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Spintronic memristors for computing
Check for updates

Qiming Shao1,2 , Zhongrui Wang2,3 , Yan Zhou4 , Shunsuke Fukami5, Damien Querlioz6 &
Leon O. Chua7

The ever-increasing amount of data from ubiquitous smart devices fosters data-centric and cognitive
algorithms. Traditional digital computer systems have separate logic and memory units, resulting in a
huge delay and energy cost for implementing these algorithms. Memristors are programmable
resistors with a memory, providing a paradigm-shifting approach towards creating intelligent
hardware systems tohandle data-centric tasks. Spintronic nanodevices arepromising choicesas they
are high-speed, low-power, highly scalable, robust, and capable of constructing dynamic complex
systems. In this Review, we survey spintronic devices from a memristor point of view. We introduce
spintronic memristors based on magnetic tunnel junctions, nanomagnet ensemble, domain walls,
topological spin textures, and spin waves, which represent dramatically different state spaces. They
can exhibit steady, oscillatory, stochastic, and chaotic trajectories in their state spaces, which have
been exploited for in-memory logic, neuromorphic computing, stochastic and chaos computing.
Finally, we discuss challenges and trends in realizing large-scale spintronic memristive systems for
practical applications.

The unprecedented development of artificial intelligence (AI), big data, and
internet of things (IoTs) has redefined the concept of computing. To meet
the ever-growing demands of computing performance, the hardware is
expected to have more stringent requirements for computing throughput,
power consumption, and form factor. This poses a great challenge to con-
ventional complementary metal-oxide-semiconductor (CMOS) digital
computing systems. Their physically separate memory and processing units
lead to frequent data shuttling, which incurs large time latency and energy
consumption, the so-called von Neumann bottleneck. In addition, the
scaling of transistors is becoming increasingly cost-ineffective as the size of a
transistor approaches its physical limit, which makes performance
improvement of digital computing systems even more challenging. Thus,
fundamental changes to thebuildingblocksof our computers are imperative.

Spintronic devices provide a transformative solution for computing.
Recent flourish of research on spintronic physics, materials, devices, and
applications renders spintronics as one of the most topical fields in physics.
Besides spin-transfer torque (STT)1, newly discovered switching mechan-
isms in the past 15 years include spin-orbit torque (SOT)2,3 and voltage
control of magnetic anisotropy (VCMA)4. Beyond conventional ferro-
magnetic materials, ferrimagnet5–8, antiferromagnet9–11, topological
materials12, and two-dimensional (2D)materials13–15 have been employed in

spintronic devices. In addition to spintronic memory applications16,17,
magnetic tunnel junctions (MTJs)18,19, domain wall devices20,21, skyrmion
devices22–24, spin wave devices25, and stochastic devices26 are under heavy
investigations for computing applications, such as brain-inspired
computing27–30, digital logics17,31 and stochastic computing26,32. Quite a few
important results of spintronics for computinghavebeendemonstrated. For
example, spintronic devices are capable of storing and processing infor-
mation in a bio-inspired manner based on underlying physical laws, which
naturally overcome the von Neumann bottleneck and achieve better effi-
ciency for brain-inspired computing18,19,33–35. Its nonvolatile nature can also
be leveraged to perform Boolean logic-in-memory, which maymitigate the
scaling bottleneck of transistors36–38. In addition, spintronic devices may
work as probabilistic bits (P-bits), a concept bridging the gap of classical bits
and quantum bits (Q-bits), for energy-efficient stochastic computing26,32.
This rapid development of spintronic computing is further augmented by
the fast commercialization of STT-magneto-resistive random-access
memory (STT-MRAM) by major foundries such as Samsung, Intel, Glo-
balFoundries and Taiwan Semiconductor Manufacturing Company
(TSMC). It demands a unified and seamless integration of theoretical fra-
meworksof spintronics, electronics, and computer science,which is yet to be
developed.
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To address this demand,we employ thememristor framework that has
been extensively applied in describing generic nonlinear dynamic systems
and unconventional computing circuits. The memristor framework has
been successfully applied to redox resistive switches back in 200839, one of
the leading hardware contenders to revolutionize AI. Memristor-based
computing has been extensively reported40–48 and actively pursued by
information technology giants. So far, memristive dynamics have been
observed at the nanoscale empowered by different physics, for example,
redox reactions39,41, phase-transition in chalcogenide glasses49,50 and Mott
materials51,52, ferroelectric tunnel junctions53 and notably, spintronics28,54.
Unlike other memristive technologies, spintronic devices benefit from not
dependingonatomicmovement, contributing to their remarkable reliability
and durability. Existing reviews provide a general comparison between
spintronic memristors and other types of memristors29,45,46,55. We list the
comparison ofmain advantages, key challenges, PPA (power, performance,
area), near-term and long-term potentials for MRAM, resistive random-
access memory (RRAM), and phase-change memory (PCM) in Table 1.
There are recent review papers on spintronic devices for computing56–61,
which focus on either a few types of spintronic devices or a few application
areas. In this review, we comprehensively present five state-space repre-
sentations of spintronic devices from a memristor point of view for com-
puting with four types of memristive dynamics.

We first show that the fundamental principles behind spintronicsmeet
the criteria of memristors, forging the basis of spintronic memristor-based
computing schemes. We then employ the circuit theory to examine the
spintronic devices in terms of state space (vector, 2D vector array, 1D
complex field, 2D/3D scalar field, and 2D/3D complex field) and stability of
their dynamics or trajectories in state space (convergence, oscillation, sto-
chasticity, and chaos), a manifestation of the underlying physics and
materials.Afterwards,wediscuss how these properties synergistically lead to
various computing applications including digital logic, AI computing,
neuromorphic applications, stochastic and chaos computing. At last, we
discuss the perspectives, challenges and point out potential research
directions.

Spintronic nanodevices as memristors
Most spintronic nanodevices are memristors62–65, as the dynamics for the
internal state—magnetization, are governedby theLandau–Lifshitz–Gilbert
(LLG) equation, and their output is proportional to the input with a coef-
ficient that is dependent on themagnetization (Box 1). The changing rate of
the magnetization (or state) depends on the torques applied to the mag-
netization. Such spin torques originate from the applied magnetic field,
current-induced STT and SOT, VCMA, and thermal fluctuation. For STT,
the spin-polarized current is generated by passing current through the fixed
layer, which exerts spin torques on the magnetization of the free layer
(Fig. 1a). SOT can be generated by a nonmagnetic layer with spin-orbit
coupling that is adjacent to the free layer (Fig. 1a). VCMA modulates the
magnetization by changing the magnetic anisotropy of the free layer with a
minimal current (Fig. 1a). In addition to these tunable knobs, thermal

fluctuation acts as an effective source of randomness to the magnetization.
The magnetization, or state, can be acquired through magnetoresistance
effects (such as giant magnetoresistance and tunnel magnetoresistance),
Hall effects (such as anomalous Hall effect), magneto-optical effects, and
spin-to-charge conversion effects. To show the memristor nature of spin-
tronic nanodevices, we consider a first-order current-controlledmemristive
spintronic system of a nanoscale MTJ with perpendicular magnetic aniso-
tropy under the excitation of current-induced STT (Box 2). The internal
state,magnetization, dependson thehistoryof the input current.Theoutput
voltage is the product of the magnetization-dependent MTJ resistance and
the input current. As such, the MTJ meets the two criteria for being a
memristor (Fig. 1b, c)63. First, when the input is zero, the output is zero,
resulting in a pinched hysteresis loop in the voltage-current phase plane.
Second, as the drive current frequency increases to infinity, the system
becomes linear in the phase plane. The same principle applies to complex
spintronic systems, such as nanomagnet ensemble, domain walls, topolo-
gical spin textures, and spin waves (Box 2). Because these complex systems
feature high-dimensional internal states, they are essentially high-order
memristive systemswith a larger numberof state variables that canmanifest
steady, oscillatory, stochastic, and even chaotic dynamics. These complex
dynamics at the nanoscale share a strong analogy with that of synapses and
neurons in the brain, and may be used for brain-inspired computing, logic
circuits, stochastic, and chaos-based computers (Fig. 1d). We note that in a
realistic memristor-based computing system, researchers need to adopt a
mixed-signal hybrid approach as the read and control of the memristor is
done at the clock frequency, which can be potentially described by a discrete
model66–68. When the time step approaches zero (or when the clock fre-
quency approaches infinity), the discretemodel becomes continuous. In one
recent reviewondynamicmemristors for higher-complexity neuromorphic
computing, memristors with different orders (numbers of state variables)
and their applicationswerenicely reviewed69. In the review, only spin-torque
nano-oscillators were briefly mentioned as second-order memristors. We
will show below that spintronic memristors can exhibit a variety of orders
and dynamic behaviors.

State space of spintronic memristors
The state-space representations of spintronic memristors include state
vectors for nanomagnets/macrospins, vector lattices for nanomagnet
ensemble/multi-domainmagnets, 1D vector fields for domainwalls, 2D/3D
vector fields for skyrmions and other solitons, and 2D vector fields for spin
waves/magnons. While the state space has, in general, a large number of
state variables, due to thermodynamic stability constraints and limitations
of writing/readingmethods, the state space is reduced to a lower number of
state variables as we elaborate below.

NanoscaleMTJs,where themagnetization is in the single-domain state,
are the representative model of a nanomagnet or macrospin, because the
exchange interaction is strong enough to align all spins in the samedirection.
Therefore, the macrospin model can be used to approximate the statics and
dynamics of collective atomic spins to high accuracy. The state is described

Table 1 | Comparison of MRAM, RRAM, and PCM. Note that main advantages and key challenges are based on ref. 55

Technology Main advantages Key challenges PPA (power,
performance, area)
metrics

Near term potential Long term potential

MRAM ● High performance
● Well-understood physics
● Novel mechanisms (e.g., SHE,
VCMA) to extend capabilities

● Reducing
IC/Δ(power-stability
tradeoff)

● Fabrication cost

● Good power
● Excellent performance
● Ok area

● High-endurance
embedded memory

● Cache memory
● High-performance/high-
endurance in-memory
computing

RRAM ● Simplicity and cost
● High density
● Versatile materials, structures,
and behaviours

● Reliability
● Variations

● Good power
● Good performance
● Excellent area

● Low-cost high-density
embedded memory

● High-density on-chip memory
● Low-cost in-memory computing

PCM ● Maturity
● Proven performance

● Reliability
● Disturbance
●High switching power

● Ok power
● Good performance
● Excellent area

● Embedded memory ● High-density on-chip memory
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by a single magnetization vector m of the free layer (Fig. 2a). The unit
magnetizationvector ism ¼ ðmx;my;mzÞ ¼ ðsin θ cosφ; sin θ sinφ; cos θÞ
with two interdependent magnetization components (two out of x, y, and z
orθ andφ), and thus theMTJ is a second-ordermemristor. Theproperties of
theseMTJs arewell explainedby theLLGequation shown inBox1.The state
of a MTJ can be controlled by many knobs, such as magnetic field, electric
current, microwavemagnetic field or current, heat current, etc., usingmany
physical effects, such as Zeeman torque, STT, SOT, VCMA, stochastic
thermal field, spin-Seebeck effect, etc. Typical binary switching of a MTJ is
the foundation of today’s MRAM technologies, where the readout is
achieved through the TMR effect (Fig. 2b)70. Note that the binary switching
does notmean that the state variable, like the polar angle ofmagnetization θ,
must take discrete values of 0 or π in a perpendicularMTJ. The binary states
are governed by perpendicular magnetic anisotropy and can be electrically
controlled only by a small current, which is required inmemory technology
due to the required thermal stability at room temperature and low-power
writing. Continuous change of the state variable like azimuthal angle φ is
needed for many applications, such as spin-torque nano-oscillators71,72 and

magnetic sensors73. For magnetic sensing based on in-plane MTJ, the state
variable is tunedby themagneticfield tobedetected in an analog fashion and
measured by the MTJ resistance73.

