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Interpretable machine learning
incorporating major lithology for regional
landslide warning in northern and eastern
Guangdong
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Landslides pose major risks in northern and eastern Guangdong, China, due to complex geology and
heavy rainfall. Traditional models often oversimplify lithology and lack interpretability. This study
develops a lithology-specific random forest model that distinguishes between sedimentary and
igneous rocks and integrates rainfall, geological, and geotechnical data. Using 754 landslide cases
and 1233 rainfall records, the model achieves over 90% hit rate and below 4% false alarm rate.
Interpretable machine learning techniques, including feature importance rankings, SHAP values, and
partial dependence plots, are used to understand how different factors contribute to landslide
occurrence. A case study from the 2024 Pingyuan landslides confirms the model’s real-world
applicability. This framework offers improved prediction performance and interpretability and can
serve as a robust tool for regional early warning and risk management in geologically diverse areas.

Landslides, those occurring in mountainous regions, pose severe threats to
human life and infrastructure worldwide1. In regions like northern and
eastern Guangdong, China, a complex interplay of geological and climatic
factors heightens this risk2. Here, intricate granitic landscapes, combined
with the subtropical monsoon climate, create conditions that are especially
prone to slope failures. Intense rainfall events, such as those during the
“Dragon-boat Rain” period3, further exacerbate landslide susceptibility,
underscoring the urgent need for effective risk assessment and mitigation
strategies. Historical incidents have repeatedly demonstrated the vulner-
ability of these landscapes to rainfall-induced landslides, reinforcing the
importance of refined, data-driven predictive frameworks4.

Conventional approaches to landslide prediction include physically
basedmodels, empirical rainfall thresholds, and statistical learningmethods.
Physically basedmodels5–8 simulate hydrological andgeotechnical processes
controlling slope stability, but their data and calibration requirements often
limit large-scale application. Empirical or statistical models, such as those
based on rainfall intensity-duration thresholds9–14, have been widely adop-
ted due to their simplicity and lower data demand, yet they typically assume
uniform geological conditions and neglect lithological variability. While
these methods have provided valuable insights, their applicability in

geologically diverse regions like Guangdong remains limited. Such models
rarely account for the nuanced geological and geotechnical characteristics of
the terrain. For example, the intricate properties of granite residual soils—
prevalent in the study area—are oftenoversimplified, reducing the reliability
of predictions15,16. Furthermore, the lack of attention to model validation
and uncertainty quantification further limits the reliability of many tradi-
tional methods17,18. These challenges hinder the effectiveness of traditional
methods, as they struggle to capture the dynamic interactions between
varied lithologies, complex geological structures, and fluctuating climatic
conditions.

Recent advances inmachine learning (ML) techniques offer promising
alternatives to these conventional approaches19–22. By integrating diverse
datasets—ranging from lithological and geological information to meteor-
ological patterns and historical landslide records—ML-based models can
identify complex, non-linear relationships and yield more accurate, site-
specific predictions. Algorithms such as logistic regression, random forest,
and neural networks have successfully improved the performance of land-
slide prediction or warning, demonstrating their capability to incorporate
multiple influencing factors into cohesive predictive frameworks23–26. This
paradigm shift is particularly relevant in regions like northern and eastern
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Guangdong, where the geological conditions demand more sophisticated
analytical methods.

Despite these advancements, many ML approaches still oversimplify
lithology, typically treating it as a single input feature. This abstraction fails
to capture the distinct responses of various lithological types to infiltration,
weathering, shear stresses, and other geomechanical processes27. A one-size-
fits-allmodel overlooks the subtle but critical differences between rock types
and their evolving responses to environmental triggers, undermining pre-
dictive accuracy and limiting the utility of such models in heterogeneous
landscapes.

Another significant challenge in current machine learning appli-
cations is the issue of black-box models, which offer limited interpret-
ability. These models often operate as opaque systems that provide little
insight into the reasoning behind their predictions28, particularly when
models may conflate main controls with secondary environmental
variables. This lack of transparency complicates model validation,
debugging, and trust-building, especially in domains where under-
standing the relationship between input features and outcomes is crucial,
such as geomechanics and environmental sciences. Therefore, achieving
a balance between high predictive performance and interpretability
remains a key hurdle in the development ofmachine learningmodels that
can be effectively applied to complex, real-world problems29. Techniques
such as SHAP (SHapley Additive exPlanations) and Partial Dependence
Plots (PDP) offer partial solutions by quantifying feature impacts and
visualizing variable interactions30–32.

In this context, our study employs a Random Forest (RF) algorithm to
improve landslide early warning capabilities for northern and eastern
Guangdong. We focus on two predominant lithologies—igneous and
sedimentary rocks—to account for their unique mechanical and hydro-
logical behaviors. By incorporating detailed lithological information, geo-
logical environment factors, geotechnical properties, rainfall data, and
historical landslide records, our approach selects theRFmodel from various
machine learningmethods for its ability to handle complex, non-linear data
relationships. Moreover, explainable artificial intelligence such as feature
importance analysis, SHAP and PDP were embedded into the RF model.
Through this interpretable lithology-specific modeling, we aim to enhance
both the accuracy and reliability of short-term landslide predictions, pro-
viding amorenuancedunderstandingof landslidemechanismsandoffering
valuable insights for improved geohazard management in geologically
diverse regions.

Results
Exploratory data analysis
The data analysis focuses on investigating the statistical distributions and
relationships of geotechnical and geological parameters with lithology to
establish its significance as an independent factor in modeling.

To examine the data comprehensively, we began by analyzing the
distribution of each feature (Fig. 1). Histograms revealed that most features
exhibit unimodal distributions, although their symmetry and spread vary.
For example, features such as water content and internal friction angle
demonstrate near-symmetric distributions, suggesting quasi-normal beha-
vior. However, certain parameters, including compression coefficient and
slope length, exhibit pronounced skewness, indicating potential non-linear
relationships or the presence of outliers. This variability highlights the need
for more advanced approaches to ensure robust modeling.

