiness and aerosol concentrations to increased summer temperatures in
Europe'®”>”. Furthermore, reduced TN, often linked to insufficient night-
time cooling, accelerates soil drying through increased evapotranspiration
during the day. Drier soils limit the partitioning of incoming solar energy
into latent heat (via evaporation), thereby increasing sensible heat flux and
further elevating TX'’. A higher TN implies a shallower nocturnal inversion,
weaker radiative cooling, and more turbulent kinetic energy at sunrise.
Consequently, less sensible-heat input is needed to break the inversion and
the daytime boundary layer deepens eatlier, favoring a higher TX*".

CCM and TDCCM point to strong, statistically significant causal links
from Z500, SD, SM, and TN to TX, with skill values exceeding 0.8. Notably,
bidirectional causality exists between TX and both Z500 and TN, indicating
that feedback mechanisms—particularly involving nighttime warming and
atmospheric dynamics—may intensify heat extremes. While unidirectional
causality from SD to TX emphasizes the amplifying role of radiative forcing,
the feedbacks between TN and TX suggest that nocturnal warming limits
nighttime cooling, accelerating surface warming the next day. Additionally,
dry soils and reduced evapotranspiration during such events further
enhance surface heating, reinforcing the atmospheric ridge and maintaining
elevated geopotential heights'®. TDCCM results indicate that the causal
influence from Z500, SD, and soil moisture on temperature anomalies
occurs with minimal lag within the monthly resolution of the analysis.
However, we caution that this apparent simultaneity reflects the coarse
temporal scale of the data and does not exclude the possibility of delayed or
cumulative effects operating at finer temporal resolutions or across seasons.
The regression model shows a high explanatory power, with an adjusted
multiple R* 0f0.99, a mean absolute error (MAE) 0f0.14 °C, and a root mean
square error (RMSE) of 0.18 °C. It successfully captures the primary features
of interannual variability and reproduces the observed upward trend in TX
over the period 1983-2024. The combined influence of TN, Z500, SM, and
SD accounts for 99.1% of the TX anomaly observed in 2024 (i.e., 3.61 °C
observed vs. 3.69 °C predicted by the model). The residuals are approxi-
mately Gaussian, and diagnostic plots reveal no significant violations of the
fundamental assumptions underlying the regression analysis. Over the

common analysis period (1983-2024), the regression model attributes
37.4% of the TX variability to TN, followed by 26.2% to Z500, 20.5% to SD,
and 15.9% to SM.

This study employs an intricate combination of statistical and dyna-
mical methods to disentangle the causal interplay between atmospheric
circulation, surface radiative forcing, and soil moisture deficits, which fueled
the extreme summer temperatures that affected Eastern Europe in 2024. We
find that high-pressure anomalies over Eastern Europe coupled with
enhanced SD, depleted soil moisture, and elevated nighttime temperatures,
produced a persistent/compound warming signal. Causal analysis confirms
that these drivers not only co-vary with maximum temperature, but also
exert directional influence, with evidence for feedbacks between atmo-
spheric dynamics and nocturnal warming. The regression model con-
structed from these variables successfully reproduces the full magnitude of
the 2024 heat anomaly. We highlight caution and the need to consider
multiple, interacting drivers when diagnosing or predicting extreme tem-
perature events. As land—atmosphere coupling intensifies under man-made
warming, the ability of climate models to resolve such compound
mechanisms becomes critical for improving seasonal forecasting and
informing adaptation strategies. The combined statistical-causal frame-
work presented here provides a framework that can be applied to other
extreme events and regions, offering both mechanistic insight and predictive
value for future climate risk assessments.

Methods

Data sources

The daily minimum, mean, and maximum temperature, as well as the
monthly geopotential height at the 500 mb level, the potential evaporation,
the LCC and the TCC have been extracted from the European Center for
Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) dataset™.
The ERA5 global reanalysis dataset, developed by the European Center for
Medium-Range Weather Forecasts, offers a comprehensive climate record
from 1940 to the present. It provides high-resolution hourly data on
atmospheric, land surface, and oceanic wave variables at a spatial resolution
of 31 km. ERA5 has several advantages: (i) it offers high temporal and spatial
resolution, providing hourly estimates ata 31 km spatial resolution, which is
valuable for detailed climate and weather analysis; (ii) the dataset spans over
85 years (at the time of the writing of this manuscript), offering extensive
historical climate records useful for trend analysis and model calibration,
and (iii) it incorporates modern data assimilation techniques, including
four-dimensional variational assimilation (4D-Var), leading to more
accurate reconstructions of past weather. Overall, ERA5 includes a 10-
member ensemble that allows for uncertainty quantification, enhancing
reliability in climate applications. It assimilates multiple data types,
including radiosondes, aircraft reports, satellite observations, and in-situ
measurements, ensuring comprehensive coverage. Improvements in surface
pressure bias correction and tropical cyclone representation have enhanced
data consistency. However, ERA5 also has certain limitations. Due to the
varying availability of observations, data accuracy is higher in later years
(post-1979, when satellite data became available) and less reliable in earlier
periods, especially over the Southern Hemisphere. The absence of upper air
observations before 1946 results in a cold bias in lower stratospheric
temperatures™*°. While improvements have been made, soil moisture still
undergoes long spin-up adjustments, which may affect early hydrological
estimates. Moreover, ERA5 uses prescribed sea-surface temperature (SST)
datasets, which may introduce biases, particularly in earlier periods when
SST measurement techniques were less refined.