When the size of a MTJ gets larger, the entire magnetization of a
magnetic free layer breaks down into multiple domains74. Thus, the state
space becomes a vector lattice consisting of many magnetization vectors at
discrete spatial sites. The characteristic size of this transition from macro-
spin to a multi-domain state mainly depends on the competition of
exchange energy and anisotropy energy, which, in turn, are determined by
the geometry, material and structure parameters of the MTJ. In this sense,
the number of available states is tunable. Besides, in special cases like fer-
romagnet/antiferromagnet heterostructures, the fine grains of the anti-
ferromagneticmaterial can causeadistributionof exchangebias, resulting in
a multi-domain state75. The multi-domain magnet or nanomagnet
ensemble state can be described by a few coupled and discrete macrospin
models (Fig. 2c). If one only considers the analog resistance of the MTJ, a
single averaged magnetization vector can be used to phenomenologically
describe the state (Fig. 2d)75, which canbe controlled bymany knobs like the

Box 1 | Memristor and spintronicmemristive systems

Memristor is conceptualized by Leon Chua to describe the missing
relation between flux and charge62. Chua and Kang then redefined them
as a form of nonlinear dynamic systems, with no connection to magnetic
flux63.Memristors differ fromother commonly seen circuit buildingblocks
suchas resistors, capacitors, diodes, and transistors in the sense that the
output signals of the latter are functions of their instantaneous input
signals, or they do not possess internal state variables. However, mem-
ristors, as a generic nonlinear dynamic system, have their outputs
depending on internal state variables, making their outputs reflecting the
history of input signals. This can be translated to the evolution, usually a
first-order differential equation over the state vector s tð Þ, and transport
equations in the state space constituted by dynamic variables64,270:

ds
dt

¼ fðs;u; tÞ and y ¼ gðs; u; tÞu

where u tð Þ and y tð Þ are input and output vectors of the system, respec-
tively. These equations equip memristors with two unique features that
are (i) zero-crossing in time-domain figure or pinched hysteretic loop in
the space formed by u tð Þ and y tð Þ and (ii) frequency dependence of the
pinched loops63. The dimension of state vector s tð Þ is the order of the
memristive system. In general, higher-order systems enable rich
dynamics. For example, first-order and second-order systems do not
allow for chaotic dynamics whereas the third- or higher-order systems
allow for it51.

We explain the two features of memristive systems using an example
of a first-order current-controlled memristive system. Its evolution and
transport equations can be written as dRðtÞ

dt ¼ f Ið Þ and VðtÞ ¼ RðtÞIðtÞ,
respectively, where I is the input drive current, R is the resistance, andV is
the voltage on the memristor. Here, the memristive system is first order
since the internal state R is scalar. As an example, we consider a model
that f Ið Þ ¼ αIwhen I is smaller than a threshold value and f Ið Þ ¼ βIwhen I is
larger than a threshold value. Moreover, R is bounded between the
maximum and minimum values. Assume I ¼ I0 sinωt, we can get corre-
sponding voltage response as a function of time. In the time domain,
when the drive current is zero, the voltage is always zero, resulting in
many zero-crossing points. This is the first feature of a memristive sys-
tem. To better illustrate this feature, researchers plot the trajectories of
voltage versus current in the phase space - Lissajous curves (Fig. 1c).
These hysteresis loops are called “pinched” since they resemble the
pinched shoelace. The second feature is the frequency dependence:

when the frequencygoes infinite, amemristive systembehavesasa linear
resistor. When we increase the drive current frequency, the hysteresis
becomes less apparent and the curves become more linear (Fig. 1c).

It has been observed in previous works that many spintronic devices
have exhibited memristor-like behaviors65. Here, we re-interpret the
Landau–Lifshitz–Gilbert (LLG) equation fromamemristor point of view179.
In the model structure—a MTJ, we describe this nonlinear dynamic
system by evolution equations incorporating STT, SOT, VCMA and
thermal fluctuation (Fig. 1a):

dm
dt

¼ �γ0m× Heff þ HVCMA Ið Þ þ Hth

� �� αγ0m×m×

Heff þ HVCMA Ið Þ þ Hth

� �þ γ0HDL
STT Ið Þm×mp ×

mþ γ0HFL
STT Ið Þm×mp þ γ0HDL

SOT Ið Þm× σ ×mþ γ0HFL
SOT Ið Þm× σ;

wherem is the unitmagnetization vector of themagnetic free layer, I is the

current, γ
0 ¼ γ= 1þ α2

� �
and γ is the gyromagnetic ratio, Heff is the

effective field including contributions from the external field, exchange
bias field, exchange field, and anisotropy field in the absence of an
external voltage or current, HVCMA Ið Þ is the VCMA field, Hth is the sto-
chastic thermal field, and α is the Gilbert damping constant. Note that
VCMA can be written as a function of current since the applied current is

directly related to the applied voltage through the Ohm’s law.HDL
STT Ið Þ and

HFL
STT Ið Þ are the effective fields arising from current-induced damping-like

and field-like STTs, respectively.mp is the magnetization vector of the

magnetic pinned/reference layer.HDL
SOT Ið Þ andHFL

SOT Ið Þ are current-induced
damping-like and field-like SOT effective fields, respectively. σ is the spin
polarization vector induced by the current.

The generalized transport equation builds on magnetoresistance
effects (such as giant magnetoresistance and tunnel magnetoresis-
tance), Hall effects (such as anomalous Hall effect), magneto-optical
effects, and spin-to-charge conversion effects. In a MTJ, the statem of
the magnetic free layer can be electrically read out using the tunnel
magnetoresistance (TMR) effect, where TMR ratio is defined as
RAP � RP

� �
=RP, where RAP and RP are resistance states whenm andmp

are anti-parallel and parallel, respectively. The low-bias voltage v as a
function of the current can be written as
V tð Þ ¼ RP þ RAP � RP

� �
1� cos θ m;mp

� �� �
=2

� � � I tð Þ, where θ m;mp

� �
is

the angle betweenm andmp.
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macrospin case. However, since the coupling of magnetic domains and
parameters of individual domains are hard to control in this naturally
formed multi-domain state, one can assemble multiple single-domain
nanomagnets in an array to create an artificial spin ice76 for applications. In
this case, the state of individual nanomagnets and the coupling between
them in a nanomagnet ensemble can be in principle precisely controlled. By
doing this, one can truly utilize the strength of coupling in addition to the
multiple states in the nanomagnet ensemble system. The magnetization
vector lattice can be read out through the magneto-optical Kerr effect
(MOKE)76 or a magnetoresistance effect77.

A domain wall forms between two domains with opposite directions
(Fig. 2e). Electrical current can drive domain walls, which make them sui-
table for racetrack memory78. Current-driven domain wall motion is also
used to create nonvolatile magnetic logic circuits20. In a thin-film racetrack,
the state of a 180° domainwall can be described by them x; ϕ

� �
, where the x

indicates the position in a one-dimensional (1D) space and the ϕ is mag-
netization angle of the domainwall.ϕ ¼ 0 describes aNéeldomainwall and
ϕ ¼ π

2 describes a Bloch domain wall. The state variable x is continuously
tunable in an analog fashion. The domain wall can also be driven by heat
current79 and spin waves80 in addition to the electric current. The infor-
mation readout for domain wall-based devices is realized through the
MOKE (Fig. 2f)38, magnetoresistance effects81, or anomalous Hall effect82.

Nanoscale skyrmions andother topological solitons (bimeron, hopfion,
etc.) have emerged to function as potential information carriers due to their
small size and low drive current22,83. There are also other spin textures like
vortex, which can be used for spin-torque nano-oscillators18. In general, the
state space can be a 2D or 3D vector field, wherem can be arbitrary at any
spatial sites in the 2D or 3D space. However, in realistic material and device
systems, only special types of spin textures, as mentioned above, where the
m’s at different spatial sites are strongly correlated according to a function,
exist and can be useful. If one ignores the internal detail and only considers
the functionbasedonamobile informationbit, the state of a topologicalNéel
skyrmion in a thin film is characterized bym x;Rð Þ, where x and R indicate
the position in a 2D space and the radius of the skyrmion, respectively.
Skyrmions can be driven by electric current and theirmotion can exhibit the
skyrmion Hall effect due to the Magnus force in the presence of nonzero
topological charge84. The skyrmions canalsobedrivenbyheat current85.Due
to theparticle-likenature, their transport canbe controlledbyanappliedbias
voltage via VCMAeffects86,87. Current-driven dynamics of skyrmions can be

detected by MOKE84,88, transmission X-ray microscopy (Fig. 2h)89, Lorentz
transmission electron microscopy90, and neutron scattering91. Recently,
skyrmions have been electrically read out through skyrmion MTJs92–94.

Spin waves or magnons are the fundamental excitations of magneti-
zation. Utilizing spin waves for information processing could have low
powerdissipation since it does not necessarily carry charge current and thus
could be free of Joule heating95,96. While the state space can be, in general, a
2D or 3D vector field, only specialized configurations like propagating spin
waves and spin wave solitons96 that can be excited and detected have been
studied and utilized so far. Spin waves can be locally excited using electrical
current97,98 or microwave magnetic fields80 and detected at a different site
using an electrical voltage ormicrowave impedance (Fig. 2i). A propagating
spinwave can be described bym x; k; A; ϕ

� �
, where x, k,A and ϕ indicate

the position, wavevector, amplitude, and phase of a propagating spin wave,
respectively. Both the amplitude and phase can be used as information
carriers25,99. The wave-like interference can be naturally used for
computing96,99,100. Spatially and temporally resolved spin waves can be
directly observed using micro-focused Brillouin light scattering (Fig. 2j)101.