The distributions of each feature under two major lithologies are
shown in Fig. 2. A comparative analysis of these distributions highlights
significant variability in geotechnical properties and geological metrics
between igneous and sedimentary lithologies. To quantify lithology-
dependent contrasts, we applied two-sample Wilcoxon rank-sum tests
(for medians) and Student’s t-tests (for means) to each non-rainfall feature,
comparing igneous and sedimentary groups. These formal tests yielded
large test statistics with p-values < 0.05 for all features (most ≪ 0.001),
supporting that the differences observed in Fig. 2 are statistically significant
and reflect robust lithological effects rather than random variation.

Sedimentary rocks exhibit higher water content due to secondary
porosity from fractures and weathering, which enhances their permeability
and water retention. Their lower compression coefficient and cohesion are
linked to weaker cementation and a more granular structure, leading to
lower shear strength andcompressive resistance33. In contrast, igneous rocks
typically have lower water content, not only due to their dense crystalline
structure but also because of fewer fractures, althoughweathering can create
void spaces that affect permeability. The data also show higher plasticity
index and internal friction angle, reflecting the strong interlocking of
mineral crystals in granitic rocks, which enhances theirmechanical strength
and resistance to deformation34. These findings also suggest the reason why
sedimentary rock landslides are more frequent than igneous rock events.

Slope geometry further reflects lithological influences, with sedimen-
tary formations associated with longer, more confined slopes and igneous
formations forming steeper, broader slopes due to differences in material
strength and erosion resistance. Aspect distributions, however, appear less
affected by lithology, likely influencedmore by regional tectonics or climate.
These findings underline the necessity of using lithology as an additional
prerequisite to differentiate models. By accounting for the specific
mechanical behaviors and morphological patterns associated with each
lithology, suchmodels canmore accurately capture the interactions between
material properties and failure mechanisms.

To assess the independence and interrelationship of the features, we
assumed all variables follow independent continuous Gaussian distributions
and then calculated Pearson correlation coefficients for each pair of features
(Fig. 3). Pearson correlation measures the strength and direction of linear
relationshipsbetweenvariables,withvalues ranging from−1 (perfect negative

Fig. 1 | Feature distribution across the dataset. Histogram plots show the frequency distribution of each non-rainfall feature across all samples.
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correlation) to 1 (perfect positive correlation). The results indicated that most
features exhibited weak correlations (absolute values below 0.3), while a few
pairs showed moderate correlations (absolute values between 0.3 and 0.5).

We also calculated the variance Inflation Factor (VIF) for each input
variable to ensure the independence of the predictors. VIF is a statistical
measure used to assess the degree of multicollinearity in regression models.
As a rule of thumb, a VIF value greater than 10 suggests significant multi-
collinearity.We found that all variables had aVIF value below 10, indicating
that multicollinearity is not a significant issue in our work. While some
moderate multicollinearity (5 < VIF < 10) was detected among certain fea-
tures, such as slope and water content, this is expected in terrain modeling
and does not compromise the model’s validity or performance, especially
given the robustness of tree-based algorithms. The findings suggest that
these features can be considered independent, providing a robust founda-
tion for subsequent modeling and offering insights into potential
mechanisms underlying landslide occurrences.

Comparison of machine learning models
To select the most appropriate method for our landslide prediction model,
we compared multiple ML models, including Logistic Regression (LR),

SupportVectorMachine (SVM),RandomForest (RF), andArtificialNeural
Network (ANN). Here, we adopt a broad definition ofML, under which LR
is included as a baseline classifier for binary prediction tasks. At this stage,
lithology was not differentiated but treated as a categorical feature encoded
into the dataset for training. Since somemodels require data normalization,
we applied Z-score standardization to ensure all features were on a
comparable scale.

We use the ROC curve to evaluate the models’ performance (Fig. 4).
The RF model outperformed all others with an AUC of 0.98, indicating
its superior performance. The ANNmodel followed closely behind, with
the SVM model showing competitive results as well. However, the LR
model performed the weakest across all metrics. This outcome suggests
that while LR is simple and easy to use, it struggles with more complex
problems compared to advanced algorithms. The RF model’s robust
handling of complex data and high-dimensional features makes it the
most suitable choice for this task. Given the promising results of SVM
and ANN, these models could also be useful for highly demanding
classification tasks, but based on our comparison, we chose RF to
enhance the accuracy and reliability of landslide early warning
predictions.

Fig. 3 | Correlation matrix of feature pairs.WCwater content, PI plasticity index,
CC compression coefficient, IFA internal friction angle, C cohesion, SH slope height,
SW slope width, SL slope length, S slope, A aspect.

Fig. 4 | ROC curves of machine-learning models. ROC curves compare the per-
formance of the four machine-learning models on the testing set. The area under
each curve (AUC) quantifies predictive skill.

Fig. 2 | Feature variability by lithology type. Box plots display the distribution of each non-rainfall feature, grouped by lithology type (igneous and sedimentary). Boxes
represent interquartile ranges, horizontal lines indicate medians, whiskers extend to 1.5× the interquartile range, and points denote outliers.
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Model training and results
For igneous lithology, we randomly divided the dataset of 2184 entries into
an 80% training set and a 20% testing set. Utilizing the Bayesian optimi-
zation algorithm combined with ten-fold cross-validation, we determined
the optimal set of hyperparameters. The default output threshold for the RF
classifier is set at 0.5. Considering the specific policies of our study area, it is
prudent to issue warnings and take preventive measures when the relative
probability of a landslide occurring exceeds 0.4. Therefore, we adjusted the
threshold to 0.4 tomatch the threshold specified by thewarning center. This
adjustment means that when the model predicts the probability of an event
occurring to be over 0.4, it is classified as a positive instance (indicating a
prediction of occurrence). Conversely, predictions falling below this
threshold are considered negative instances (indicating a prediction of non-
occurrence). This adjustment enhances the model’s relevance and respon-
siveness to the specific risk tolerance and safety requirements of the
study area.

The efficacy of the RF model in predicting landslides based on an
integrated analysis of precipitation, geological environment, and geo-
technical mechanics features is underscored by the confusion matrix (Fig.
5a). This matrix visualizes the predictive accuracy of machine learning
models, clearly depicting their performance in classifying events correctly.
Based on the confusion matrix, we derived several key numerical metrics
(Fig. 5b). On the testing dataset, the model achieved a f1 score of 0.9071, an
accuracy of 96.11%, a hit rate of 94.3%, amiss rate of 5.7%, and a false alarm

rate of only 3.4%. This indicates that the model performs well, with only
three misses and four false alarms in numerical terms.