We use SD data from the SSR Data Set—Heliosat (SARAH-3) dataset™.
SARAH-3 is the latest edition of a satellite-based climate data record that
provides SSR parameters from 1983 onward with high spatial (0.05° x 0.05°)
and temporal (30-min, daily, and monthly) resolution. It delivers seven key
parameters—global radiation (SIS), direct irradiance (SID), direct normal
irradiance, sunshine duration (SD), photosynthetically active radiation
(PAR), daylight (DAL), and effective cloud albedo (CAL)—using an
improved Heliosat retrieval scheme that incorporates the HelSnow
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algorithm to better distinguish snow from clouds, thereby enhancing
accuracy and temporal stability. Validation against high-quality ground-
based networks such as Baseline Surface Radiation Network and Global
Energy Balance Archive shows small mean biases (around +2 W m™” for
monthly means) and high and significant correlations (exceeding 0.9),
confirming its suitability for climate monitoring and model evaluations. The
SARAH-3 dataset is limited to the region 65°S to 65°N and 65°W to 65°E.
For the current study, we made use of the monthly SD.

The AOT is extracted from the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2). The MERRA-2 AOT at
the 550 nm wavelength included in this study is obtained from a high-
resolution reanalysis dataset (i.e., 0.5° x 0.625° ca. 50 km in the latitudinal
direction, 72 model layers up to 0.01 hPa). The MERRA-2 reanalysis covers
the period from January 1980 up to the present. Developed by the National
Aeronautics and Space Administration’s Global Modeling and Assimilation
Office (NASA GMAO), MERRA-2 is a comprehensive atmospheric rea-
nalysis that spans from 1980 to the present’™”’. It integrates a wide array of
observational data, including satellite-based aerosol observations, to provide
detailed insights into aerosol distributions and their interactions within the
Earth’s climate system. A distinctive feature of MERRA-2 is its assimilation
of bias-corrected AOT measurements from various instruments, such as the
Advanced Very High-Resolution Radiometer, Moderate Resolution Ima-
ging Spectroradiometer aboard the Aqua and Terra satellites, and the Multi-
angle Imaging SpectroRadiometer. This assimilation process ensures that
the reanalysis is well-constrained by observations, enhancing the accuracy of
aerosol representation®®.

Anomalies are computed relative to the 1981-2010 World Meteor-
ological Organization reference period for all variables except SD, which
uses 1983-2010 due to the availability window of the SARAH-3 dataset. A
detailed description of all abbreviations used in the paper can be found in
Table S1.

Canonical correlation analysis

CCA is a multivariate statistical technique used to identify pairs of patterns
with maximum correlation between their associated time series™ based on
the distinction between time evolutions of patterns (where the time series of
consecutive pairs are uncorrelated). In other words, CCA determines the
extent to which two structures, each associated with a variable, are linked. In
this study, we arbitrarily chose to represent TX as a univariate field and
7500, SD, TN, and SM as a combined multivariate field. This approach was
guided by our goal of identifying large-scale atmospheric and radiation
patterns maximally coupled with extreme maximum temperatures.
Therefore, while CCA does not assign predictor or predictand roles in a
strict statistical sense, we structured the analysis to explore how variability in
TX co-evolves with concurrent anomalies in Z500, SD, TN, and SM.
Mathematically, CCA identifies two sets of vectors (one vector for TX and
one for Z500, TN, SD, and SM) in a way that the correlations between the
projections of the variables onto these vectors are mutually maximized. In
order to avoid degeneracy of the covariance matrix, it is recommended to
reduce the number of degrees of freedom prior to CCA®". Therefore, in
CCA, the new variables introduced are the time series of EOFs, with an equal
number of eigenmodes for each variable. Here, we reconstructed the initial
fields (TX/Z500, SD, TN, and SM) based on the first 10 EOF modes, which
explain more than 70% of variance in each field”. CCA has been previously
successfully used in climate research to identify links between large-scale
patterns in temperature, clouds and other key climate variables**’.

Regression analysis

Multiple linear regression models are constructed using a stepwise forward
approach® to allow for a reduction of the number of explaining variables for
models with many explaining variables presented to the initial model.
Model quality is assessed using different metrics such as MAE, RMSE, and
the coefficient of determination or adjusted R* ®. A detailed description of all
metrics is given in the supplementary file (Table S2). Additionally, diag-
nostic plots (not shown), including residuals vs. fitted values, Q-Q plots,

scale-location plots, and residuals vs. leverage, are examined to identify
potential violations of fundamental model assumptions. The regression
equation is:

Y=BO0+pIx1+p2x2+ - +Pnxn+e (1)

Where Y represents the TX index, o, 1, 52,...fn are constants determined
by the least squares procedure, x1, x2,...xn the predictors used (ie., TN,
7500, SM, and SD) and ¢ is the error.