State evolution of spintronic memristors
Spintronic memristors such as MTJs feature rich memristive dynamic
behaviors under different drive conditions. A single MTJ’s governing
equation is the LLG equation, which describes a nonlinear deterministic
dynamical system.CoupledMTJs or higher dimensional spintronic systems
can have more than two state variables. In addition, input can serve as
another degree of freedom to control the complexity. The trajectories of
their solution space can be very rich as in other complex dynamic systems as
pointed out byHenri Poincaré and latermany others102–104. In the following,
we will explain four types of dynamics of MTJs and topological solitons
while briefly mentioning the other state spaces.

Steady dynamics
The state of a spintronic memristor can demonstrate either steady or con-
verging dynamics in response to an input signal: given a constant input (not
necessarily zero or DC), the state of the memristor will eventually stabilize
and maintain a constant value over time. MTJs feature stable converging
trajectories upon memristive switching (Fig. 3a), exhibiting stable binary
states. As a result, they are utilized in information storage and in-memory
logic devices. For long-term stability, the energy barrier between these two

Fig. 1 | Spintronic devices as memristors and their
application areas. a Magnetization of spintronic
devices can be controlled by current-induced spin-
transfer torque (STT) and spin-orbit torque or
voltage-controlled magnetic anisotropy. b Output
voltage as a function of input current for a magnetic
tunnel junction with perpendicular magnetic ani-
sotropy, where an alternating sine current can
induce an STT effect. The pinched hysteresis loops
are observed, where the term “pinched” is referred
from a pinched shoelace (inset). The detail of this
MTJ can be found in Box 2. c Output voltage as a
function of input current for a first-order current-
controlled memristive system. Inset shows that
memristor is fundamentally different from other
three basic circuit elements: resistor, capacitor, and
inductor since it has memory effect (but not neces-
sarily associated with the magnetic flux)62,63. The
detail of this memristor can be found in Box 1. The
frequencies of the three drive currents in (b, c) have
the following relation: ω3>ω2>ω1. d A broad spec-
trum of computing applications based on nanoscale
memristive devices.
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binary states is usually required to reach 40–80 kBT depending on appli-
cations, where kB is the Boltzmann constant and T is the working tem-
perature. To write information into MTJs, we need to apply an electric
current (via STT or SOT) or voltage (via VCMA effect) with a magnitude
larger than a threshold value105. Ultrafast measurements experimentally
resolve the analog dynamics of magnetization upon the application of an
electric current pulse, where the magnetization is electrically readout
through TMR (Fig. 3b)106.

Stable converging trajectories observed in topological solitons such as
skyrmions can be leveraged for memory applications22, where the state
variable is thepositionof the topological soliton. Skyrmions canbedrivenby
electric current-induced STTs or SOTs. Experimentally, current-induced
skyrmionmotionhas beendemonstrated (Fig. 3c)107, where the information
is encoded in the position of the skyrmion.

Nanomagnet ensembles, including multi-domain magnets or artificial
spin ices, can exhibit stable states like MTJs. But different from the digital
nature of individual MTJs that are governed by the uniaxial magnetic ani-
sotropy, nanomagnet ensembles or multi-domain magnets can naturally
show analog behaviors, owning to multi-domain nature74,75 or varying
magnetic properties across multiple nanomagnets108. The trajectories of the
state, i.e., multiple magnetizations or a magnetization vector lattice, can be
controlled by electric current74,75 or magnetic field77. Stable trajectories of

domainwalls can be achieved by applying charge current78 or heat current79.
A domain wall inside a MTJ can be utilized to create an analog
resistance81,109, where the state variable is the position of the domain wall.
Spinwaves propagate in amagneticmediawith a characteristic decay length
of λ, which is usually less than one micrometer for magnetic metals (due to
presence of electron-magnon scattering) and can be up to centimeters for
magnetic insulators like yttrium iron garnet (YIG)25,100. Interestingly, these
(coherent) spin waves can be utilized to transmit information without Joule
heating97. Under certain conditions, spin waves can form extended or
localized standing waves (or spin wave bullet modes)101,110,111. When we talk
about the state of these spin waves, we usually talk about the amplitude and
phase of spin waves m x;A; ϕ

� �
at position x, where x is the position of

detectors.

Oscillatory dynamics
The state of a spintronic memristor can show oscillatory dynamics with
respect to the input. MTJs can exhibit oscillatory behaviors under the
combination of STT or SOT and an asymmetric energy barrier for
parallel and antiparallel states112–114 (Fig. 3d), where the state is the
magnetization vector. The STT or SOT is important to excite magneti-
zation dynamics and the asymmetric energy barrier is important for
destabilizing one state114. The oscillation amplitude and frequency can be

Box 2 | Evolution and transport equations for representative spintronicmemristive systems

Without losing generality, we consider a uniaxial (z-axis) single-domain
magnet under the excitation of current-induced spin-transfer torque. In

this case, the LLG equation is written as dm
dt ¼ �γm×Heff � αγm×m×

Heff þ γHDL
STT Ið Þm×m×mp, where Heff ¼ 0; 0; 2KMs

mz

� �
is the effective

uniaxial anisotropy field along the ±z direction and HDL
STT Ið Þ / I. The low-

bias voltage V as a function of the current can be written as
V tð Þ ¼ RP þ RAP � RP

� �
1� cos θ m;mp

� �� �
=2

� � � I tð Þ, where θ m;mp

� �
is

the angle betweenm andmp. Assume I ¼ I0 sinωt, we can plot the Lis-

sajous curves (Fig. 1b) at different excitation frequencies. Both pinched
hysteresis loops and the frequency dependence are observed, con-
firming that a spintronic system governed by the LLG equation is a
memristor. For nanomagnet ensemble, the state vector will be the aver-
aged results from individual nanomagnets, whose details rely on the
detailed structure and interaction.

For other state presentations, we consider the one-dimensional
simplified cases. In figure a, we show a simplified structure, of which the
free layer can host single domains, domain walls, topological spin tex-
tures, and spin waves, the spin-orbit coupling (SOC) layer is used to
generate the spin-polarized current, and the read-out layer is a ferro-
magnet which is employed to detect the tunnel magnetoresistance sig-
nal. As an example, we show in figure b, the spin configurations
corresponding to high and relatively low resistance states for a skyrmion
case. One can derive evolution and transport equations for domain wall,

skyrmion, and spin wave memristors as shown in the table below (see
Supplementary Information for detail).

State space Evolution equation Transport equation

MTJ/nanomagnet ensemble,m dm
dt ¼ �γm×Heff � αγm×m×Heff þ γHDL

STT Ið Þm×m×mp V tð Þ ¼ RP þ RAP � RP

� �
1� cos θ m;mp

� �� �
=2

� � � I tð Þ
Domain walls, x dx

dt � βΔ
2α I V tð Þ ¼ C0 þ C1

x
L

� � � I tð Þ
Skyrmions, x dx

dt �
π2βrs
αd I V tð Þ ¼ C0 þ C1

rs
πL sin

π
2rs

x
� �

þ x
2L

� �h i
� I tð Þ

Spin waves, u du
dt ¼ � iγHzþβI

1þiα uþ 2iγA
μ0Ms 1þiαð Þ∇

2u V tð Þ ¼ C0 þ C1 uj j cosðωtÞ� � � I tð Þ
Notes:β relates to the spin polarization efficiencyandd ¼ R

∂xm � ∂xmdS.L,Δ, rs, andω are the length of read-out layer, domainwall width, skyrmion radius, and spinwave frequency respectively.α, γ,Hz,

A,Ms and μ0 are the damping constant, gyromagnetic ratio, applied magnetic field, exchange constant, saturationmagnetization and vacuum permeability constant, respectively.C0 andC1 are device-

dependent constants.
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tuned by the magnitude of the current, which can be observed in both
time domain using oscilloscope and frequency domain via spectrum
analyzer (Fig. 3e)71.

Skyrmions and other topological solitons can exhibit oscillatory
behaviors. The state variable can be the position of the soliton, which can be
tuned by electrical or thermal methods115,116. Inmicromagnetic simulations,
a locally injected spin current can create skyrmionoscillation in an extended
circularmagnetic thin film (Fig. 3f)115. Experimentally, vortex oscillations in
a nanocontact structure have been observed117,118. The state variables can
also include both the position and radius of skyrmion cores in a skyrmion
lattice119,120. It was shown that microwave fields can excite two types of
resonance dynamics of skyrmion cores: clockwise or counterclockwise
rotation mode (skyrmion core is rotating) and breathing mode (skyrmion
core’s size is changing periodically)119.

In a nanomagnet ensemble or an artificial spin ice, oscillations of the
magnetization vector lattice can be achieved by microwave fields and their
detection can be done through microwave impedance76,121. The state of a
domain wall can be the position or the phase in a domain wall oscillator.
Experimentally, AC-driven (position) oscillation122 or microwave field-
driven (phase) oscillation123 in single domain walls were observed. Direct
current-induced steady oscillations of ferromagnetic domain walls are
studied in simulations124,125. Spin waves can be used in an oscillator system
when the feedback and gain are provided, where propagating spinwaves are
created and sustained in a YIG delay line126–128. In these systems, the state
variables can be the amplitude or the phase of the spin waves.

Stochastic dynamics
When the thermal noise dominates, the dynamics of spintronic memristors
can be stochastic. There are two major types of stochasticity in MTJs3. First,
the MTJ switching is probabilistic due to the presence of thermal noise and
the switching probability is highly tunable by adjusting the current amplitude
and the pulse amplitude. The stochastic nature of switching can be used for
true random number generation129,130 and stochastic computing131. Second,
low-energy barrier magnets have stochastic trajectories in the absence of

external current, which can benefit low-power hardware stochastic and
probabilistic computing (Fig. 3j)26. The occurrence of this random fluctua-
tions can be greatly tuned by the voltage or current, where the retention time
can be from microseconds to seconds (Fig. 3k)26. Recently, through engi-
neering the energy landscape of the free layer magnetization, nanosecond
random telegraph spectra have been demonstrated in in-plane MTJs132.

Skyrmions have stochastic trajectories driven by the thermal noise32,
where the state is the position of the skyrmion. Experiments show that the
stochastic processes are skyrmion topology-133 and symmetry-dependent134.
When the topological charge changes from +1 to −1, the stochastic tra-
jectories of skyrmions are changed (Fig. 3l)133.

The magnetization vector lattice of an nanomagnet ensemble,
including multi-domain magnet135 or artificial spin ice136,137, can exhibit
stochastic dynamics when the temperature is raised above the spin con-
figuration frozen temperature76. Current-driven domain wall motion is
naturally stochastic due to the thermal fluctuation induced by the Joule
heating and randomdefects present inmagneticmaterials.On theonehand,
this poses a challenge onusing domainwalls to construct a reliable racetrack
memory. On the other hand, this intrinsic randomness can be utilized to
build a secure hardware138. Stochastic spin waves are thermally excited spin
waves, of which the frequency, amplitude and phase fluctuate. These ther-
mal spin waves can be used to transmit information98.