In addition to the confusion matrix, the Receiver Operating Char-
acteristic (ROC) curve (Fig. 5c) and thePrecision-Recall (PR) curve (Fig. 5d)
provide further insights into the model’s predictive capabilities. With an
AreaUnder the ROCCurve (AUC) of 0.989 and anAverage Precision (AP)
of 0.965, the model demonstrates excellent generalization ability. In sum-
mary, the model has been well-trained and exhibits robust performance.

For sedimentary lithology, we also randomly divided the dataset of
4899 entries into an 80% training set and a 20% testing set. Using the same
approach,wedetermined theoptimal set of hyperparameters.On the testing
dataset, themodel achieved a f1 score of 0.9114, an accuracy of 97.14%, a hit
rate of 90.6%, amiss rate of 9.4%, and a false alarm rate of 1.6%, resulting in
only three missed and twelve false alarms numerically. Additionally, the
model performed well with an AUC of 0.992 and an AP of 0.974 (Fig. 6).
Both models, for igneous and sedimentary lithologies, demonstrated satis-
factory performance, indicating their readiness for practical application in
landslide prediction and early warning systems.

Global Interpretability of RF model
The Random Forest (RF) algorithm includes a built-in feature importance
measure35, which quantifies the contribution of each feature to the model’s
predictive power. This measure ranks predictive variables based on their
usefulness in making accurate predictions, thereby providing valuable

Fig. 5 | Numerical and graphical evaluations of the igneous model. a The con-
fusion matrixes. b The confusion matrixes normalized over the true conditions.
Accuracies are displayed on the title, with the bottom-right element representing the

hit rate, the bottom-left element representing the miss rate, and the top-right ele-
ment representing the false alarm rate. c, d ROC curve and PR curve.
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insights into the key factors contributing to landslides (see Fig. 7). This
global explanation helps to understand the overall contribution of each
feature across all predictions. Feature importance is calculated based on the
decrease in impurity caused by each feature across all trees in the forest.
Features that result in larger decreases in impurity are considered more
important. Thismetric not only aids in understanding themodel but also in

feature selection and optimization by highlighting which features are most
influential in predicting the target output.

SHAP also provides a similar feature importance ranking through the
use of summary beeswarm plots (Fig. 8). These plots offer an intuitive
visualization of how each feature contributes to themodel’s predictions. In a
beeswarm plot, the horizontal axis represents the SHAP values of each

Fig. 6 | Numerical and graphical evaluations of the sedimentary model. Format same as the igneous results in Fig. 5.

Fig. 7 | RF features importance by lithology. a Rankings for igneous lithology. b Rankings for sedimentary lithology. Bar length indicates the relative contribution of each
feature to model predictions.
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sample for the corresponding feature.ASHAPvalue greater than0 indicates
that the feature has a positive contribution to predicting a landslide, while a
SHAP value less than 0 suggests a negative contribution to the prediction.
The color encoding in the plot indicates the feature value, with colors
ranging from low to high values, providing insight into how the magnitude
of the feature value influences the prediction. This visualization helps to
identify not only which features are important but also how their specific
values affect the model’s predictions in different samples.

The discrepancy between the feature importance rankings in Fig. 7 (RF
model) and Fig. 8 (SHAP analysis) arises from the different mechanisms
used by these two techniques. RF importance provides a global view of
feature significance based on overall model performance, while SHAP
values offer a local, instance-level explanation, revealing how individual
feature values contribute to specific predictions. Despite slight differences in
the ranking, themost important 8 to 10 features identified by bothmethods
are largely consistent, reflecting a similar overall mechanism. The use of
SHAP for generating PDPs in the next section was specifically chosen
because it provides a more detailed, localized understanding of feature
contributions, which is crucial for interpreting the varying influence of
features under different conditions.

SHAP decision heatmaps are another powerful global explanation tool
that helps visualize the relationship between feature contributions and
model predictions across the entire dataset (Fig. 9). In a SHAP decision
heatmap, thehorizontal axis represents the test set samples for landslidedata
after hierarchical clustering, grouping similar samples together. The color
encoding indicates themagnitude of the SHAP values for each feature, with

warmer colors representing higher SHAP values and cooler colors indi-
cating lower contributions. The vertical axis displays the various features,
while the baseline, denoted as f(x), represents themodel’s default prediction
before considering the specific feature contributions. If the resulting output
curve is above the baseline, the model predicts a landslide, otherwise the
model predicts non-landslide.

The heatmap shows how each feature’s contribution varies across the
testing set, with warmer colors indicating higher contributions to landslide
prediction. The figure highlights the importance of specific features, such as
precipitation and geotechnical factors, and showshow these features interact
with one another in influencing the model’s output.While precipitation is a
dominant factor in predicting landslide occurrences, non-precipitation
factors serve as important modifiers that can adjust the risk levels based on
the unique characteristics of the terrain, geotechnical properties, and slope
conditions. This will highlight the complexity of themodel and the interplay
between various factors influencing landslide predictions.

Precipitation factors unsurprisingly emerged as the most influential
features in ourmodel,with rainfall on the dayof the event being significantly
more important than other variables. The combined importance of pre-
cipitation features over a three-day span account for more than half of the
total importance. This underscores the dominance of rainfall in triggering
landslides in the studied region.However, it is equally important tonote that
non-precipitation factors also played a crucial supportive role. These factors
were able to significantly adjust the influence of precipitation in certain
cases, correcting for situations where the rainfalls alone overstated or
understated the landslide risk.

Fig. 8 | SHAP summary beeswarm plots. a Igneous lithology and b sedimentary lithology on testing set. Each point represents a SHAP value for a single prediction, colored
by the feature value (blue = low, red = high), summarizing overall feature influence.