In stepwise regression, each predictor is prioritized, taking into account
its correlation coefficient with the predictand, and is added to the model
gradually. As the predictors are added, the F statistic is used to determine
whether or not they are significant for the final regression equation (F
statistics are set to 0.05 and 0.1, respectively). We choose stepwise regression
because it prioritizes predictors based on the partial correlation, and it is
likely that high and significant correlations will reflect underlying physical
processes. The final equation of the model in our study is given by:

TX = —0.009565458 + TN*0.87 + Z500%0.004717385

+SD*0.010034 + SM* — 9.59 @
To ensure a robust estimation of model skill, we applied three
resampling schemes, namely: Leave-one-out (LOOCV), Five-fold CV and
10-fold CV (see supplementary file for more details)**””. The near-identical
performance across LOOCYV, 5-fold and repeated 10-fold splits indicates
that the high apparent R* is not the artifact of extreme leverage points, and
that the fitted coefficients are stable with respect to resampling. From a
modeling perspective, this small shrinkage suggests that collinearity among
the four predictors does not inflate overfitting to a problematic degree.
Regardless of fold size, the model retains >98% of its explanatory power
when confronted with unseen data (see supplementary file), and the average
loss of fit is <0.6% of variance.

Convergent cross mapping

In order to also assess the spatial distribution of the causal signal from the
three drivers (TN, Z500, and SD), we perform CCM*® from the affected
variable time series (TX) at each grid point to the TN, Z500, and TX. On the
map, we plot the highest level of (statistically significant) cross-map skill.
This way, we obtain a map of causality that complements the regression
map. While the causality map tells us if there is a causal signal at that grid
point, the regression map gives us an approximate sign of this causal signal
(assuming a linear causal relationship). The CCM map is a way to test if the
regression map is causal or just a spurious correlation. The lags chosen are
the maximum-p lags within the embedding vector 7(E — 1) < /< 0 (meaning
we assume in-phase causation at each grid point). Dashed points on the map
represent statistically significant and convergent cross-map skills.

CCM is a technique derived from dynamical systems theory, used to
detect causal relationships in time series data by constructing phase spaces
based on time-delay embedding. If variable X influences variable Y (X — Y),
it is possible to estimate the states of X (the cause) using Y (the effect), as
deterministic systems encode information about causes within their effects.
This approach relies on Takens’ embedding theorem, which asserts that the
dynamics of a system can be reconstructed from time-lagged observations of
a single variable. By creating a multidimensional phase space from Y, it
becomes feasible to cross-map X, with the accuracy of the predictions
reflecting the causal information embedded in Y. Importantly, when X
causes Y, the cross-mapping is performed from Y to X. To ensure that the
cross-mapping is not driven by coincidental correlations, it is crucial to
establish convergence. Convergence demonstrates that cross-map skill,
measured by the Pearson correlation between predicted and actual time
series, improves as the library length (amount of data used) increases. This
improvement, which approaches a limit as the library length grows, signifies
the effective extraction of causal information. Thus, the combination of
cross-mapping and convergence serves as a robust criterion for causality™.
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In many cases, causality involves time delays, so performing cross-
mapping with a lag can optimize the detection of causal signals. By keeping
the library length fixed and varying the lag, one can determine the lag that
maximizes cross-map skill, a process known as time-delayed convergent
cross mapping (TDCCM)®™®. Because prediction occurs from effect to
cause, the optimal lag should be negative; finding a peak at a positive lag
would contradict the principle that causes precede effects and could indicate
spurious correlations or unidirectional slave dynamics. After identifying the
optimal negative lag using TDCCM, convergence is verified through CCM
at that lag. Selecting the embedding dimension (E) follows a similar process,
where cross-mapping is performed across different values of E to identify the
one that maximizes cross-map skill. Once the optimal embedding dimen-
sion is determined, TDCCM is carried out, followed by CCM at the iden-
tified lag. TDCCM results show two close peaks at negative lags for these
pairs. However, these lags fall within the embedding vector 7(E — 1) <1< 0
(where 7= 1is the embeddinglag, E = 5 is the embedding dimension, and /is
the causal lag), showing an in-phase causal signal from Z500, SM, and TN to
TX. The TX xmap SD link also shows convergence and statistical sig-
nificance (Fig. 4c) and the TDCCM representation (Fig. S4d) would imply at
first glance a bidirectional causal signal. However, SD is less likely to be
influenced by TX. This asymmetry in the causal signal is revealed in the
shape of the convergence curve in the reversed direction of causality, TX
causes SD (SD xmap TX, Fig. S4c).

Data availability
The datasets used in this study are publicly available and are referenced
throughout the paper.
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