Chaotic dynamics
When there are no less than three state variables, the dynamics of a spin-
tronic memristor can be chaotic. Since the LLG equation for a single MTJ
only has two independent variables, chaos is precluded for a direct
current139. The existence of chaotic dynamics inMTJs in the presence of an
alternating current can be judged by the Poincaré-Melnikov method
(Fig. 3g)104,140. If a systemis chaotic, at least oneof its correspondingLyapunov
exponents is larger than zero. Indeed, chaotic dynamics of MTJ has been
theoretically predicted140 and experimentally observed in MTJs (Fig. 3h)141.

Skyrmions and other topological solitons may exhibit chaotic beha-
viors. Through theoretical calculations and magnetic simulations, an

Fig. 2 | State-space representations and transport equations of spintronic
memristors. a Schematic of a magnetic tunnel junction (MTJ) as a typical example
for nanomagnet/macrospin systems and detection ofmagnetization using the tunnel
magnetoresistance effect. b Experimental result of current-induced binary switching
in a perpendicular MTJ. c Schematic of multi-domain magnet /nanomagnet
ensemble systems with coupled magnetization states in a heavy metal/ferromagnet
bilayer and detection of overall magnetization using the anomalous Hall effect.
d Experimental result of current-induced analog resistance switching in an anti-
ferromagnet/ ferromagnet heterostructure. e Schematic of a Néel-type domain wall
and detection of magnetization map using magneto-optical Kerr effect (MOKE).
f Experimental observation of a domain wall and the current-driven domain wall
motion in a racetrack using MOKE. g Schematic of a Néel-type skyrmion and its

detection using transmission X-raymicroscopy (TXM). h Experimental observation
of skyrmions and the current-driven skyrmionmotion in a racetrack using scanning
TXM. i Schematic of spin waves and their excitation and detection using microwave
antenna. The spin waves can be spatially and temporally resolved using Brillouin
light scattering (BLS). j Micro-focused BLS microscope image of a standing spin
wave (upper panel), where amplitude and phase of spin waves are shown (lower
panel). Part (b) reprinted with permission from ref. 70, Springer Nature Limited.
Part (d) reprinted with permission from ref. 75, Springer Nature Limited. Part (f)
reprinted with permission from ref. 38, Springer Nature Limited. Part (h) reprinted
with permission from ref. 89, Springer Nature Limited. Part (j) adapted with per-
mission from ref. 101, Copyright © 2015 Sebastian, Schultheiss, Obry, Hillebrands
and Schultheiss.
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antiferromagnetic bimeron, which is an in-plane analogue of the magnetic
skyrmion, can exhibit chaotic dynamics in the presence of an ac drive
current (Fig. 3i)142. Experimentally, chaos in magnetic vortex nanocontacts
has been observed143,144.

While a direct current cannot induce chaos in a single MTJ, it can
induce rich dynamics including chaos for coupled nanomagnets or artificial
spin ices whenmore than two variables are present. The system should have
more than one tunable magnetic layer145,146 or more than one resonance
mode147. Chaotic ferromagnetic and antiferromagnetic domain walls are
theoretically studied148,149. Chaotic spin wave soliton dynamics are experi-
mentally observed in a YIG delay line with feedback150.

Spintronic memristive computing
Wecannaturally classify different typesof computingusing theirunderlying
state representation and evolution type according to the discussion above.
The well-defined and well-formulated memristive properties of various
types of spintronic memristors, emerging due to their fundamental physics,
give them unique strength in implementing neuromorphic computing, in-
memory logic, and stochastic and chaos computing, compared to conven-
tional digital computing hardware. We performed a survey and made a
summary (see Supplementary Table S1), but it is by no means exhaustive.
While proof-of-concept demonstrations usually do not experimentally
address the overhead in conventional semiconductor electronics that is used
for handling the input/output for the spintronic memristors, a full-scale
demonstration requires careful design of these auxiliary electronics so that

they will not overwhelm the benefits brought by the spintronic memristors.
We comment on the need for these supporting electronics when appro-
priate; in the outlook session,we comment on this need in amore systematic
way. In the following, we will discuss the opportunities, the state of the art,
and the challenges associated with computing using different types of
dynamics across various state representations.

Computing with steady dynamics
Memory effect. The most important feature of a steady spintronic
memristor is the memory effect that allows in-memory computing for
either digital logic or more unconventional and brain-inspired com-
puting. Different types of spintronic nanodevices can offer different
advantages, as we elaborate below.

MTJs represent a highlymature technology, characterized by its binary
stable states and seamless compatibility with CMOS technology. Hybrid
MTJ-CMOS chips have been extensively investigated, where embedded
MTJs offer non-volatility to CMOS logic gates for combinatorial logics and
replace CMOS registers and caches for sequential logics151–154. This hybrid
approach can not only bring intelligent power management in integrated
circuits for ultralow-power IoT devices and edge computing155,156, but also
provide significant improvement in memory accessing bandwidth157,158.

Spintronicmemristorshavebeen investigated to implement in-memory
logic, which can result in even lower power consumption and better per-
formance for data-centric cognitive tasks28,159. For combinatorial logics,
various approaches are proposed based on a variety of spintronic states17.

Fig. 3 | Steady, oscillatory, stochastic and chaotic trajectories in state spaces for
MTJs and skyrmions (bimerons). a The Bloch sphere representation of a stable
converging trajectory for magnetization from up to down. b Real-time detection
of magnetization switching in a MTJ by reading its resistance. c Schematic of
experimentally observed multiple frames of current-induced skyrmion motion in
a racetrack. d The Bloch sphere representation of an oscillatory trajectory.
e Frequency spectra of direct current-inducedmagnetization oscillations in aMTJ
with different current amplitudes. f Schematic of micromagnetic simulations of
current-induced skyrmion oscillation. g The Bloch sphere representation of a
chaotic trajectory. h Threshold ac drive voltage as a function of the ac drive
frequency as an evidence of low-dimensional chaos-assisted magnetization
reversal. i Theoretical results of current-induced bifurcation and chaos in anti-
ferromagnetic bimeron systems, where bimerons in in-planemagnetizedmagnets

are analogues to skyrmions in out-of-plane magnetized magnets. j The Bloch
sphere representation of a stochastic trajectory. k Experimentally observed ran-
dom telegraph signals of a MTJ-based probabilistic system. l Simulated Brownian
motion trajectories of skyrmions with a positive (left panel) and negative (right
panel) topological charge. The derivations for the trajectories in (a, d, g, j) can be
found in Supplementary Information. Part (b) reprinted with permission from
ref. 106, Springer Nature Limited. Part (c) adapted with permission from ref. 107,
American Chemical Society. Part (e) reprinted with permission from ref. 71,
Springer Nature Limited. Part (f) adapted with permission from ref. 115, IOP
Publishing. Part (h) reprinted with permission from ref. 141, Springer Nature
Limited. Part i reprinted with permission from ref. 142, American Physical
Society. Part (k) reprinted with permission from ref. 26, Springer Nature Limited.
Part (l) reprinted with permission from ref. 133, American Physical Society.
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Here, we mainly introduce digital logics based on domain walls and spin
waves. Domain walls driven by amagnetic field or current have been used to
implement logic functions. Early demonstrations of domain wall logic
require external magnetic fields20,21. Recently, chiral interactions between
domain walls were discovered and then utilized to construct purely elec-
trically controlled NOT, NAND, NOR gates, and full adders (Fig. 4a–c)37,38.
The purely electrical control promises better scalability.

Amplitude and phase of spin waves can be utilized to encode
information and their modulation in magnonic circuits enable logic
applications25,99,160. NOT gate161, XOR and NAND gates162, majority
gate163,164, and spinwave transistor165 were experimentally demonstrated.
Furthermore, an all-spin logic with spin wave interconnects was pro-
posed to eliminate the overhead of spin-charge conversion processes166.
One concern is that the spin current is not conservative and decays in the
interconnect, making cascaded gates difficult. Recently, magnetoelectric
spin-orbit logic (MESO) with a charge interconnect is proposed as a
potential logic/memory solution for beyond 3 nm technology nodes36. A
CMOS implementation of a majority gate is shown in Fig. 4d, where
three two-input and one three-input NAND gates are needed. MESO
logic could enable ultralow-power and compact building blocks like
majority gates, which are constructed using a single three-input MESO
device (Fig. 4e), and inverters, whose simulated input-output transfer
characteristics are shown in Fig. 4f. The input current is converted to the
magnetization state through magnetoelectric effect, and the magneti-
zation state is converted to the output current through the spin-charge
conversion effect36. To realize competitive advantages in terms of energy
efficiency, one needs to realize the low write voltage and cascaded
operation. The write voltage needs to scale down to a level of 100 mV36.
While scaling of magnetoelectric materials shows good progress toward
this goal36, the demonstration of magnetoelectric switching at this vol-
tage remains elusive. Also, the read-out voltage needs to be increased to a
level that can drive the switching of the next stage. One can optimize the
device geometry and improve the charge-to-spin conversion efficiency
to realize larger current conversion efficiency between input and output
terminals. At this moment, this current conversion efficiency is still

limited at 10−3 level167. Significant efforts such as employing quantum
materials that have high charge-to-spin conversion efficiencies and
scaling down the output electrode width to tens of nanometers are
needed to make it toward one and demonstrate a cascaded device, where
the output of oneMESOdevice can drive the switching of anotherMESO
device.

Besides domain walls and spin waves, we briefly mention other
approaches here, which are mostly at the conceptual level. Dipolar inter-
action between nanomagnets in a nanomagnet ensemble can be utilized to
build a majority logic gate, which can be a fundamental building block for
many other logic gates168. Spin field-effect transistor169 and spin
accumulation-based semiconductor logic170 have been theoretically pro-
posed. Skyrmions as a potentially more compatible version of domain walls
could enable more scalable and low-power logic circuits171,172.

For sequential logic, domainwalls ona racetrackhavebeenexploitedas
shift registers173,174. Electric pulses with desired duration and amplitude can
be utilized to create and shift domain walls in in-plane magnetized
nanowires173. Careful design of themagnetic energy landscape could enable
a ratchet-like motion in a perpendicularly magnetized nanowire, which can
potentially enable more scalable shift registers due to the benefit of smaller
domain sizes in it174. Besides domainwalls, skyrmion shiftmemorywas also
experimentally demonstrated, where individual skyrmions can be created
and shifted using well-defined train pulses107.