Fig. 9 | SHAP decision heatmaps. a Igneous lithology and b sedimentary lithology on testing set. Heatmaps display SHAP values across samples (rows) and features
(columns), where color intensity indicates positive or negative contributions to predicted probability.
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Sedimentary rocks typically exhibit higher porosity and permeability
compared to igneous rocks, making them highly susceptible to infiltration
during rainfall events. This infiltration can elevate pore water pressure and
significantly reduce effective stress, leading to a decrease in shear strength
and eventual slope failure36. Moreover, the sensitivity of sedimentary rocks
to precipitation can be linked to their composition, which often includes
clay-rich materials prone to swelling and softening under wet conditions37.

In contrast, igneous rock landslides show a slightly lower cumulative
importance for precipitation factors. The relatively low porosity and higher
intact strength of igneous rocks diminish the direct influence of rainfall on
slope stability. Instead, precipitation’s effect is more indirect, such as
through increased slope weight or localized saturation zones. Nevertheless,
rainfall continues to play a significant role in igneous rock landslides. We
propose that the higher degree of weathering observed in the igneous rocks
within the study areahave enhanced their sensitivity to rainfall, resulting in a
greater vulnerability to precipitation-induced instability than would typi-
cally be observed in less weathered, more intact igneous materials38.

The mechanical stability of igneous slopes is predominantly governed
by their strength and structural integrity. Water content is particularly
influential, as localized saturation canweakendiscrete planes ofweakness or
fault zones39. Additionally, terrain attributes such as slope height and aspect
directly affect the gravitational driving forces, making them critical in high-
steep terrain typically associated with igneous rocks. The role of internal
friction angle and cohesion further reflects the strength-dependent nature of
igneous rock landslides, where failure occurs primarily through structural or
planar mechanisms. The relatively stable structure of igneous rocks con-
tributes to the confidence and stability of model predictions. This structural
consistency results in less variability in themodel’s output, as the predictable
nature of themechanical properties in igneous slopes reduces uncertainty in
landslide susceptibility.

For sedimentary rocks, slope length, in particular, is a key factor as it
determines the extent ofwater infiltrationandaccumulationalong the slope,
which can destabilize the material over time. The plasticity index’s high
importance is indicative of the clay-rich composition of many sedimentary
rocks, which exhibit significant shear strength reduction when wet. The
compression coefficient reflects the compressibility of sedimentary mate-
rials under loading or wetting, further contributing to slope failure. These
factors collectively suggest that sedimentary landslides are strongly influ-
enced by hydrological processes and material properties that control their
response to water.

These findings reveal distinct landslide mechanisms in our study
region: igneous rock landslides are predominantly terrain- and strength-
controlled, with failure modes involving structural instability, while sedi-
mentary rock landslides are more water-driven, with mechanisms influ-
enced by hydrological processes and material weakening.

Local Interpretability from features
To further interpret the model, we perform local Interpretability at the
feature levels. The three most influential non-precipitation features will be
focusedonusingPDP,which illustrate the relationshipbetweeneach feature
and landslide occurrence, as well as their interactions.

For igneous model, the three key features are water content, cohesion,
and slope height. A decrease inwater content below 26% is associatedwith a
marked increase in landslide dependency, suggesting that lowwater content
increases thematerial’s apparent cohesion.Higher cohesion (above 29KPa)
and increased slope height (above 12 meters) are linked to a significantly
higher likelihood of landslides, as shown in Fig. 10. These results highlight
the importance of the degree of weathering in the igneous rocks of the study
area. The higher apparent cohesion in weathered igneous rocks, which is
primarily due tomatrix suctionorweak cementation, can appear substantial
under dry conditions but significantly decreases upon wetting or dis-
turbance, making the slope more susceptible to failure. Additionally, the
combinationof slopeheight and cohesionplays a critical role in the landslide
risk, especially when the material’s strength is reduced or the slope is very
steep40.

The sedimentary rock PDP reveals a different set of relationships
(Fig. 11).Thekey featureshere are slope length, aspect, andslope. Slope length
and aspect are both negatively correlated with landslide dependency. Speci-
fically, when slope length exceeds~25meters, the aspect of the slope becomes
the dominant factor influencing landslide risk. Aspect is primarily deter-
mined by the terrain’s orientation, which governs water drainage and sun
exposure—two factors that significantly affect slope stability. Slope angle also
plays a crucial role in landslide prediction with relatively high dependency
throughout the entire range. For steep slopes, the risk of failure increases a bit
due to potential sliding along bedding planes or jointed structures, where the
potential slip surface is less steep than the slope itself, facilitating sliding. For
gentler slopes, the risk slightly increasesdue to the formationofperchedwater
tables on low-permeability layers, which leads to an increase in pore pressure
andmaterial weakening. This can result in translational sliding alongweak or
residual failure surfaces, contributing to the observed landslide dependency41.

These findings clearly demonstrate that non-precipitation features
have a greater influence on landslide prediction in igneous rocks than in
sedimentary rocks. This further underscores the idea that igneous rock
slopes exhibit a lower dependency on precipitation compared to sedimen-
tary rock slopes, highlighting the distinct behaviors of these two rock types
in landslide susceptibility.

Graded warning model performance comparison
Since 2003, China has progressively implemented regional landslide
meteorological warning services, achieving notable success in disaster pre-
vention and mitigation42. In alignment with the Technical Guidelines for
Meteorological Risk Early Warning of Geological Hazards at the Municipal
Level inGuangdong Province, we classify the landslide warning probabilities
based onmodel predictions. For an output probability P ≤ 20%, nowarning
is issued (indicated as a gray warning); for P > 20% and P ≤ 40%, a blue
warning is issued; for P > 40% and P ≤ 60%, a yellowwarning is dispatched;
for P > 60% and P ≤ 80%, an orange warning is released; and for P > 80%, a
red warning is proclaimed, signaling the highest level of alert.

To demonstrate the advantages of our approach, we compared it with
two traditional statistical models: the implicit statistical warning model and
the explicit statistical warning model. The implicit model categorizes pre-
cipitation into different ranges by calculating early effective precipitation
amounts:

Rp ¼ kR1 þ k2R2 þ . . .þ knRn ð1Þ

where Rp is the amount of precipitation that impacts landslides during the
precipitation process prior to their occurrence, Rn is the daily precipitation
on thenth daybefore,n is thenumber of effective precipitationdays, and k is
the effective precipitation coefficient set to 0.84. Corresponding warnings
are issued based on the rangewithinwhich the precipitation falls43. Building
on this, the explicit model incorporates geological environmental factors
and employs Principal Component Analysis (PCA) to extract main com-
ponents that account for a total contribution rate of 90%. It calculates a
potentiality score for each landslide point44,45. These scores, combined with
effective precipitation, are then used to delineate warning levels:

T ¼ G � ðRd þ RpÞ ð2Þ

whereG is thepotentiality score fromgeological environment,Rd is thedaily
precipitation on the day of the landslide occurrence, and Rp is the early
effective precipitation amount.

In evaluating ourmodel’s effectiveness,we conducted a comprehensive
comparison across the testing dataset against traditional statisticalmethods,
which utilize all landslide points for analysis. To facilitate a nuanced
examination, tests were conducted separately on positive and negative cases
across different lithologies, calculating hit rates and false alarm rates for
each. It is noteworthy that blue warnings, typically issued online without
subsequent action, are classified as non-landslide indicators in our analysis.
The results (see Fig. 12) reveal that our RF model significantly outperforms
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Fig. 10 | Igneous PDPs of the most important three non-precipitation features. Top are relationships between features and landslide probability. Bottom are synergistic
effects of features on landslide probability. Color bar on the right represents the probability predicted by the RF model.

Fig. 11 | Sedimentary PDPs of the most important three non-precipitation features. Format same as the igneous PDPs in Fig. 10.
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the traditional statistical models in both igneous and sedimentary rock
regions, delivering higher hit rates (94.32% and 90.57%) and lower false
alarm rates (3.44% and 1.58%). Furthermore, the accuracy in tier classifi-
cation is markedly improved; for positive cases, our model predominantly
issues red or orange warnings, indicative of an imminent landslide. Con-
versely, for negative cases, it almost exclusively issues gray or blue warnings,
denoting a negligible risk of occurrence.

Application on rainfall-induced landslides in Pingyuan County in
June 2024
Pingyuan County, located in northeastern Guangdong, China, experienced
severe rainfall-induced landslides on June 16, 2024. This event led to sig-
nificant fatalities and economic losses, with rainfall reaching up to 360mm
in a single day. The region’s steep terrain, granite lithology, and prolonged
rainfall contributed to the widespread slope failures, highlighting the vul-
nerability of the area to monsoon-driven landslides46.

Pingyuan County is situated within our study area, and there are three
available rainfall gauge stations in the region (Fig. 13a). For this application,
we utilized daily rainfall data from June 1 to June 16, 2024, from these
stations. Using the corresponding lithology-based RFmodel, we conducted
landslide predictions for this period by a 5-day window to assess the prac-
tical feasibility of ourmethod in a real-world setting. Themodel issued daily
warnings from June 5, confirming its potential to predict landslides and
assist in early disaster prevention.

During the period leading up to the landslides, when rainfall had not
yet reached extreme levels, the model did show a small number of false

alarms (Fig. 13b). These occurred due to slight increases in rainfall on the
days when the 5-day sliding windowwas updated. However, it is important
to note that these false alarms were all within the yellow warning level,
meaning they were relatively low-risk predictions and were quickly cor-
rected as the rainfall data progressed.

On June16, as rainfall levels surged, all three stations issuedwarnings at
or above the orange level, which closely aligned with the significant increase
inprecipitationon that day.Notably, thefinalwarning levels andprobability
values varied across the stations, and upon closer examination, we found
that these differences corresponded well with the number of landslides
within the warning zone of each station. This suggests that the model was
effectively accounting for both the intensity of the rainfall and the local
topographic factors, enhancing its ability to provide tailored and reliable
early warnings for landslides. This case study serves as a validation of our
approach and demonstrates its applicability in real-world landslide
forecasting.

Discussion
In order to assess the effectiveness of the lithology-basedmodel construction
and the incorporation of geotechnical parameters—factors typically not
considered separately or included in traditional methods—a series of
comparative experiments were conducted under four distinct scenarios:
1. Withoutdistinguishing lithology andwithout geotechnical parameters.
2. Withoutdistinguishing lithologybut includinggeotechnical parameters.
3. Distinguishing lithology but without geotechnical parameters.
4. Distinguishing lithology and including geotechnical parameters.

Fig. 12 | Comparison of graded warning performance between RFmodel used in
this study, implicit statistical model, and explicit statistical model. a Results on
positive samples of igneous lithology, with hit rates in the legend. b Results on

negative samples of igneous lithology, with false alarm rates in the legend. c, d Same
as (a) and (b) but for sedimentary lithology.
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The same data preprocessing and feature selection methods were
applied across all scenarios to ensure fair comparison, and the models that
distinguishes lithology will take the average of the performance metrics for
comparison. Scenarios 1 and 3 excluded geotechnical parameters, while
scenarios 2 and 4 included them. Additionally, scenarios 1 and 2 did not
account for distinguishing lithology, with the models trained and tested on
the entire dataset andwith lithology as one of the input features. Scenarios 3
and 4, however, constructed and testedmodels based on specific lithological
types (igneous and sedimentary rocks), respectively. The consolidated
performance metrics for each scenario are presented in Table 1.

The results of these experiments indicate that incorporating geo-
technical parameters enhances model performance, with marked increases
in accuracy and decreases in false alarm rate, regardless of lithology dis-
tinction. This underscores the critical importance of geotechnical data in
accurately predicting landslides. Models that differentiate lithology
demonstrate superior performance compared to those that do not,
achieving higher accuracy and lower false alarm rate. The most effective
model configuration is achieved when both lithology and geotechnical
parameters are included, resulting in the highest accuracy, f1 score and hit
rate, and the lowest miss and false alarm rates, as shown in the final con-
figuration of Table 1.

These findings validate the approach of integrating lithology and
geotechnical parameters in the model. This comprehensive method sig-
nificantly enhances the accuracy and reliability of landslide prediction,
offering valuable insights for early warning systems and risk mitigation
strategies in geologically diverse regions.