A considerable challenge of in-memory logic is that spintronic devices
are often prone to bit errors. For example, current industrial MRAM has to
use relatively strong error corrections codes (ECC) to ensure perfectly
reliable operation175,176. Therefore, the ultimate success of spintronic-based
in-memory logic will have to require extensive device optimization, the
integration of ECC within in-memory circuits152, or the use of approximate
computing strategies that tolerate errors177.Here,webriefly comment on the
last two methods, which have their own advantages and disadvantages. On
one hand, ECC can correct bit errors in spintronic devices within a certain
limit, but it introduces additional overhead, such as area, delay, and power
consumption, which can be alleviated by reusing in-memory logic. For
example, the 3-error-correct 4-error-detect (3EC4ED) ECC scheme

Fig. 4 | Computingwith steady digital states.Only one direction of magnetization
vector is taken as an order parameter. a A full adder constructed from NOT and
NAND gates. b Schematic of current-driven domain wall inverter using chirally
coupled domains through a chiral domain wall. c Magnetic force microscopy
image of the full adder logic operation, A (0)+ B (1) = Sum (1)+ Cout (0). The
current-driven domain wall motion is used to construct full adders. d A majority

logic gate constructed from NAND gates. e Schematic of majority logic gate
constructed from magneto-electric spin-orbit (MESO) logic. f Input-output
transfer curve in MESO logic. The magnetoelectric spin-orbit devices can
implement majority gates. Parts (b, c) reprinted with permission from ref. 38,
Springer Nature Limited. Part (f) reprinted with permission from ref. 36, Springer
Nature Limited.
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embedded in the in-memory circuit only accounts for 4.4%energy overhead
and 8.6% area overhead, respectively152. Approximate strategies aim to
maximize the performance of in-memory logic, by leveraging the fault
tolerance of neural networks to cover bit errors in spintronic devices. STT-
MRAM based approximate computing strategies can save 57% of energy
consumptionwith an acceptable quality of the generated outputs compared
to the benchmark STT-MRAM178.

While digital logic is more robust and easier to implement, analog
computing offers larger capacity in a smaller form factor and richer func-
tionalities suchas the long-termplasticity in synapses (Fig. 4g, h). Long-term
potentiation and depression, particularly those responses that are linear to
input signals, can be leveraged for in-memory acceleration of machine
learning. The synapses are tunable weights, typically optimized using
gradient-based approaches in minimizing a loss or energy function.

Analog long-term memory can be physically realized using nano-
magnet ensembles, domain walls and skyrmion motions. In micrometer-
size antiferromagnet/ferromagnet heterostructures, the analog magnetiza-
tion state can be driven by SOT and read out electrically (Fig. 2d)75. Domain
wall displacement in a spin valve is equivalent to a bipolar non-volatile
memristor, where potentiation and depression are due to the motion of
walls towards different directions179. Such long-term magnetoresistance
changes induced by external electrical stimuli mimicking presynaptic sig-
nals have been experimentally demonstrated on MTJs, featuring a large
dynamic range and a lowoperating power81,109,180. In addition, the long-term
synaptic potentiation and depression may also be built on the current-
induced creation, displacement, and annihilation of skyrmions181 that were
experimentally observed (Fig. 5a–c)35.

With electronic synapses that offer long-term plasticity, one can con-
struct artificial neural networks (ANNs, Fig. 5d)with theCMOSneurons. In
ANN, one critical operation is multiply-accumulate (MAC), resulting in
vector-matrixmultiplications.As shown inFig. 5e, spintronicANNs encode
input signal vectors using physical quantities such as amplitudes of voltages
or currents. The matrices can be physically mapped to synapses such as the

electrical conductance or resistance of MTJs grouped in crossbar arrays.
When rows (or columns) or such arrays are biased to input voltage/current
vectors, the output current/voltage vectors compute the products between
thematrix and the input vectors, offering significantly improvedparallelism.
In addition, unlike digital computers, here the data are processed right at
where they are stored, thus eliminating the von Neumann bottleneck and
bringing predicted advantages in various computing architectural designs
such as computing-in-memory and computational random-access
memory108,152,159,182,183. There are also challenges associated with this spin-
tronic ANN approach. First, commercially available STT-MRAM devices
usually have low on/off resistance (13 kΩ/26 kΩ)30, and thus, using current
summation for MAC is energy consuming. Recent report on using resis-
tance summation on a 64 × 64 MTJ crossbar provides a good method to
mitigate this issue and achieve high energy efficiency30. Another possible
solution is using other types of MRAM devices such as SOT-MRAM or
VCMA-(magnetoelectric) MRAM that have high-resistance cells184. Sec-
ond, MTJs in an array exhibit finite resistance variation due to process
fluctuations, which can cause accuracy reduction in MAC. One typical
MAC results are shown in Fig. 5f, from which finite errors exist30. One
observation for foundry MTJs is that there is almost no cycle-to-cycle var-
iation, which makes compensation method work well for improving MAC
accuracy185. Third, due to the nature of analog computing, analog-to-digital
conversion (ADC) is needed, which requires CMOS implementation and is
a significant overhead for spintronic ANN. There are efforts in removing
this ADC or using purely digital in-memory computing159,178.

There are other types of ANNs that have been implemented using
spintronic memristors. A Hopfield recurrent network is a dynamic system
with multiple attractors consisting of 36 weights (half-lower triangle of a
9 × 9 weight matrix due to symmetry). The output of the network serves as
its input at the next discrete time step. The trajectory of the 9 neurons,
representing pixels of a 3 × 3 pattern, falls into one of the attractors after
evolution upon different initial conditions, thus a way to associate the input
with one of the memorized patterns. The matrix-multiplications were

Fig. 5 | Computing with steady analog states. a Schematic of a biological synapse
operating on neural transmitters and ion channels. b Spintronic memristor
operating on the creation and annihilation of skyrmions. c Long-term potentia-
tion and depression of the synapse in (b). Here, only first order dynamics of
average magnetization is utilized. d Schematic of multi-layer artificial neural
network, where the weights are represented using the resistance of theMTJs in the
MTJ array as shown in (e). e MTJ crossbar array leveraging Ohm’s law and

Kirchhoff’s voltage law to perform matrix-vector multiplication. The right photo
is a real MRAM chip. f Multiply-accumulate (MAC) operation measurement
column resistance distribution across the whole array as a function of the number
of MTJs that show high resistance. Here, the order of dynamics is dependent on
the number of MTJs. Part (c) reprinted with permission from ref. 35, Springer
Nature Limited. Parts (e, f) reprinted with permission from ref. 30, Springer
Nature Limited.
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physically carried out by 36 discrete SOT Hall devices where the Hall
resistanceswereprogrammed topre-computedvalues representingpatterns
followed by in-situ fine tuning using Hebbian rules33.

Nonlinearity. While steady spintronic memristors offer nonvolatile and
constant state preservation upon the removal of the external stimulus, the
transient response to the dynamic input can exhibit highly nonlinear and
rich dynamics. How to leverage this nonlinear feature for computing has
been an essential topic for current spintronics research. One popular
method is to get inspiration from the brain and its components, which
exhibit nonlinear dynamics, are highly energy-efficient, and capable of
learning complex behaviors29.

The brain is a well-known nonlinear dynamic system made of
memristor-like dynamic systems such as neurons and synapses. These
dynamic systems operate on complicated electrochemical signal cas-
cades, which yields remarkable energy efficiency and intelligence of the
brain. Synapses are junctions interfacing neurons. The presynaptic
signal commands voltage-gated ion channels to release neural trans-
mitters, which signify the ligand-gated ion channels of the postsynaptic
cleft186. As a result, synapses transmit signals across neurons according to
their internal states, or gsyn tð Þ ¼ gmaxrðtÞ where gmax and r are the
maximum transmission efficacy and fraction of open ion channels of the
postsynaptic cleft. In addition, synapses update their states, or r, in
parallel as formulated by the differential state evolution equation dr

dt ¼
ηN 1� rð Þ � βr where η and β are the binding and unbinding constants,
respectively. N quantifies the total neurotransmitters released,
NðtÞ ¼ R1

0 nð~tÞSðt �~tÞd~t, where S(t) is the presynaptic spike train
(usually a sequence of δ-functions) and n(t) represents the neuro-
transmitter density as measured at the postsynaptic receptor. As a result,
synapses naturally meet the definition of a memristor. Such kinetics also
enable synapses to practice various local learning rules, like the short/
long-term pulse facilitation and depression, as well as spike timing-
dependent plasticity, which forges the basis of memory and learning.

The resemblance to LLG equation allows representing the state of an
artificial synapse via spin configurations, such as discrete spins or magnetic
textures. For chemical synapses, the evolution of state variables and thus
transmission efficacy is driven by the combined presynaptic and post-
synaptic stimulus, leading to different local learning rules at different
timescales, such as the widely observed long-term plasticity and spike
timing-dependent plasticity (STDP). While long-term plasticity can be
leveraged for digital logics and artificial neural networks, STDP can be
harnessed to implement time-dependent local learning rule, e.g., famous
Hebbian rule, that is widely used for learning in spiking neural networks187.
According to STDP rule, the synaptic weight changes according to the
relative timing difference between a presynaptic and a postsynaptic spike.
While ideal binary MTJ does not allow for an analog change in the weight
state, such a STDP behavior was observed in non-ideal MTJ where voltage-
driven ionic motion was involved188. In addition, paired current pulses are
used to switch micrometer-size antiferromagnet/ferromagnet hetero-
structures using SOT, where the analog Hall resistance shows a clear STDP
like behavior (Fig. 6a, b). This timing effect can be modelled by incorpor-
ating Jouleheatingwhere the temperature rise due to electrical pulse impacts
on the subsequent switching34. Note that the anomalous Hall resistance in
this case is too small as the readout method and one solution is to use large
TMR effect as one recent work demonstrates the STDP in a multi-domain
magnet-based MTJ74.

Neurons are the sources of signals in the brain. The behavior of a
neuron depends on its internal state, which is frequently approximated by
the membrane potential u, and can naturally be implemented using
memristor-based circuits186. The rise and fall of membrane potential
depend on the dendritic input I to the neuron according to
τm

du
dt ¼ � u� urest

� �� RI, where τm, urest and R are time constant, rest
membrane potential, and input resistance, respectively. In addition, the
more advancedHodgkin-Huxleymodel has also been proven a system built
on memristors189. As a matter of fact, the various spiking dynamics,

including the three classes of excitability, of the neuron have also been
experimentally realized on nanoscale memristors, illustrating their tight
correlation190.

Neurons exhibit rich dynamic behaviors including nonlinear thresh-
olding, self-sustained oscillation, leaky integrate-and-fire, chaos, resting
states, burst-number adaptation, spike latency, and refractory period, which
can be reproduced using memristors69. Among them, steady spintronic
memristors can offer leaky integrate-and-fire, which has been popular in
developing computing applications.