To further interpret the model, we perform local Interpretability at
sample levels. We create two individual waterfall plots for a landslide and a
non-landslide case (Fig. 14). These plots clearly illustrate how the model
independently predicts each sample and the impact of each feature on the
target variable. The two cases are particularly insightful because they

highlight situations where precipitation features give misleading predic-
tions, and non-precipitation features step in to correct the model’s output.
This further emphasizes the important role of geological and geotechnical
parameters in refining the model’s predictions.

The use of rain gauge stations as the primary source for precipitation
data presents notable limitations in landslide warning systems. The spatial
resolutionof this data is inherently low,making it challenging topinpoint the
exact locations of potential landslides. This limitation significantly affects the
system’s ability to provide localized early warnings, as the heterogeneity of
rainfall distribution within a region cannot be accurately captured47. Addi-
tionally, the temporal resolution of the data, often constrained to daily
measurements, impedes the system’s capability to issue precise warnings on
an hourly basis. The uncertainty surrounding the exact timing of landslides
complicates timely intervention.Toaddress these limitations, the integration
of satellite meteorological data offers a promising alternative48. Satellite data
can provide higher spatial and temporal resolution, enabling more accurate
assessments of precipitationpatterns over specific areas of interest. Adopting
such data could substantially enhance the system’s predictive accuracy,
allowing for more timely and localized warnings.

Accurately determining geological and geotechnical factors for land-
slides is challenging due to reliance on interpolation methods to fill data
gaps. While these methods are invaluable for creating continuous surfaces
from discrete points, they inherently assume that environmental properties
change smoothly across space. This assumption can lead to significant
inaccuracies in areas where geological features exhibit abrupt changes, such
as fault lines or regions with varied rock types49. The interpolated data may
not accurately represent the complex geological conditions that critically
influence landslide susceptibility. One potential improvement involves
integrating high-resolution geospatial data, such as LiDAR (LightDetection
and Ranging) and InSAR (Interferometric Synthetic Aperture Radar)
imagery50,51. These technologies can provide detailed topographical and
geological information, offering insights into surface deformations, slope
stability, and rock layer orientations. Additionally, advancements in geos-
tatistical methods, such as kriging with external drift52 ormachine learning-
based interpolation techniques53, could offer more nuanced approaches to
modeling geological variability. Implementing these technologies and
methods would enhance the spatial accuracy of geological and geotechnical
factors, thereby improving the early warning system’s predictive capacity.

Additionally, this study’s analysis was constrained by data availability,
prompting the simplification of lithological diversity into two broad cate-
gories. While this approach supported a more robust model due to
improved data balance, it also overlooked the finer-scale variability inherent
in specific rock types.Different lithologies can exhibit substantial differences

Table 1 | Performance metrics for different model
configurations

Condition Accuracy F1-Score Hit rate Miss rate False
alarm rate

1 93.79% 0.81 77.3% 22.7% 2.7%

2 94.78% 0.85 81.8% 18.2% 2.5%

3 94.88% 0.86 85.4% 14.6% 2.7%

4 96.63% 0.91 92.45% 7.55% 2.5%

Bold values represent the best performance.

Fig. 13 | Application in Pingyuan. a Lithology, rainfall stations, and landslide dis-
tribution inPingyuanCounty (upper right corner indicates the county’s locationwithin
the study area). b Daily landslide warning probabilities for the three rainfall stations

from June 1 to June 16, 2024, based on the sliding 5-daywindow. The blue, orange, and
green lines represent the Igneous (G1688) and Sedimentary (G5058, G1687) litholo-
gies, respectively,with color-coded thresholdsmarking landslidewarning probabilities.
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in geotechnical properties, influencing the mechanical and hydrological
behavior of the derived soils. Future efforts should aim to collect more
extensive and detailed datasets, ultimately enabling the development of
more finely tuned, lithology-specific models. Such models would better
capture the subtle variations in rock and soil properties, improving our
understanding of landslide processes and enhancing the precision of
landslide prediction and mitigation strategies.

While the proposed method shows promise for landslide early warn-
ing, there are several limitations that need to be addressed for improved
practical application in real-world scenarios. One key limitation is the
current definition of rainfall events, which is based on a fixed 5-daywindow
and may not fully capture the dynamic nature of rainfall-triggered land-
slides. Future improvements could involve adopting more advanced,
objective methods for defining rainfall events, potentially incorporating
real-time rainfall thresholds and dynamic models that account for spatial
and temporal variations14. Additionally, integrating weather forecast data
into the model could significantly enhance its predictive capabilities by
providing more accurate earlier warnings, particularly in rapidly changing
weather conditions. Another avenue for improvement is the integration of
landslide susceptibilitymaps54–56, which couldbeused to assess the reliability
of the warnings by considering the spatial distribution of landslides. This
combined approach would not only improve the model’s accuracy but also
help prioritize areas with higher susceptibility, making the early warning
system more targeted and effective for disaster mitigation. Based on both
empirical evidence and data limitations, tectonic processes, seismic activity,
and variations in rockmass quality were not explicitly incorporated into the
analysis, assuming that the study area is relatively tectonically stable, seis-
mically inactive, and exhibits uniformly high rock mass quality57,58. How-
ever, these factors could still play an important role in landslide
susceptibility59,60. Future research that incorporates detailed fracture char-
acteristics, tectonic activity, and seismic factors, along with lithology and
geotechnical properties, could enhance the robustness of landslide hazard
predictions.

Building on the abovefindings, this studydemonstrates the potential of
a machine learning-based approach—specifically, a RFmodel—to enhance
landslide prediction in northern and eastern Guangdong. By integrating a
broad spectrum of data sources, including rainfall records, geological fac-
tors, and geotechnical properties, we achieved significant improvements in
prediction accuracy and reduced false alarms compared to conventional
statistical methods. A notable advancement lies in moving beyond
lithology-agnostic models to incorporate geological and geotechnical
variability. While this study simplified lithological categories into twomain
types (igneous and sedimentary), this step acknowledges the critical influ-
ence of lithology on landslide behavior.

In addition to improving performance, the use of interpretability tools
such as feature importance rankings, SHAP values, and partial dependence
plots helped clarify the underlying mechanisms driving predictions. These
insights improve model transparency and facilitate better understanding of

howbothprecipitation andnon-precipitation factors contribute to landslide
occurrence, strengthening stakeholder trust in model outputs.

Future research, supported by more detailed lithological data, can
further refine this approach. Nonetheless, the proposed lithology-informed
framework already offers substantial benefits for regional landslide early
warning systems and provides a practical foundation for more targeted
disaster risk reduction strategies.

Methods
Study area
The study area spans the northern and eastern regions of Guangdong
Province, China, including the cities of Qingyuan, Shaoguan, Heyuan, and
Meizhou (Fig. 15). Geologically, this area is characterized by widespread
distributions of both igneous and sedimentary rocks (Fig. 16a), resulting in a
distinctive stratigraphy. At the surface, loose and permeable weathered soils
blanket more rigid, less permeable rock strata61. These weathered soils
contain abundant capillary pores, which promote rainfall infiltration and
consequently reduce the shear strength of the soil and underlying rock
layers.

The region’s stratigraphy can be further categorized to capture its
lithological diversity (Fig. 16). Sedimentary rocks comprise four main
groups: sandstone and conglomerate, shale andmudstone, carbonate rocks,
and red clastic rocks. Similarly, igneous rocks are represented by granite,
migmatitic granite, granodiorite, and volcanic clastic rocks. Overlying these
bedrock units, colluvial soils—formed through rainfall-induced erosion and
downslope sediment transport—accumulate along slopemidsections and at
slope bases62. These colluvial soils containwell-developedpores andfissures,
which facilitate rapid infiltration of rainwater and subsequent reductions in
soil strength. Such conditions significantly enhance the susceptibility of the
area to landslides.

Although multiple subtypes of igneous and sedimentary rocks exist in
the study area, the data distribution across these detailed lithologies is highly
imbalanced (Fig. 16b). As summarized in Table 2, most individual lithol-
ogies lack sufficient event records for robustmodel training. To address this
limitation, we consolidated these subtypes into two broader lithological
categories—sedimentary rocks and igneous rocks—for the purpose of
model development. This simplification ensures more sufficient datasets
and enhances the reliability of the subsequent modeling and analysis.

The topography of our study area is primarily mountainous and hilly,
accounting for over 60% of the terrain and characterized by extensive, steep
slopes63. Slopes exceeding a certainmeter in height with gradients above 45°
are particularly prone to landslide hazards, a common feature in this region.
Such steep slopes, especially those composed of sedimentary rocks, aremore
susceptible to instability under gravitational forces, significantly increasing
the likelihood of landslides and posing a constant threat to the region64. The
interaction between geomorphological and geological conditions creates a
dynamic environmentwhere evenminor triggers, such as heavy rainfall, can
lead to substantial slope failures and subsequent landslides65.

Fig. 14 | SHAP waterfall plots for representative samples. a Landslide sample and b non-landslide sample. The y-axis of is the feature value, the x-axis is the SHAP value,
E[f(x)] presents the expectation of all sales, and f(x) represents the predicted probability.
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Climatically, the region falls within the subtropical humid climate
zone, experiencing cold, dry winters and hot, rainy summers. The intense
rainfall, particularly during the “Dragon-boat Rain” season from late spring
to early summer, synergizes with numerous rivers and abundant ground-
water. This combination significantly enhances rainwater penetration,
increasing pore water pressure in soils and rocks, impacting the geological
environment, and heightening the risk of landslides66. The combination of

heavy rainfall and the hydrogeological context creates conditions conducive
to soil saturation and slope instability67. Together, these factors exacerbate
the likelihood of landslides (Fig. 17), posing a significant threat to the
region’s safety and infrastructure.

Data preprocessing
Our dataset compiles rainfall-induced landslides—most of which are clas-
sified as earth slides—with relatively accurate records of onset times in the
study area from 2013 to 2022. The occurrence of these landslides results
from a complex interplay among rainfall conditions, geological environ-
ments, and geotechnical parameters. While traditional warning models
often only consider these factors in isolation, our approach integrates them
to enable a more comprehensive analysis.

Rainfall has been widely recognized as the primary trigger for most
landslides in the study area. Rainfall data were collected from rain gauge
stations located within a 10 km radius of each landslide site. Given the
limited temporal resolution of the landslide occurrence records, we ana-
lyzed daily rainfall data and considered the cumulative precipitation for
each of the five days preceding each event. This approach accounts for the
effect of antecedent rainfall and yields five separate rainfall-related fea-
tures. The five-day window represents a compromise between practical
experience and the time frames commonly adopted by local monitoring

Fig. 15 | Topographic background and adminis-
trative division map of the study area. The inset
map shows the location of the study area.

Fig. 16 | Lithology maps. a Landslide inventory in the study area with the rain gauge stations and drilling points. The lithology of the geological background is shown in
different colors. b Relatively detailed distribution map of geological lithology, with red dots indicating landslide events.

Table 2 | Statistics of landslide event records under various
lithologies

Geological categories Geological subcategories Quantity

Sedimentary Red clastic rocks 87

Sandstone & Conglomerate 605

Shale & Mudstone 30

Carbonate rocks 72

Igneous Granite 322

Migmatitic granite 68

Granodiorite 29

Volcanic clastic rocks 20
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agencies68,69, ensuring consistency inmodel inputs forML-based landslide
warning systems.

Geological environment data describes the background conditions of
the sample points, encompassing six features: slope height, slope width,
slope length, slope, aspect, and lithology. Geotechnical parameters, derived
from 1386 drilling points in the study area, include five features: water
content, plasticity index, compression coefficient, internal friction angle,
and cohesion, which are a set of key parameters selected to reduce high
correlation and extract the most representative parameters for landslide
prediction,which are both independent and can comprehensively reflect the
mechanical and hydrological characteristics of soil. In this study, “rock” is
used as a general term to represent bedrock lithology, but under strong
weathering these rocks often degrade into saprolite or colluvium layer and
behave more like soils, which justifies the use of geotechnical parameters
such as the plasticity index.