For leaky integrate-and-fire, the neuron spikes once the integrated
input stimulus, reflected as the membrane potential, exceeds a threshold.
This can be implemented on macrospins or magnetic solitons such as
domain walls or skyrmions. For macrospins like MTJs, the magnetization
switching driven by STT in combination with back-hopping can output
spikes like that of neurons188. For high dimensional magnetic features,
magnetic solitons such as domain walls and skyrmions can be manipulated
andmoved over large distances using STTs and SOTs. The spatialmotion of
domain walls and skyrmions can be mapped to the membrane potential of
biological neurons, exhibiting leaky integrate-and-fire and lateral inhibition
(the firing of one neuron prevents others from firing) on nanoscale ferro-
magnetic tracks191–193. While spintronic memristors can mimic leaky
integrate-and-fire behaviors, one typical overhead is to have external circuit
for reset functionality. Recently, exchange bias from antiferromagnet and
the combined strayfield and interlayer exchange couplinghavebeenutilized
in realizing self-reset after firing in Hall bar194 and domain wall devices82

(Fig. 6c), respectively.
With individual neurons or coupled neurons that offer nonlinearity,

one popular method is to use reservoir computing that leverages the high
complexity of nonlinearity. As revealed by its name, reservoir computing
echoes the idea that dropping a stone (input signal) into a still body of water
generates ripples (state of the reservoir). The latter is usually in a high-
dimensional state space following a trajectory at the chaos boundary,
making the corresponding state vector much more linearly separable than
that of the input vector195,196.Wavemechanics have been harvested for AI in
the form of spin wave neural networks. The latter performs the cascaded
linear and nonlinear transformation of input signals by propagating spin
wave across a customizedmagneticfield pattern,which serves as theweights
of neural networks. The network is trained by refining the field pattern to
realize the desired input-output mapping197. The spatial evolution of mag-
netic textures can also be exploited to nonlinearlymap the input to the state
of a dynamic system. For example, a reservoir computermade of individual
skyrmions canmap the temporal spatial voltage input patterns to the spatial
configuration of skyrmions thanks to the spin torques and pinning. This
configuration, or state of the reservoir, can be probed by fixed position
electrodes on ferromagnet tracks198. A reservoir computer can also use
skyrmion fabric, where skyrmions are pinned by grain boundaries to
nonlinearly map input voltage waveform to output current waveform
without displacing skyrmions, which functions as a recurrent network of
random and fixed weights199. One recent experiment demonstrated the
capability of skyrmion reservoir computer, where the state of the skyrmion
reservoir can be modulated by the input magnetic field (Fig. 6d, e)200. Evi-
dence showed a positive correlation between the recognition accuracy and
the skyrmion density, which can be understood that more skyrmions pro-
vide more state variables (complexity) and nonlinearity (Fig. 6f)200.
Encoding the input as the magnetic field is not as efficient as encoding the
input as the electric current or voltage, which was also demonstrated
recently in a piezoelectric controlled skyrmion reservoir system201.

Computing with oscillatory dynamics
Oscillatory spintronic memristors have the intrinsic capability of handling
radio-frequency (RF) signals, which are ubiquitous in modern society for
wireless communication andmedical applications.One can also encodeDC
signals into RF signals to process information. However, this approach has
important overhead due to the DC-RF, similarly to the analog-to-digital
conversion for analog computing. While one can use oscillatory spintronic
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memristors to perform regular digital logic, it is hard to imagine how this
approach can compete with steady spintronic memristors. In general,
regarding how to compute with oscillatory dynamics, again, we can get
inspiration from the brain.

Neural oscillations are the rhythmic or repetitive patterns of neural
activity in the brain, which plays important roles in advanced cognitive
functions. Injecting a charge current to MTJs can lead to sustained mag-
netization precession of the free layer, resulting in oscillating magnetore-
sistance or voltage that mimics the neural oscillations18

(Fig. 7a–c). In addition, the LLG equation endows this oscillator with a
fadingmemory. As a result, the evolution of the oscillator not only depends
on the input current but also its state, allowing a single oscillator to function
as a delayed feedback system that mathematically parallels systems of
coupled oscillators, which has wide applications including reservoir
computing18,202–207. Macrospin oscillatory neurons such asMTJs with fading
memory could work as delayed-feedback systems, capable of implementing
reservoir computing18,202. The inputs, usually spatial temporal patterns, drive
the evolution of the reservoir. Its internal states sampled at different time
points, or virtual nodes, serve as the outputs. A simple fully connected
readout map is trained to perform regression or classification18.

Oscillatory synapses are needed to form fully connected RF neural
networks. Nanoscale spintronic synapses can be built on MTJs with spin-
torque diode effect that is dependent on the input frequency power and the
MTJ resonance frequency208. The output dc voltage is proportional to the
input power and themultiplication coefficient can be tuned by adjusting the
MTJ resonance frequency with a stripe line-generated local Oersted field209

(Fig. 7d–f). Note that this weightmethod is not ideal due to its volatility and
the involvement of local magnetic field generation. In the future, the reso-
nance frequency can be potentially controlled in a non-volatile fashion by

using magneto-ionic effects210. With spintronic RF synapses and neurons,
one can construct a fully connected oscillatory ANN, where the connection
between different neural network layers is implemented through a RF
link211(Fig. 7g). Experimental studies and simulations have demonstrated
that the RFmultilayer neural network can classify nonlinear RF signals and
drone RF emission signals with high accuracy, respectively211.

The oscillating trajectories in state spaces for high dimensional spin-
tronic memristors can emulate oscillating neurons if they are driven by
external changing field or injecting current115. Similarly, the memristive
dynamics equip those oscillators with short-term memory that oscillators
can modulate their outputs under the same excitation, mimicking the
neuromodulation and self-adaptability212,213. Because of the large number of
state variables that offer high complexity and nonlinearity, their oscillatory
dynamics can benaturally used as a reservoir computer. Themagnetic states
of artificial spin ices121 (Fig. 8a–d) and skyrmion materials214 are tunable
upon the adjustment in the external field and their transient behaviors
exhibit nonlinearity, memory effect, and complexity, making them suitable
for a variety of forecasting and classification tasks.We discuss artificial spin
ice-based reservoir computing first121. We encode the input time sequence
into the sequence ofmagnetic fields, such as sinewave and inverse sawwave
in Fig. 8a. The maximum magnetic field should not reverse the magneti-
zation of nano islands in the artificial spin ices (Fig. 8b). Then, the ferro-
magnetic resonance (FMR) is measured to get absorption as a function of
the frequency (Fig. 8c). The spin wave modes in the FMR response are
highly nonlinear and have strong memory effect due to large number of
nano islands and multiple magnetic states for each nano island. The
amplitude of each frequency in the FMR response is used as an independent
output (Oi), resulting in a large number of outputs for each time step
without the time multiplexing. Then, each output is assigned a weight (wi)

Fig. 6 | Computing with steady analog state dynamics. a Spintronic memristor
consisting of multiple domains. b Spike timing-dependent plasticity of the
synapse in (a). Here, only first order dynamics of average magnetization is uti-
lized. c Spintronic leaky-integrate-fire spiking neurons with self-reset in a
domain wall device. Here, only first order dynamics of domain wall position is
utilized. d Schematic of reservoir computing scheme. e Schematic of magnetic
skyrmion-based reservoir computing. The reservoir consists of magnetic sky-
rmions inside the Hall bar device made of Pt/Co/Ir. The input and output are

encoded in external magnetic field and Hall voltage, respectively. f Correlation
between recognition accuracy and the average number of skyrmions in the
reservoir. Here, the order of dynamics is dependent on the number of skyrmions
in the reservoir. Part (b) reprinted with permission from ref. 34, © 2019WILEY-
VCH Verlag GmbH & Co. KGaA, Weinheim. Part (c) reprinted with permission
from ref. 82, Springer Nature Limited. Parts (d–f) reprinted with permission
from ref. 200, Copyright © 2022 The AmericanAssociation for the Advancement
of Science.
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so that the target value Y can be approximated with
Pi¼N

i¼0 wiOi after
training. Figure 8d shows an example of a predicted square wave time
sequence after training that resembles the target time sequence. Skyrmion
materials can have skyrmion, conical, and helical magnetic phases, which
canbe tunedwith the specific biasmagneticfield and temperature to achieve
the on-demand reservoir computing depending on task214. Spin waves can
form sustained oscillations in a low-loss delay line (like YIG) with the
external microwave circuits to provide the gain. The nonlinear dynamics
and delayed response due to the propagation in a YIG delay line allow for
time-multiplexed reservoir computing, where the input signal is encoded
into the waveforms of the microwave switch, and the output signal is read
out through the microwave diode127. Combining spintronic memristors
with a diverse property in a large system has been shown to achieve over-
parameterized regime in simulation, where the error is close to zero215.

When multiple oscillatory spintronic neurons couple together, oscil-
latory neural network can exhibit much richer dynamics with high-
dimensional complexity. The reason is that these individual oscillators
exhibit phase and frequency synchronization when they couple with each
other. For example, individual spintronic oscillators can couple through
electrical or magnetic means216–224. Dynamics of these coupled systems can

be very useful for oscillator-based computing225. As a result, oscillatory
neural networks encode information using the phases and frequencies of
oscillators. The phase and frequency dynamics of coupled oscillators, such
as those using spin-torque oscillators forming an oscillatory Hopfield net-
work, under the influence of subharmonic injection locking, are governed
by Lyapunov functions that are related to associative memory, which can
retrieve a pre-storedmemory upon a given input226,227. Spinwave pulses can
couple in time domain and thus enable an implementation of time-
multiplexed Ising machine, where the all-to-all coupling can be imple-
mented through a FPGA128,228. The advantage of implementing the spin
wave-based Ising machine is the potential of minimization due to their
orders of magnitude slower speed, compared to the optical coherent Ising
machine229. However, the challenge is the large loss of the spin wave, which
requires further development of spin wave amplification on the micro- or
nano-scale230.

In addition, synchronization of two coupled oscillators reveals a strong
inter-connection, or equivalently a large synaptic weight in the coupling
matrix. The coupling strength can be adjusted by tuning the natural fre-
quency of each oscillator where a smaller frequency difference between two
oscillators results in a larger tendency to couple. As a result, each input

Fig. 7 | Computingwith oscillatory dynamics andneural networks. a Schematic of
a spin-torque nano-oscillator based on spin-transfer torque MTJ. The d.c. current
injection can cause oscillation of magnetization, which results in the oscillation of
MTJ voltage. bMeasured a.c. voltage out of device a as a function of time, where the
amplitude of the oscillation is eV . c eV as a function of the injected d.c. current, where
the nonlinear behavior mimics the neuron. d Schematic of a MTJ as a synapse,
where the weight is tuned by the d.c. current (magnetic field). Inset is a TEM image
of a MTJ. e Rectified d.c. voltage as a function of frequency of the input RF signal.

f Output rectified d.c. voltage as a function of the input RF power for different
synaptic weights. g Schematic of a multilayer RF/d.c. spintronic neural network.
The input RF signal is multiplied by the weight of individual MTJ synapses to
generate d.c. voltages. The d.c. voltages will add up and be injected to the MTJ
neurons so that RF signals can be generated and transmitted to the next layer of
neural network. Parts (b, c) reprinted with permission from ref. 18, Springer
Nature Limited. Parts (d–g) reprinted with permission from ref. 211, Springer
Nature Limited.
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triggers a specific synchronization pattern of the neurons. Experimentally, a
neural network of four coupled spin-torque oscillators can take two input
frequencies that encode vowel information (Fig. 8e, f) and classify vowels by
generating distinct synchronization frequency patterns19 (Fig. 8g).While we
discuss the STT MTJ-based nano-oscillators the most, we need to know
there are a large variety of spin oscillators based on themechanism (STT or
SOT) or geometry (nano-pillar or MTJ, nano-contact, nano-constriction,
etc.)61. In particular, significant progress has been made in nano-
constriction spin Hall nano-oscillators (SHNOs) (Fig. 8h) due to their
nanoscale dimension and simple fabrication process231–234. Mutual syn-
chronizations of up to 8×8 oscillators in 2D array223 and 50 oscillators in 1D
chain232 based on nano-constriction SHNOs have been demonstrated. Also,
voltage control has been added to these devices to achieve the frequency
tuning231,233,234. Recent advances in this field have suggested that the
amplitude andphase ofmutual synchronization canbe tuned byhermiticity
and spin wave, respectively235,236.

Despite significant progress in utilizing oscillatory dynamics for
computing28,29, it is crucial to underscore the pivotal role of CMOS inte-
gration to make the computing scheme scalable. We use the mature tech-
nology of MTJ-based oscillator, as an illustrative example. While seamless
integration of CMOS/MTJ has facilitated high-capacity MRAM
technology17, MTJ-based oscillators require additional efforts to achieve
integration. Firstly, bias field-free operation is essential. Secondly, dedicated
RF signal processing circuits such asCMOSbias tee and amplifier need to be
developed and integrated with MTJs237. Thirdly, cross-layer co-design is
required to understand the need at various levels, includingmaterial, device,
circuit, system, and algorithm.

Computing with stochastic dynamics
Macrospins, like MTJs, have long been demonstrated as binary synapses.
One approach to encode analogue values with binary macrospins is prob-
abilistic programing of macrospin to encode analogue values in its

expectation.This is because, strictly speaking, the evolution of both synapses
and LLG at nonzero temperatures are governed by stochastic differential
equations. Whether this stochasticity can be manifested or not depends on
the ratio between potential barrier and energy fluctuation. It is also reported
that such stochasticity is critical to efficient learning in biological systems238.
This makes spintronic devices evenmore appealing over digital alternatives
that rely on tedious pseudo random number generation.

Stochastic spintronic memristors can be utilized to achieve probabil-
istic computing. To achieve this, the first thing is to generate true ran-
domness. Utilizing the stochastic trajectories in state space, spintronic
memristors can leverage the entropy from thermal fluctuation to perform
useful computing. The switching probability of a MTJ depends on the
current pulse amplitude and duration (Fig. 9a, b). The pulse duration
dependence can also be translated into the frequency dependence of the
incoming stimulus (Fig. 9c). An alternative way to utilize the stochasticity is
to employ low-energy barrier magnets, which have highly tunable sto-
chasticity even in the absence of the external current supply. Researchers
have also utilized injection-locked spin-torque nano-oscillators to realize
random bitstream generation239.

In probabilistic computing, for two uncorrelated stochastic bitstreams
with up and down states, multiplication of the probability for up state is
equivalent to the result of AND operation for these two bitstreams. How-
ever, one major obstacle is that when the two bitstreams are correlated, this
kind of calculation fails (Fig. 9d). The key is to preserve the probability of up
state but reshuffle the appearance of up states in the bitstream. Skyrmion
reservoirs (Fig. 9d) have been utilized to achieve this reshuffler due to two
important features. First, the skyrmion number is a conserved number.
Second, the skyrmion motion is highly stochastic under the low drive
current (Fig. 9e). Experiments have shown prototype shufflers based on
skyrmions (Fig. 9f)32.

Stochastic dynamics can be utilized for neuromorphic computing. The
trajectory of aMTJ state canhave tunable stochasticity that can be utilized as

Fig. 8 | Computing with coupled oscillatory dynamics. a–d Schematic of the
reservoir computing scheme using artificial spin-vortex ice (ASVI). a Input values
0–1 are scaled over applied field rangeHapp = 18–23.5 mT. bThe scanning electron
microscopy (SEM) image of ASVI. c The ASVI output response is obtained by
applying a field loop and then measuring FMR spectra at Happ = 2.6–9.5 GHz
(20 MHz steps). d Weights are obtained by ridge regression on the ‘train’ dataset
and applied to a separate ‘test’ dataset. e A small oscillatory neural network with
coupling between output neurons. f Physical implementation of oscillatory neural

networks with spintronic oscillatory neurons. g Vowel recognition using the
network in (f). Each color corresponds to a different spoken vowel. h The SEM
image of the 4 × 4 nano-constriction spin Hall oscillators made of Pt/NiFe thin
films. One d.c. current and two microwave currents with frequencies fA and fB are
added as bias and inputs, respectively. Parts (a–d) reprinted with permission from
ref. 121, Springer Nature Limited. Part (g) reprinted with permission from ref. 19,
Springer Nature Limited. Part (h) reprinted with permission from ref. 223,
Springer Nature Limited.
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a synapse with probabilistic plasticity, which can mimic plasticity in a sto-
chastic manner. This is very different from the previous synapse with
determined plasticity. An STDP rule can be implemented on a stochastic
binary switch, using STT131 or SOT240. Simulations have shown that sto-
chastic switching of spintronicmemristors leads to probabilistic synapses in
a stochastic neural network, with applications to unsupervised learning
(Fig. 10a, b)131. In addition to synaptic behaviors, the stochastic dynamics
also mimic the neuronal functions. The stochastic switching of anMTJ due
to VCMAmay follow a sigmoid probability density function, that naturally
performs the nonlinear activation241. Also, STT can induce spikes with bias
voltage-dependent spiking rate due to the alternating and sequential
switching of hard and soft free layers in dual free layer perpendicular
MTJs242. In 100 nm-diameter antiferromagnet/ferromagnet devices, the
switching or firing probability strongly depends on the intensity or fre-
quency of the incoming stimulus, reproducing the leaky integrate-and-fire
functionality (Fig. 9c)34. With neurons that can generate spikes, one can
construct spiking neural networks (SNNs) that encode signals using timing
or rate (frequency) of spikes.

Stochastic spintronic devices are also under investigation for security
applications including but not limited to recycling sensors, physically
unclonable functions, true random number generators, and encryption138.
The sources of entropy and randomness for a singleMTJmainly come from
the thermal noise-induced stochastic spin-torque switching and random
telegraph signals. For nanomagnet ensembles and MTJ arrays, the sources
could include all kinds of process-induced variations in device properties
such as magnetic anisotropy, MTJ area, tunnel barrier oxide thickness,
intrinsic switching current and time.

Coupled stochastic spintronic memristors can achieve richer and
complex dynamics. Recently, the concept of probabilistic bit (P-bit) is
revived with a concrete realization based on a manufacturable and
compatible MTJ hardware solution243,244. These P-bits can serve as a

bridge between ordinary bits and quantum bits. Very much like
quantum bits, the P-bits can solve some problems that are challenging
to classical computers. Researchers have utilized a network of P-bits
with carefully designed interconnections and bias inputs to solve
integer factorization problem26. The P-bit implementation by inte-
grating a low-energy barrier MTJ with simple CMOS circuits (Fig. 10c)
allows electrical control of probability (Fig. 10d), which makes it
superior to purely CMOS-based P-bit26. The complex integer factor-
ization problem is then encoded into the array of P-bits (Fig. 10e) so
that the solution can be eventually realized in a ground state (Fig. 10f)
after simulated annealing26. Alternative implementations of the P-bit
are realized using SOT245 and VCMA MTJ246 devices. Three important
directions are being actively pursued to scale up the system further.
First, the retention times for the low-energy barrier nanomagnets with
perpendicular magnetic anisotropy range from milliseconds to tens of
milliseconds26, limiting the operation speed. Recent demonstration of a
relaxation time down to 8 ns in in-plane MTJs132 shows the potential of
high-speed operation of P-bits. Second, more physical P-bits must be
combined in circuits to demonstrate a larger system. Third, cross-layer
co-design is necessary to optimize the P-bit computing, which is also
suggested by one focused review on P-bit computing247. One recent
effort is to use hybrid CMOS/MTJ approaches to scale up the number of
the P-bits to 7085 to solve the integer factorization problem for 26-bit
integers248.

Computing with chaotic dynamics
Chaotic dynamics of spintronic memristors can be utilized for security
applications138 and neuromorphic computing69,196. Unlike stochastic
dynamics, chaotic dynamics are intrinsically deterministic, and thus the
recovery of encrypted information is easy to implement using the same
system that generates the dynamics. We introduce one chaos-based image

Fig. 9 | Computing with single-device stochastic dynamics. a Schematic of anMTJ,
where the free layer magnetization switching probability is controlled by the pulse
width and amplitude as shown in (b). c switching probably as a function of the
frequency of the input spikes, which mimic the integrate-and-fire behaviors of the
neuron. d Stochastic computing using skyrmion gas-based re-shufflers that eliminate
the correlation impact inordinary stochasticmultiplication. eExperimentally observed

stochastic trajectories of four skyrmions at room temperature. f Demonstration of re-
shuffling operation to a stochastic bitstream in a skyrmion-based stochastic re-shuffler
device. The radius of the reshuffling chamber is 40 μm. Part (b) reprinted with per-
mission fromref. 131,Copyright©2015, IEEE.Part (c) reprintedwith permission from
ref. 34, © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Parts (e, f)
reprinted with permission from ref. 32, Springer Nature Limited.
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encryption here249. The original image is converted to seed numbers using
the Secure Hash Algorithm and these numbers together with private keys
are used as inputs for a chaotic spintronic memristor system that will
generate extremely dynamics and thus unpredicted outputs. These outputs
can be used in different encoding schemes to encrypt the original image.
Also, chaotic dynamics is highly nonlinear and can exhibit rich behaviors
that mimic biological systems69. One critical feature of the memristive sys-
tem is the possibility of exploring the edge of chaos between the ordered and
chaotic regimes, where the entropy of a local system could decrease over
time and self-organization or emergence can happen250. The recent simu-
lation study on using a single spin-torque oscillator as a reservoir computer
shows that the system performance peaks around the edge of chaos by
tuning the input sequence196.