Crucially, landslide warning is treated as a binary classification pro-
blem, with outputs labeled as occurrence (1) or non-occurrence (0). Our
dataset contains both positive (landslide points) and negative (non-land-
slide points) samples. Positive samples were selected from a historical
inventory, requiring precise spatial and temporal coordinates andproximity
(within 10 km) to a rain gauge station. Following these criteria, we identified
754 landslide events between May 2013 and November 2022. For each
event, data from up to three nearby rain gauges provided daily precipitation
for the preceding five days.

We then spatially overlaid these positive samples with the geological
and geotechnical data (Fig. 16a) to extract relevant features. For point-
distributed attributes like drilling data, we used local weighted regression
interpolation for different lithologies to estimate values at landslide
locations.

Data cleaningwas a crucial part of thedataset constructionprocess.We
removed positive samples where the five-day precipitation preceding the
landslide was nearly zero, as this was inconsistent with the known rainfall-
triggeringpatterns. Since the landslide inventory explicitly records rainfall as
a trigger, such cases were potentially caused by instrument malfunctions or
localized events. Additionally, we manually corrected anomalies in the
geological and geotechnical data: obvious recording errors, such as missing
decimal points or exceeding valid limits, will be corrected or removed. This
rigorous cleaning process yielded a final set of 1233 high-quality positive
records, providing a robust foundation for analysis andmodel development.

We define negative samples as points where no landslides occurred.
Since these points are not directly available and precipitation is a primary
trigger for landslides, we derived negative samples through random

sampling, using positive samples and rain gauge stations as references while
applying specific spatial-temporal constraints.

For spatial sampling, we refined a technique commonly used in
geological hazard risk assessment70,71. Specifically, we created 10 km
buffer zones around each rain gauge station associated with positive
samples. Within these buffer zones, we randomly sampled five points per
buffer zone to serve as negative samples, which reflects a tradeoff between
the limitation of rainfall data and the inherent class imbalance. Any
samples that fell outside the study area were discarded, resulting in a total
of 5850 negative samples with an approximate 1:5 ratio of positive to
negative samples (Fig. 18). Geological and geotechnical features were
obtained through spatial overlay analysis, consistent with the process
used for positive samples.

Then for temporal sampling, due to the confidentiality and availability
of the complete rainfall data,we useda 5-daywindow to slide over the 9days
of rainfall data prior to the landslide event, obtaining approximately five
times the amount of negative sample rainfall data. This approach simulates
the daily continuous monitoring of rainfall leading up to a landslide event
and enables the issuance of a warning on the day of the event. While this
method inevitably introduces some correlation with the landslide, Fig. 19
shows that the negative samples exhibit a good degree of coverage and
diversity. This helps ensure significant variability among the negative
samples, which aligns with real-world scenarios.

Random Forest model
The Random Forest (RF) algorithm is a versatile machine learning
technique72 whose performance surpasses several other machine learning
algorithms. This approach effectively mitigates overfitting, a common
limitation of single decision trees, by aggregating diverse predictions from
multiple trees, each developed from a random subset of training data and
features73,74. This ensemble method enhances the model’s robustness and
accuracy, making it well-suited for complex geological phenomena.

Feature selection is crucial for accuracy of RF. We utilized Bayesian
optimization75 for efficient hyperparameter tuning. This method incre-
mentally refines hyperparameters: n_estimators, max_depth, and min_-
samples_split—to optimize the RF model’s performance. In evaluating the
performance of our binary classificationRFmodel, we adopt amulti-faceted
set ofmetrics to comprehensively capture themodel’s predictive capabilities.

Accuracy is defined as the proportion of true predictions (both posi-
tives and negatives) out of all predictions:

Acc ¼ TP þ TN
TPþ TN þ FP þ FN

ð3Þ

where TP denotes true positives (correctly predicted occurrences), TN
represents true negatives (correctly predicted non-occurrences), FP denotes
false positives (predicted occurrences that did not occur), FN represents
false negatives (predicted non-occurrences that did occur). Although
intuitive, accuracy may not always reflect the model’s performance
accurately in unbalanced settings. Therefore, we delve deeper into the
model’s predictive efficiency through the hit rate (or recall), whichmeasures
the model’s ability to correctly identify actual positives, and the miss rate
(false negative rate, FNR), indicating the proportion of positives missed by
the model. Furthermore, the false alarm rate quantifies the ratio of
incorrectly predicted positives among the actual negatives, helping to assess
the model’s precision:

hit rate ¼ TP
TP þ FN

ð4Þ

miss rate ¼ FN
TPþ FN

¼ 1� hit rate ð5Þ

false alarm rate ¼ FP
FP þ TN

ð6Þ

Fig. 17 | Relationship between the number of landslides and their occurrence
months in our study area from 2013 to 2022. The annual average monthly rainfall
data is sourced from the yearbooks of the four cities in 2023, which reflect the average
rainfall for the past ten years (2013–2022).
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Additionally, to offer a more balanced evaluation of the model’s perfor-
mance, we include the F1-Score, which is the harmonic mean of precision
and recall. The F1-Score is particularly useful in unbalanced datasets, as it
gives amore comprehensive view of themodel’s ability to both identify true
positives and avoid false positives:

F1� Score ¼ 2 × Precision×Recall
Precisionþ Recall

ð7Þ

where Recall is the same as hit rate and Precision is the ratio of true positives
to all predicted positives:

Precision ¼ TP
TP þ FP

ð8Þ

The Receiver Operating Characteristic (ROC) curve, which plots the true
positive rate (TPR, or sensitivity) against the false positive rate (FPR, or 1-
specificity), and the area under this curve (AUC) serve as primary indicators
of model performance across all possible classification thresholds76. The
AUC value, where a higher score indicates better performance, provides an
aggregated measure of the model’s ability to discriminate between classes.
Additionally, the Precision-Recall (PR) curve, which plots precision against
recall, and its corresponding area under the curve (AP), is particularly
insightful in the context of imbalanced datasets, offering a focused view on
the model’s success in identifying the positive class amidst a majority of
negative instances. This comprehensive evaluation framework, under-
pinned by both numerical and graphical analyses, enables a holistic
understanding of the model’s strengths and limitations, guiding us toward
refined predictive applications.

Data availability
Data will be made available upon reasonable request.
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