Another important application is to use chaotic dynamics to assist the
global optimization52. Since the chaos is deterministic, which is different
from stochasticity, controlled reduction of fluctuation amplitude in chaos
could help find the global minimum of a designed energy landscape in a
more deterministicmanner251. Recent experiments have shown that one can
use a direct current to tune a nanocontact vortex oscillator between com-
mensurate phase-locked and incommensurate chaotic states144. As a result, a
nanocontact vortex oscillator can generate highly unpredictable bitstreams
or symbolic dynamics in a controllable manner252.

Summary and outlook
In this review, we provide a holistic picture of spintronic devices as mem-
ristors, correlating memristive dynamics (trajectories in state space), a
manifestationof theunderlyingphysics andmaterials, to various computing
applications. Spintronic memristors offer significant advantages over other
memristor technologies, as they do not rely on atomic motion, resulting in
much higher endurance. Additionally, leveraging the well-controlled and
well-understood physics of magnetism, spintronic memristors can exhibit
an incredible diversity of dynamic behaviors, as described throughout this
review. However, spintronic memristors also present challenges. In the

following section, we delve into these challenges and trends for spintronic
memristor-based in-memory logic, neuromorphic computing, stochastic
computing, and chaos computing.

Spintronic memristive materials and devices
Enhancing spintronic memristive devices involves achieving lower write
energy, larger readout signal, and reduced area cost. The first two aspects
primarily pertain to input/output (I/O) between spintronicmemristors and
standard semiconductor technology (Fig. 11a).While the concept of all spin
logic holds promise, it is widely regarded as challenging to achieve due to
nonconservative nature of spin current. Initial attempts to realize alternative
spintronic memristive computing have involved RF interconnect for RF
multilayer neural network211 and charge current interconnect for MESO
logic36 or cascadable SOT logic253. However, these interconnects necessitate
external circuits to provide gains, most likely implemented in CMOS
technology. Consequently, due to the dissipative nature of classical infor-
mation processing circuits, conventional CMOS technology is deemed
indispensable. Keeping this input/output balance inmind is essential for the
development of effective spintronic memristors.

We highlight several potential opportunities and challenges in
improving the I/O aspect and scaling. Most demonstrations of spin-
tronic memristors rely on STT-MTJs due to their technological
maturity, primarily because MTJs can be integrated with CMOS, and
their read/write methods are highly optimized. To improve the energy
efficiency of spintronic memristors, researchers have employed novel
materials with large SOT efficiencies such as topological insulators254,255

to drive magnetization dynamics and achieve memristive behaviors256.
Additionally, utilizing voltage instead of current can further reduce
power consumption105. While existing spintronic memristors have a
relatively small read margin due to a modest TMR ratio (around 200%
for a typical MTJ), other memristor technologies, such as valence-
change resistive switching devices or phase change memories, offer
much higher read margins. A fundamental breakthrough lies in

Fig. 10 | Computing with stochastic network dynamics. aMTJ-based probabilistic
synapses are used for hardware encoding synaptic plasticity, which is tuned
according to the spike timing-dependent plasticity rule. b Demonstration of clus-
tering images using unsupervised learning in simulation. c MTJ-based spintronic
memristor system for binary stochastic neuron or probabilistic bit (P-bit) in the
absence of significant excitation. d Random telegraph output signals under different

input voltages, where more “0 V” and “5 V” are observed for lower and higher input
voltages, respectively. eNetwork of P-bits is configured according to the nature of a
problem to solve the problem. fNetwork of six P-bits is used to solve a simple integer
factorization problem, 161 = 23 × 7. Parts (a, b) reprinted with permission from ref.
131, Copyright © 2015, IEEE. Parts (d, f) reprinted with permission from ref. 26,
Springer Nature Limited.
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improving the read mechanism. Certain 2D material-based spin-filter
TMR can be more than 10,000% at low temperatures257. Recently, the
giant anomalous Hall effect, which can naturally offer both positive and
negative resistance values, instead of magnetoresistance effect that can
only provide positive resistance values, in magnetic topological insula-
tors has been utilized to perform cryogenic in-memory computing,
essential for cryogenic electronics and quantum computing
applications258. While these novel materials (topological and 2D mate-
rials) offer significant advantages, integrating them with CMOS tech-
nology requires exploration through novel synthesis methods, CMOS-
compatible material transfer, and 3D integration. Scaling down indivi-
dual spintronic memristors is critical for future large-scale integration.
Demonstrations of thermally stable MTJs down to a diameter of 2.3 nm
have been achieved using the perpendicular shape anisotropy
technique259,260. Sub-10 nm channels have been realized for spin Hall
nano-oscillators for ultralow current operation261.

Specific requirements for improving I/O and scalability vary for other
spintronicmaterial and device systems. Nanomagnet ensembles or artificial
spin ices hold promise for analog computing. However, using a single MTJ
to read the analog signal limits their readout margin, while employing
multipleMTJs for reading the state of artificial spin ices increases the device
area, presenting a fundamental tradeoff. Minimizing their size while
maintaining thermal stability at room temperature is crucial for domain
walls and skyrmions. Most proof-of-concept demonstrations of these spin
texture-baseddevices rely onMOKEorHall signals,which are incompatible
with CMOS or too small for readout. Significant progress has beenmade in
controlling and reading the states using the large TMR effect in domain
wall262,263 and skyrmion devices264. In spin wave-based computing, utilizing
short wavelength spin waves is essential for scaling and can be achieved in
ferromagnetic265 and antiferromagnetic266 materials. Improving the I/O
efficiency requires enhancing electromagnetic transducer design to mini-
mize loss during microwave-spin wave interconversion267.

Computing with spintronic memristive dynamics
Identifying the crucial tasks (or mathematical operators) and aligning them
with suitable spintronic memristive dynamics remains an area of extensive
exploration. First, we highlight important tasks that are potentially
addressable by spintronic memristors. When considering spintronic
memristors, two directions are noteworthy: one involves the ultra-scaled
technology node, where the performance is constrained by CMOS leakage
power,while the otherpertains to edge computing,where power constraints
are stringent and nonvolatility is critical. Examples include MESO36 and
nonvolatile in-memory logic154, which respectively target the aforemen-
tioned challenges. There are arguably more opportunities for applications
that pose fundamental challenges for von Neumann architecture compu-
ters, such as neuromorphic computing algorithms268 and NP

(nondeterministic polynomial time) problems269, with significant implica-
tions in optimization and security. Pioneering demonstrations addressing
these tasks have leveraged key features of spintronic memristive dynamics,
such as brain-inspired neural networks and stochasticity. Subsequently,
researchers explore the potential for novel computing with spintronic
memristive dynamics. We list the design requirements, main advantages,
and key challenges of computing schemeswith various dynamics inTable 2.
While manual adjustment of spintronic device dynamics to suit computing
needs is possible, one should weigh the benefits of utilizing it for computing
against potential overheads arising from the I/O issue between the spin-
tronic system and standard semiconductor technology (Fig. 11). For
instance, utilizing the dynamics of spin-torque nano-oscillators to handle
RF signals211 exemplifies such potential overheads. Other opportunities
include using stochastic MTJs for spiking neural networks131,240 and
employing spinwave reservoirs forRF signal processing197.Additionally, the
characterization and utilization of chaotic spintronic dynamics are still in a
very early stage.

To date, experimental demonstrations of neuromorphic computing
with spintronic memristors have primarily relied on first-order (short-term
and long-term plasticity) and second-order (oscillation) dynamics. Emu-
lating biological neurons that exhibit periodic bursting (third-order),
chaotic oscillation (third-order), andhyperchaos (fourth-order) necessitates
spintronic memristors based on higher-order dynamics69,270. Furthermore,
recent demonstrations have been limited in terms of the number of coupled
spintronic oscillators and stochastic MTJs, with connection topology pre-
dominantly lying in a 2D plane18,26,223. High-order dynamics can also be
induced by introducing new control order parameters such as crystalline
phase (temperature)271, phase235, and hermiticity236 of mutual synchroni-
zation. Expanding into larger arrays and higher dimensions and integrating
different spintronic dynamics (Fig. 11a) could substantially enhance the
representation capability to address more complex problems.

Toward large-scale practical demonstrations with cross-
layer design
Most research on spintronic memristors primarily focuses on individual
material, device, circuit, system, and algorithm levels.However, a significant
gap exists between the conceptualization of devices and the realization of
fully functional systems employing state-of-the-art algorithms. Over the
past two decades, extensive efforts have been devoted to developing algo-
rithms for tackling various challenging tasks. While these algorithms have
demonstrated impressive performance, their implementation has led to a
substantial increase in energy consumption due to misalignment with
existing computer architectures, compounded by the deceleration of CMOS
technology scaling272. Understanding the characteristics of different algo-
rithms and hardware properties (CMOS and spintronic memristors) is
crucial for selecting appropriate spintronic memristors and designing

Fig. 11 | Perspectives on spintronicmemristors for
computing. a Possible combinations of spintronic
dynamics for computing. Exchanges of signals
between the spintronic dynamics and CMOS are
highlighted as the CMOS-compatible input/output
signals are critical for the practical application. In
addition, we highlight three tuning knobs: order of
dynamics (or the number of state variables n),
coupling within one kind of spintronic dynamics,
and hybrid spintronic dynamics. b Cross-layer
design by considering key parameters and features at
different levels to achieve a co-optimized solution
for various applications and algorithms.
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effective circuits. Present demonstrations are predominantly confined to the
device and small system levels. To unlock the potential of spintronic
memristor-enabled computing, there is an urgent need for cross-layer
design, integrating superiordeviceswith richdynamics, andexploring larger
circuits and systems.

Achieving cross-layer design for large-scale practical applications
requires interdisciplinary collaboration among research teams with diverse
expertise to address challenges across different levels (Fig. 11b). There is
plenty of room at the bottom. At the material level, in addition to investi-
gating the dynamics and scalability, the CMOS process compatibility issue
needs to be taken into consideration. Thus, demonstrating integrated
spintronic memristors with the CMOS platform is critical yet remains lar-
gely unexplored. At the device level, addressing I/O, energy efficiency, and
variation issues is vital to ensure the performance of the basic electronic
foundation cell, which can be replicated into arrays to realize large-scale
systems. In addition to optimizingdevice fabrication andCMOS integration
processes, the foundation cell must be co-developed with material/device
-level designs enhancing intrinsic uniformity and the circuit level designs
tolerating or mitigating device and/or material issues, achieving favorable
metrics in terms of power, performance, and area (PPA). At the architecture
and system levels, adopting various co-design principles is necessary to fully
harness spintronic memristive dynamics, achieving superior performance
compared to conventional CMOS counterpart. Critically, at the application
level, instead of directly porting conventional algorithms to new hardware,
tailoring algorithms to suit the new hardware will be essential for new
applications. Thus, there are also plenty of opportunities at the top.
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